SCATTERED LIGHT

A lecture based on the paper by
V. Martinez Pillet, Solar Phys. 140 (1992), 207

In addition to the wavefront distortion in the Earth’s atmosphere,
the light is scattered on a dust and water droplets in the air, and on
dust particles on optical surfaces.

This results in a bright circumsolar annulus — the aureole.

Scattered light affects the far wings of the PSF. This is hard to detect
in frames taken on the disk — aureole observations are necessary.

Scattered light causes spurious enhancement of intensity in sunspots.
Since the light is scattered on relatively long distances (comparable
with R ), in the first approximation it appears as an additive constant
to the observed intensity.

Scattered light as a radiative transfer problem

Formal solution:

I(70,n) = Jo(n) exp(— 4-/“ n) exp(—(r — 7)) dr (1)

Jo(n) = Iy(n) = center-to-limb variation (CLV) inside Aw,
Jo(n) =0 outside Aw,
Aw is the solid angle occupied by the sun.

Scattering source function:

S(rn) = / yb(0) I(7,n’) dw (2)

~v — albedo = fraction of light lost from the incident ray,
1 (0) — spread function (phase function),
I(1,n’) — local intensity.
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Expressing the local intensity by the ”original” one Iy(n'):
I(1,n’) = Ij(n’) exp(—7(n')), we have
1
S(r,n) = pp exp(—7(nyg)) /Awmp(e) Iy(n') ?Xp(—(T(nl) — 7(ng))) dw

ﬂ' J
(3)
where exp(—7(nyp)) is the measure of attenuation of the incident ray.

~1

Normalizing (3) to the ”true” disk-center intensity Iy(ng), we get for
the source function

() = Io(ne) exp(—r(n0)) (0, no) (@)
o) = o [, 700) 10 o )

where Iy(n')/Iy(ng) is the CLV normalized to the disk center intensity.

Taking into account that m5(n) ~ 75(ng), and that
/OTO(H) S(r,n) exp(—(my — 7)) dr =

= Iy(ng) ¢(n, ny) /OTO(H) exp(—7(ng) — (10 — 7(ny))) dr =
= [0(1’10) ¢(n, no) eXp(—To) T0

we can express the formal solution (1) as

I(79,n) = Jo(n) exp(—70(no)) + Lo(no) exp(—o(no)) 70(n0) (n, no)
(6)
Re-writing (6) for the disk center, i.e. Jy(n) — Ip(ny), and dividing
both equations, we obtain the observed intensity normalized to the
observed disk-center intensity:

I(r9,m) 1 o) o
I(y,n9) 1+ 79(no) $(n, ng) (Io(no) + 7o(m0) ¢(n, 0>) (7)

This is the basic equation for the scattered-light correction.
10(ng) ¢(n, ng) is the amount of scattered light.



To perform the correction, we must know the integral ¢(n, ng)
over the normalized CLV (known) and over the spread function v (8).

Approximation of the spread function

as a sum of 2-3 Gaussians and one Lorentzian:

n A
0) = ; a; —p? /b)) + M ——— 8
¢( ) i:X:lmZaZ eXp( p/z)+ B2—|—p2 ( )
m;, M — weights, >m; + M =1

a;, A — normalization constants (can be computed)

p — observed angular distance between the sunspot and the elementary
source of scattered light.

Parameters b;, B, weights m;, M, and v 1y have to be obtained by fit-
ting computed photometric profiles, derived from (7), (5), and (8), to
the observed aureola in the range from the disk center to about 2’ out-
side the limb.

Typical values of parameters b;, B:

by = 40” — 90”

by =57 — 20”7

bs = 17 — 2”7 practically not used (replaced by image deconvolution)
B =17 — Lorentzian wings are practically insensitive to the value

of B. All variations are introduced by changing M.



Correction of images for scattered light

Cartesian coordinates z,y with the origin (0,0) at the disk center.

Define
1

~ 1+ 1(0,0) $(0,0)

(9)

Then, from (7) we obtain for observed intensity at (z,y):

Iz,y) _ Dolzy) 5z, y) (10)

and, using (5),

7 Y 70 ony 111
d(z —c—// 1000 dz'dy (11)

— here we integrate over the region of interest.

A case of a small pore:

The scattered light has a purely photospheric origin. Then, the ”true”
intensity is

1)(0,0) ¢

Iy(z,y) 1 (f(ﬂf,y) ] ) (12)

I(O, 0) - ¢(x) y)

This equation can be solved by iterations for each pixel (z,y) in the
image:

An estimated value for the photospheric intensity Iy(z,y)/I(0,0)
(CLV) is set into (11) to calculate ¢, then a new ”true” intensity
distribution Iy(z,y)/Iy(0,0) is computed from (12); this is used to
get a new 45, etc., until the difference between the "true” intensity
distributions calculated in subsequent steps is less than about 1 %.



A case of a sunspot with a penumbra:

The scattered light comes from the photosphere, from the penum-
bra, and in case of an extended sunspot also from the umbra. Thus, a
sunspot introduces a deficit of radiation into the integral ¢t Inside
the sunspot, we can decompose this integral:

QgspOt(xa y) = gg(xa y) - Agb('% y)

where

AN 770 x y _Iopt(x y)d /d/ 1
da,y)=c > [ [4(6) 0.0 ddy (13)

— here we integrate over the sunspot area (Ag(z,y) = 0 outside the
sunspot).

The ”true” intensity distribution can be obtained by iterations of the
following equation:

% ! (ﬁg;g; — (Blay) - Aéu,y))) (14)

We see that the scattered light in sunspots is lower than in small pores.

The initialization values of Iy(z,y)/Iy(0,0) for the iteration can be
given as

[genumb/lghot —0.75

Jumbra /7RIOF — 005 for A = 520 nm.



Simplifications for the central zone of solar disk

Near the disk center: (z,y) — (0,0)
]O(xay) — IO(OaO) -
¢(n,ng) = ¢(ng, ny) = c79¢(0,0)

Then, (10) converts to

100,0) ~ © (0,0 00
= =1
and
$(0,0)=1—c (15)
1

© T 15 7(0,0)$(0,0)

For a small pore we have for each pixel approximately

pore pore
I It

Jphot ¢ I(z))hot + (1 o C) (16)

For a sunspot with a penumbra the penumbral contribution of
scattered light is smaller than that of the photosphere. An empirical
approximation gives with an accuracy of 4 %

Jspot [0817075 1—c

Tpohot ~ € ot T (17)

So, roughly, the scattered light over a sunspot or a pore in the central
zone of solar disk can be considered as a constant.

Michal Sobotka, 1999



