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RHO-KINASE INHIBITION AMELIORATES NON-ALCOHOLIC FATTY LIVER 26 

DISEASE IN TYPE 2 DIABETIC RATS 27 

Abstract: Background: Non-alcoholic fatty liver disease (NAFLD) is linked to type 2 diabetes mellitus 28 

(T2DM), obesity, and insulin resistance. The Rho/ROCK pathway had been involved in the pathophysiology 29 

of diabetic complications.     30 

Objective: This study was designed to assess the possible protective impacts of the Rho/Rho-associated 31 

coiled-coil containing protein kinase (Rho/ROCK) inhibitor fasudil against NAFLD in T2DM rats trying to 32 

elucidate the underlying mechanisms. 33 

Methods: Animals were assigned into control rats, non-treated diabetic rats with NAFLD, and diabetic rats 34 

with NAFLD that received fasudil treatment (10 mg/kg per day) for 6 weeks. The anthropometric measures 35 

and biochemical analyses were performed to assess metabolic and liver function changes. The inflammatory 36 

and oxidative stress markers and the histopathology of rat liver tissues were also investigated. 37 

Results: Groups with T2DM showed increased body weight, serum glucose, and insulin resistance. They 38 

exhibited disturbed lipid profile, enhancement of inflammatory cytokines, and deterioration of liver function. 39 

Fasudil administration reduced body weight, insulin resistance, and raised liver enzymes. It improved the 40 

disturbed lipid profile and attenuated liver inflammation. Moreover, it slowed down the progression of high 41 

fat diet (HFD)-induced liver injury and reduced the caspase-3 expression.   42 

Conclusion: The present study demonstrated beneficial amelioration effect of fasudil on NAFLD in T2DM. 43 

The mechanisms underlying these impacts are improving dyslipidemia, attenuating oxidative stress, 44 

downregulated inflammation, improving mitochondrial architecture, and inhibiting apoptosis.  45 

Keywords: diabetes; non-alcoholic fatty liver; Rho kinase inhibitor; Fasudil; rat. 46 

1. INTRODUCTION 47 

Diabetes mellitus induces derangement in metabolism of carbohydrate, lipid, and protein, resulting in 48 

major problems such as blindness, renal failure, hepatic damage, nerve injury, and atherosclerosis[1] . 49 
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NAFLD is a set of hepatic abnormalities that range from basic hepatic steatosis to fulminant symptoms 50 

including inflammation and hepatic damage, known as nonalcoholic steatohepatitis (NASH), which can result 51 

in cirrhosis, hepatic carcinoma, and eventually hepatic failure [2-4]. Many patients with T2DM develop 52 

NAFLD with its inflammatory complication, NASH [5]. Insulin resistance, lipid peroxidation, mitochondrial 53 

dysfunction, and oxidative stress are all implicated in the pathophysiology of NAFLD [6, 7]. 54 

Rho-kinase has been considered one of the responsive proteins of the guanosine triphosphate (GTP)-55 

binding protein; RhoA. RhoA/Rho-kinase pathway has a major role in many cellular physiological functions, 56 

like contraction of smooth muscles, motility, and cell adhesion [8]. Hepatic ROCK1 is significantly increased 57 

in individuals with hepatosteatosis and is associated with some risk factors that cluster around resistance to 58 

insulin and NAFLD. It was also stated that liver ROCK1 inhibit AMP-activated kinase (AMPK) activity; a 59 

crucial molecule of metabolism[9]. Additionally, AMPK enhances the uptake of glucose, oxidation of lipid, 60 

and mitochondrial bio-formation in skeletal muscles, while in liver, it suppress glucose output and synthesis 61 

of lipid and enhances lipid oxidation [10]. Rho- kinases have been assembled to several diabetes-induced 62 

pathophysiological signals and were stated as hopeful molecular targets for reno-protective therapy [11]. 63 

While the influence of Rho-kinase signaling in diabetic hepatic injury has been scarcely explored. Therefore, 64 

in the current work, we explored the predictive liver protective impacts of fasudil, the Rho/ROCK inhibitor in 65 

T2DM rat model with NAFLD. 66 

2. MATERIALS AND METHODS 67 

2.1. Animals and protocol 68 

Twenty-four Wistar healthy adult rats, weighing 150-180 gm were procured from the animal house at the 69 

faculty of Veterinary Medicine, Zagazig University. Under hygienic conditions, animals were housed in steel 70 

wire cages (3-4/cage) at room temperature, on a natural light/dark cycle with access to water freely and 71 

adapted to the new environment for one week before the beginning of the experiments. Following 72 

acclimatization, animals were divided randomly to have a standardized diet (57% carbohydrate, 25% protein, 73 
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and 18% fat) as a control group (n=8) or a high-fat diet (n=16) with high amounts of corn oil, containing > 74 

98% ω-6 poly unsaturated fat acid (PUFA) (HFD, 50% fat, 38% carbohydrate containing mainly fructose, and 75 

12% protein) for 6 weeks to induce obesity (the diets were purchased from Faculty of Agriculture, Zagazig 76 

University). A single low dose of streptozotocin (STZ) (30 mg/kg BW) (Sigma Aldrich Co.-USA) dissolved 77 

in citrate buffer (pH 3.5) was intraperitoneally injected to rats within 20 minutes of preparation (at the end of 78 

the fifth week) [12, 13]. Glucose levels were checked using a portable glucometer (Accu-Chek Active, Roche 79 

Diagnostics Limited, Germany) after 1 week of STZ injection in blood samples withdrawn from the tail vein. 80 

Rats with plasma glucose levels of ≥ 11.10 mmol/L were included in the study for the subsequent 6 weeks. 81 

Diabetic rats were randomly allocated to HFD+T2DM rats, (n=8); and HFD+T2DM+Fasudil rats (n=8) that 82 

received hydrochloride fasudil (10 mg/kg per day, intraperitoneal injection) (Tianjin Hongri Company, 83 

Tianjin, China) every day for another 6 weeks. The dose of fasudil was applied in accordance with  previous 84 

study [12]. The control and HFD+T2DM groups received intraperitoneal injections of a sterile vehicle every 85 

day until the end of the experiment. 86 

2.2. Measurement of anthropometric parameters 87 

Body weight was measured in accordance with Nascimento et al. [14]. Rat length, abdominal 88 

circumference (AC) (the largest zone of the rat abdomen), and thoracic circumference (TC) (directly 89 

posterior to the foreleg) were assessed as described by Novelli et al. [15]. Body mass index (BMI): body 90 

weight (g) / length2 (cm2) and AC/TC ratio (representing an index of abdominal obesity) were calculated 91 

[15, 16]. 92 

2.3. Blood biochemical analyses and liver lipid’s extract for triglyceride (TG) 93 

After an overnight fasting, serum was collected from retro-orbital blood samples after centrifugation at 94 

1,500 × g for 20 minutes, and kept at -20 oC [17] to be processed for biochemical analysis. Serum glucose 95 

level (mmol/L) was determined colorimetrically using glucose colorimetric detection kit (Biosource Europe 96 

S.A. Belgium, Cat No. EIAGLUC ) as described by Ebrahim et al. [18] , and serum insulin level (pmol/L) 97 



 

5 

 

 

was assessed by rat insulin Enzyme-linked Immunosorbent Assay (ELISA) Kits (Sigma-Aldrich, Cairo, 98 

Egypt , Cat No. EZRMI)  as described by Sabir et al. [19].The standard curve range for insulin was 1.5 99 

mIU/L – 48 mIU/L with sensitivity of 0.1 mIU/L. By adding acidic solution, the reaction was terminated, and 100 

absorbance readings were noted at 450 nm on a multimode microplate reader (Synergy, USA). HOMA-IR 101 

(homeostasis model assessment-insulin resistance) index was applied to assess (HOMA-IR) according to the 102 

equation used by Bonora et al. [20]: HOMA-IR = fasting serum glucose (mg/dL) × fasting serum insulin 103 

(μIU/mL)/405. Serum total cholesterol (TC) and triglycerides (TG) levels were assessed by an enzymatic 104 

colorimetric method using specific cholesterol and triglycerides kits (Spinreact Spain, Cat No. CHOD-POD 105 

and Cat No. GPO-POD. respectively) and analyzed by a spectrophotometer with the absorbance was 106 

measured at 510 nm with a sample/reagent volume ratio as low as 1:150 as described by Fossati and 107 

Prencipe [21]. High-density lipoprotein-cholesterol (HDL-c) level was assessed by an enzymatic colorimetric 108 

method using HDL cholesterol assay kit (Biodignostic®, Cairo, Egypt, Cat No. CH 12 30) with the 109 

absorbance was measured at 500 nm as described by Nauck et al. [22]. Serum low-density lipoprotein-110 

cholesterol (LDL-c) level was assessed by using the Friedewald formula [23] as follows: LDL-c = TC - HDL 111 

– TG/5. Hepatic triglyceride (TG) level was assessed in accordance with Foster and Dunn [24] after tissue 112 

lipids extraction according to the method of Folch et al. [25]. A hepatic mixture of 25 mg frozen liver tissue, 113 

and 100 μL phosphate buffer saline (PBS) (w/v, pH 7.4), was added to 500 μL of an extracting solvent 114 

(chloroform and methanol; 2:1 ratio) for homogenization followed by centrifugation at 2500 rpm for 5 115 

minutes at 4°C. The supernatant was collected followed by washing of the mixture with 100 μL of 0.9% 116 

normal saline (NS) at room temperature (RT), which was left for separation of its components into layers. The 117 

lipid lower layer was shifted to another test tube, and subjected to evaporation at 70°C using a water bath. 118 

After drying, 10 μL of the mixture was added to 100 μL of PBS to measure TGs content using the 119 

conventional TGs kits (Sigma-Aldrich, Cairo, Egypt, Cat No. MAK266) on biosystems bioanalyzer, the 120 

absorbance was measured at 570 nm and the unit was expressed as mg/g liver.  121 
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Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activity in the serum were 122 

assessed by sandwich enzyme-linked immunosorbent assay (ELISA) system .They were measured via a Rat 123 

ALT ELISA kit (Kamiya Biomedical Company, KT-6104, Gateway Drive, Seattle) and a Rat AST ELISA kit 124 

(Sunred Biological Technology, 201-11-0595, China), respectively, by  the method of Vassault [26]. Serum 125 

albumin was assessed  by using bromocresol green according to the method described by Wack and 126 

Warmolts [27]. Serum tumor necrosis factor α (TNF-α) concentration was assessed by TNF-α (Rat) ELISA 127 

kits purchased from ALPCO (45-TNFRT-E01.1). The standard curve range for TNF-α was 10 pg/mL–320 128 

pg/mL with a 1.0 pg/mL sensitivity. By adding acidic solution, the reaction was terminated, and absorbance 129 

readings were noted at 450 nm on a multimode microplate reader (Synergy, USA). The high sensitivity C-130 

reactive protein (hs-CRP) level was assessed using ELISA kit (Cat. No. ERC1021-1; ASSAYPRO, USA) 131 

according to manufacturer-provided standards and protocols [28].  132 

Hepatic Oxidative Stress (OS) Markers 133 

Liver tissues were processed to obtain a 10% homogenate (w/v) in a 20 mM cold aminomethane 134 

(hydroxymethyl) buffer (pH 7.4). Supernatants were collected after centrifugation of homogenates at 1,500 135 

× g for 30 min at 4 °C to estimate oxidative stress markers. Malondialdehyde (MDA) as a lipid peroxidation 136 

indicator was measured using bio diagnostic kit according to Varshey and Kale [29]. Hepatic superoxide 137 

dismutase (SOD) was assessed using phenazine methosulfate (PMS) depending on nitro-blue tetrazolium 138 

inhibition as described by Misra and Fridovich [30]. According to Rajurkar et al. [31], the activity of 139 

glutathione S-transferase (GST) was estimated with the help of 1-chloro-2, 4- dinitrochlorobenzene. A GST 140 

unit is defined as l mol of CDNB-GSH conjugate formed/min/mg protein. Glutathione Peroxidase (GPx) 141 

activity assay of liver extract was assessed in accordance with the method applied by Paglia and Valentine 142 

[32] with partial modification. Simply, the method was based on peroxides reduction at 340 nm in the 143 

existence of nicotinamide adenine dinucleotide phosphate (NADPH). One unit (U) of GPx activity was 144 

defined as the quantity of enzyme needed to catalyze the oxidation of 1 nM NADPH for one minute. Kits for 145 
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MDA (Cat. No. MAK085), SOD (Cat. No. 19160), GST (Cat.No.MAK453), and GPx (Cat. No. MAK437) 146 

were bought from Spectrum Co. (Sigma-Aldrich, Cairo, Egypt). 147 

2.4. Histopathological evaluation of liver tissue  148 

Fresh livers were excised and weighed to estimate liver index (% = liver weight/body weight × 100) then 149 

processed for histopathological examinations. 10% buffered formalin was used to fix liver specimens for 48-150 

60 hours followed by processing in ethyl alcohol and xylene series to prepare paraffin blocks. Hematoxylin 151 

and eosin (H&E) stained sections (5 µm thick) of hepatic tissue were prepared to examine the hepatic 152 

architectural changes [33]. The pathologist assessed and scored the stained specimens blindly using an optical 153 

microscope with attached camera. NAFLD histological scoring was based on  the NAFLD Activity Score 154 

(NAS) nominated by The Pathological Committee of the NASH Clinical Research Network [34]. The scores 155 

were the summation of the following scores: Steatosis (0 = <5%, 1 = 5%− 33%, 2 = 34%− 66%, 3 = >66%), 156 

lobular inflammation (0 = no foci, 1 = <2 foci per 200 × field, 2 = 2–4 foci per 200 × field, 3 = >4 foci per 157 

200 × field), and ballooning (0 = none, 1 = rare or few, 2 =many or prominent). A NAS score ≥ 5 was defined 158 

as NASH; 2 < NAS <5 was defined as borderline NASH, and NAS ≤ 2 was simple steatosis [35]. Evaluation 159 

of Liver fibrosis was conducted using Sirus red stained liver sections. Slides were incubated overnight with 160 

0.1% Sirius red (Sigma-Aldrich, UK), treated with 0.01 M hydrochloric acid and followed by dehydration in 161 

serial ethanol concentrations without water. The Image J software was used to measure the area percentage of 162 

fibrosis in Sirius red-stained hepatic sections. The fibrosis score was also done using a five-point scale (0 no 163 

fibrosis, 1 fibrosis encircling  portal area with no septa, 2 few septa, 3 multiple septa with no cirrhosis, 4 164 

cirrhosis), which was discussed by previous research work [36].  165 

2.5. Immunohistochemical staining with anti-caspase-3 antibody 166 

Apoptotic areas were demonstrated in anti-caspase-3 antibody immunostained liver slides (cat No ab4051, 167 

Abcam, USA). Phosphate-buffered saline was applied for deparaffinized section after incubation with 3% 168 
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hydrogen peroxide at room temperature for 10 minutes to mask the endogenous peroxidase activity. A 169 

primary antibody (biotinylated goat anti-rabbit antibody diluted 1:200 at room temperature for one hour) was 170 

incubated with liver sections overnight to detect the presence of apoptosis markers. Lastly, liver slides were 171 

counterstained with hematoxylin and dehydrated in ethanol then eventually mounted with DPX [37]. 172 

Microscopically, positive immunoreactivity for caspase3 staining was recognized by observing the brownish 173 

coloration of the immunoreactive cells [38]. 174 

The immunoreactivity of caspase-3 was subsequently measured by quantitative morphometric assay of 175 

mean area percentage in immuno- stained liver sections. It was measured in five high-power different fields 176 

from six rats using "Leica Qwin 500" (Microsystems Imaging Solutions Ltd, Cambridge, United Kingdom) as 177 

an image analyzer computer system. Then, data were statistically analyzed. 178 

2.6. Transmission electron microscopy (TEM) 179 

Fixing the freshly sliced liver tissues was done by 3% glutaraldehyde (pH 7.4) in phosphate buffer 180 

followed by 2% osmium tetroxide in phosphate buffer. Tissues were processed in increasing ethanol 181 

concentrations before being immersed in araldite resin. Staining of ultrathin liver slices was performed using 182 

uranyl acetate saturated in 70% ethanol and lead citrate [39]. The preparation was performed in the Faculty of 183 

Science, Zagazig University and examined using a JEOL transmission electron microscope JEM-100, CX, 184 

Japan. 185 

2.7. Statistical Analysis 186 

Results were presented as mean  SD by using SPSS program version 26 (SPSS Inc. Chicago, IL, USA). 187 

Shapiro– Wilk’s test was used to test Quantitative data normality. Normally distributed data was considered if 188 

p>0.050. One-way analysis of variance (ANOVA) was used to assign differences in quantitative data among 189 

groups of the research, followed by Post hoc- least significant differences (LSD) test. The significance of 190 

statistically analyzed data was depicted, when the P-value is less than 0.05. 191 
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3. RESULTS 192 

3.1.  Effect of fasudil on anthropometric parameters 193 

At the beginning of the study, there were no significant variations in body weight across the groups. When 194 

comparing the HFD+T2DM group to the control group, marked body weight gain and significant increases in 195 

BMI, AC, and AC/TC ratio were detected at the end of the study duration (after 12 weeks). In contrast to the 196 

HFD+T2DM group, rats in the HFD+T2DM+Fasudil group showed significant reductions in all indicators of 197 

obesity when compared to the HFD+T2DM group (Table 1). 198 

3.2.  Effect of fasudil on liver weight and liver index 199 

In compared to the control group, the HFD+T2DM group had a dramatic increase in liver weight and liver 200 

index. Conversely, fasudil treatment led to a considerable drop in liver weight and liver index in the 201 

HFD+T2DM+Fasudil group relative to HFD+T2DM group (Table 1).  202 

3.3.  Effect of fasudil on serum glucose, lipid and metabolic profiles  203 

The HFD+T2DM group, showed marked rise in serum glucose, insulin, HOMA-IR, TC, TG, LDL, and 204 

hepatic TG levels in addition to significant reduction in HDL compared to normal control group. In the 205 

HFD+T2DM+Fasudil group, fasudil treatment significantly lowered serum glucose, insulin, HOMA-IR, TC, 206 

TG, LDL, and hepatic TG levels while significantly elevated HDL level compared to the HFD+T2DM group 207 

(Table 2).   208 

3.4.  Effect of fasudil on liver enzymes, albumin, hepatic inflammatory markers. 209 

The impact of fasudil on liver function, inflammatory marker alterations, and hepatic TG was evaluated. 210 

In comparison to the normal control group, the HFD+T2DM group exhibited a significant rise in the levels of 211 

ALT, AST, TNF-α, hs-CRP, and liver TG and significant reduction in the levels of albumin. In the 212 

HFD+T2DM+Fasudil group, daily injections of fasudil significantly lowered ALT, AST, TNF-, and CRP 213 

levels, but significantly raised albumin levels when compared to the HFD+T2DM group (Table 2).   214 

3.5.  Effect of fasudil on hepatic oxidant/antioxidant markers  215 
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We evaluated the MDA levels as an oxidative stress marker and the antioxidant enzymatic activity of 216 

SOD, GST, and GPx levels were evaluated to assess how fasudil influenced markers of hepatic oxidative 217 

stress. When comparing the HFD+T2DM group to the normal control group, it was reported that hepatic 218 

MDA levels were significantly higher, while SOD, GST, and GPx activities were significantly lower. In 219 

HFD+T2DM+Fasudil rats, daily injection of fasudil for 6 weeks drastically improved these alterations (Table 220 

3). 221 

3.6.  Histopathological results of liver tissue 222 

In the control group, hepatic H&E histopathology revealed normal hepatic architecture, showing a normal 223 

hepatocyte grouped around a central vein in the form of cords spaced by blood sinusoids (Fig. 1A). HFD 224 

induced non-alcoholic steatohepatitis with marked micro and macro steatosis in hepatocytes (steatosis score 3) 225 

with ballooning degeneration and lobular inflammatory infiltrate with the congested dilated central vein in 226 

HFD+T2DM group, NASH score from 5 to 6 (Fig. 1B). Moreover, HFD+T2DM+Fasudil group revealed a 227 

significant amelioration in hepatic lesions with mildly dilated central veins and partially restoring the normal 228 

architecture of the liver where most hepatocytes show normal vesicular nuclei, but still showing mild fatty 229 

changes in the form of macrosteatosis in hepatocytes and hydroid degeneration in comparison to HFD+T2DM 230 

group (Fig. 1C). Sirius red stained sections were examine and scored for hepatic fibrosis showing strong 231 

deposition of coarse collagen fibers around the portal areas extending to few hepatic lobular septa (score 2) in 232 

HFD+T2DM group (Fig.2B) compared to control (Fig.2A), which showed no fibrosis (score 0) except for fine 233 

scarce collagen around some portal areas and central vein. Whereas, the HFD+T2DM+Fasudil group revealed 234 

a marked reduction in collagen deposition around portal areas (Fig.2C) and central vein (score 1) (Table 4). 235 

Furthermore, collagen deposition (mean area %) was significantly (p<0.001) less in the HFD+T2DM+Fasudil 236 

group compared to the HFD+T2DM as shown by the quantitative analysis using image j software (Fig.2D).  237 

3.7.  Caspase-3 immuno-staining   238 

The control group had negligible positive reacted cells (Fig. 3A), according to immunohistochemical 239 

staining of liver tissue. The immunoreactivity of other experimental groups to caspase-3 was shown in (Fig. 240 
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3B-D) revealing an apparently positive brown cytoplasmic reactivity in a majority of cells in the 241 

HFD+T2DM group sections (Fig. 3B).  Oppositely, the tissue of the HFD+T2DM+Fasudil group, showed just 242 

a few scattered positive brown cytoplasmic reactive cells (Fig. 3C). The % area of caspase-3 immuno-243 

expression in the HFD+T2DM group, demonstrated a considerable increased expression of caspase-3 relative 244 

to the control rats. These effects in the HFD+T2DM+Fasudil group show a significant decrease confirming 245 

the microscopic observations as illustrated in (Fig. 3D), (Table 5) 246 

3.8.  Transmission Electron microscopy examination  247 

Normal hepatic structure was observed in TEM examined liver sections of the control group (hepatocytes 248 

revealed typical nucleoplasm with spherical nuclei surrounded by an apparent nuclear envelop with fine 249 

granular chromatin). The cytoplasm showed mitochondria, rough endoplasmic reticulum, glycogen inclusions 250 

(Fig. 4 A, B). In HFD+T2DM, abnormal hepatocytes with large aberrant lipid droplets, glycogen inclusions 251 

depletion, and swollen mitochondria were detected in addition to reduced junctional complexes in the 252 

cytoplasm of hepatocytes, and wide sinusoidal spaces (Fig. 5 A, B, C, D). However, as compared to the 253 

HFD+T2DM group, the HFD+T2DM+Fasudil group demonstrated improvement in the context of fewer lipid 254 

droplets, normal nucleoplasm in the hepatocytes, with spherical nuclei surrounded by an evident nuclear 255 

envelop and fine granular chromatin. Mitochondria, rough endoplasmic reticulum, glycogen inclusions 256 

reappeared, and Mallory bodies were all seen in the cytoplasm signifying a change in hepatocyte morphology 257 

with fasudil treatment. (Fig. 6)  258 

4. DISCUSSION 259 

Several studies [40, 41] have proven a link between NAFLD, type 2 diabetic patients, and obesity. 260 

NAFLD poses a serious threat because it has been identified as a trigger for subacute liver failure, cirrhosis, 261 

and hepatoma[42]. Furthermore, there were metabolic problems associated with it, such as hyperglycemia, 262 

insulin resistance, and hyperlipidemias[43], which were linked to inflammation and oxidative stress[44]. 263 
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The rat model of NAFLD was effectively constructed in the current study. Insulin resistance was created 264 

from a single STZ injection (30 mg/kg) to generate an evident hyperglycemia, followed by the HFD feeding 265 

regimen [45] 266 

The metabolic syndrome induced by obesity was found to be related to Rho-associated coiled-coil-267 

containing kinase (ROCK) [46, 47], a serine/threonine protein kinase identified as a guanosine triphosphate 268 

(GTP)-Rho-binding protein, which induce insulin resistance through influencing the insulin receptor 269 

substrate-1(IRS-1) phosphorylation [48]. Fasudil was documented as an inhibitor of the ROCK pathway, 270 

which interfere with both ROCK1 and ROCK2 kinase activity [49]. Therefore, we built our hypothesis upon 271 

the previously mentioned documentations and investigated the impact of fasudil on NAFLD in type 2 diabetic 272 

rats. Figure (7) summarizes the anti-NAFLD mechanistic activity of fasudil. 273 

The model group (HFD+T2DM) showed marked body weight gain, increased BMI, and AC/TC ratio in 274 

relation to control group, as previously reported by Gaballah et al. [50]. Moreover, histopathological 275 

examination of extracted liver tissue from rats of HFD+T2DM group showed the typical picture of NAFLD-276 

related initial portal fibrosis (Fig.1B), which was discussed by earlier studies [51, 52], in addition to  the 277 

microstructural changes revealed by TEM pictures showing early stage of mitochondrial degeneration 278 

(Fig.5A-D). Also, there was an accompanying hyperglycemia, hyperinsulinemia, dyslipidemia, and 279 

deterioration of hepatic functions with elevation of hepatic oxidative stress and proapoptotic markers 280 

expression. Whereas, fasudil-treated group showed amelioration of all hepatic structural (Fig.1C, 6) and 281 

functional alterations together with improved metabolic changes primarily insulin resistance and glucose 282 

dysregulation, which are greatly involved in T2DM and NAFLD [53, 54]. 283 

The improved structural and functional deteriorations of liver with fasudil treatment was supported by 284 

Kuroda et al. [55] who reported enhanced hepatic blood flow in rat steatotic livers after hepatic ischemia-285 

reperfusion injury with the use of Rho-kinase inhibitors, which induced direct relaxation of hepatic stellate 286 

cells concomitant with nitric oxide synthase activation in sinusoidal endothelial cells, and suppression of 287 

neutrophil infiltration [56, 57]. Moreover, fasudil administration reduced liver fibrosis in type 2 diabetics by 288 
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suppressing transforming growth factor-β1 (TGFβ1) / connective tissue growth factor (CTGF) pathway and 289 

α-smooth muscle actin (α-SMA) expression, according to  a prior study [12], which is consistent with our 290 

findings of reduced collagen deposition around portal areas and central vein in Sirius red stained liver sections. 291 

The correlation between the  ROCK activity, T2DM, obesity, fatty liver, and insulin resistance was 292 

reported after observing an elevated hepatic ROCK receptors expression concomitant with marked hepatic 293 

damage in obese diabetic animal models [9]. The Rho kinase inhibition impact on obesity and insulin 294 

resistance was attributed to its impact in adjusting the obese rats’ uncoupling protein 1 (UCP-1) levels [58], 295 

which consequently reflects on the AMPK [59] resulting in enhanced insulin senstivity and body weight 296 

reduction [60]. This is in agreement with our observations in HFD+T2DM+Fasudil group, which showed 297 

improvements in glucose dysregulation, insulin resistance, and body weight loss.   298 

NAFLD was linked with high total cholesterol, TG, LDL-c, and low HDL-c serum levels as previously 299 

reported [37, 61], all of which improved with fasudil treatment in the current study. This improvement can be 300 

explained by controlled fatty acid oxidation, and mitochondrial energy production [60] through peroxisome 301 

proliferator-activated receptor (PPAR)-α activation [62], which modulates dyslipidemia and arrests the 302 

NAFLD progression in obese diabetic rats.  303 

Increased serum TNF-α protein, IL-6, IL-1β, and CRP levels have been assigned as contributory factors 304 

of NAFLD development with prolonged HFD consumption [63] and linked to activation of Kupffer cells in 305 

the liver [64]. Many studies have reported ROCK Inhibitors as anti-inflammatory [65, 66] emphasizing their 306 

role against TNF-α induced inflammation in diabetes[67]. The mitigating effect of fasudil on serum TNF-α, 307 

IL-6, and CRP levels in HFD- fed rats is mediated by ROCK pathway inhibition [68] distorting the axis of 308 

TNF-α/NADPH oxidase-dependent reactive oxygen species (ROS) generation [67], this is in consistent with 309 

our observations, which showed a significantly suppressed activity of hepatic SOD and GST, and higher 310 

MDA levels concomitant with lower hepatic inflammatory markers expression.  311 

NAFLD has been linked to increased mitochondrial ROS levels and inhibited ROS detoxifying 312 

mechanisms in different studies, which were carried in vitro or in vivo [69-71].  The potential antioxidant 313 
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effect of fasudil is related nuclear translocation of nuclear factor-like 2 activation [72]. Moreover, using 314 

fasudil, improved mitochondrial structure in HFD/STZ diabetic rats with subsequent attenuation of oxidative 315 

stress [73], which is consistent with our findings regarding improved mitochondrial architecture in 316 

hepatocytes as shown by transmission electron microscopy.  317 

Hepatocellular apoptosis and excessive lipid buildup were discovered to have a significant link, with free 318 

fatty acids being the primary inducers of "lipoapoptosis" [74]. The level of cytchrome c in mitochondria has 319 

been distinguished as the most striking feature of NAFLD in majority of animal models, and was linked to the 320 

disease severity [75]. Accordingly, fasudil effect on the caspase -3 hepatic expression was analyzed showing a 321 

marked attenuation in HFD+T2DM+Fasudil group compared to HFD+T2DM group (Table 5). This is 322 

consistent with findings of Thorlacius et al. [76], who reported reduction of hepatic levels of caspase-3 with 323 

fasudil in septic liver injury due to direct inhibition hepatic infiltration of leukocytes and TNF-α production. 324 

Furthermore, Ikeda et al. [77] demonstrated that Rho-kinase inhibitors reduce apoptosis in cultured 325 

hepatocytes by lowering the caspase-3 activity and stimulating the Akt (protein kinase B), which disrupts the 326 

phosphatidylinositol 3-kinase (PI3-kinase) /Akt pathway. 327 

Our findings revealed that fasudil treatment resulted in a noteworthy decrement in the hepatic lesions, as 328 

well as a partial restoration of the liver's natural architecture and function. Our findings further show that 329 

fasudil may have a hepatoprotective impact in the liver by preserving hepatic mitochondria and having an 330 

anti-apoptotic effect. This new pathway could be added to existing ones such as anti-inflammatory, anti-331 

oxidative, and insulin resistance reduction. 332 

CONCLUSION 333 

The present study emphasizes the beneficial ameliorating effect of fasudil on NAFLD and the underlying 334 

mechanisms including improved dyslipidemia, attenuated oxidative stress, downregulated inflammation, 335 

improved mitochondrial architecture, and apoptosis. Taken together, these data shed light on fasudil use as a 336 

potential promising protective agent against liver injury in HFD fed rats and other therapeutic purposes. 337 
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 575 

Table (1): Anthropometric parameters, liver weight and liver index in all studied groups 576 

           Groups 

Parameters 

Control HFD+T2DM HFD+T2DM+ Fasudil 

Initial body weight (g) 161.11 ± 13.33 163.32 ± 5.63 160.62 ± 9.61 

Final body weight (g) 202.32 ± 17.81  329.21 ± 13.12 a*** 284.30 ± 26.62 a*** b** 

Final BMI (g/cm2) 0.57 ± 0.06  0.86 ± 0.08 a*** 0.66 ± 0.09 a** b** 

AC (cm) 16.75 ± 1.10  22.03 ± 1.67 a*** 20.6 ± 1.15 a*** 

https://doi.org/10.1152/ajpgi.00210.2007
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Data are expressed as mean ± SD. P value by one-way ANOVA, followed by post hoc test "LSD"; a versus 577 

Control group; b versus HFD+T2DM group. P <0.05 is considered statistically significant. *P<0.05, 578 

**P<0.01***P<0.001. Abbreviations: BMI: body mass index; AC: abdominal circumference; TC: thoracic 579 

circumference. 580 

581 

AC/TC ratio 1.07 ± 0.02 1.16 ± 0.05 a*** 1.11 ± 0.03 a* b* 

Liver weight (g) 6.08 ± 0.87  12.85 ± 1.74 a*** 9.77 ± 1.53 a*** b** 

Liver index (%) 2.99 ± 0.21  4.14 ± 0.23 a*** 3.54 ± 0.20 a*** b** 
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Table (2): Serum biochemical parameters and TG in liver homogenate in all studied groups 582 

Data are expressed as mean ± SD. P value by one-way ANOVA, followed by post hoc test "LSD"; a versus 583 

Control group; b versus HFD+T2DM group. P <0.05 is considered statistically significant. *P<0.05, 584 

**P<0.01***P<0.001. Abbreviations: HOMA-IR index: Homeostatic Model Assessment–Insulin Resistance 585 

index; HDL-c: high density lipoprotein-cholesterol; LDL-c: low density lipoprotein-cholesterol; ALT: 586 

Alanine aminotransferase, AST: Aspartate aminotransferase; TNF-α: Tumor necrosis factor α; CRP: C-587 

reactive protein; TG: triglyceride.  588 

589 

           Groups 

Parameters 

Control HFD+T2DM HFD+T2DM+Fasudil 

Glucose (mmol/L) 4.79 ± 0.62 11.18 ± 1.76 a*** 9.41 ± 1.02 a*** b* 

Insulin (pmol/L) 1399.31 ± 220.42 175.35± 34.24 a*** 132.15 ± 27.57 a** b* 

HOMA-IR index 2.47 ± 0.83 12.85 ± 4.27 a*** 8.11 ± 2.44 a** b** 

Cholesterol (mmol/L) 2.91 ± 0.22 4.73 ± 1.12 a*** 4.00 ± 0.42 a**  

Triglycerides (mmol/L) 0.84 ± 0.16 1.60 ± 0.33 a*** 1.21 ± 0.33 a* b* 

HDL-c (mmol/L) 1.25 ± 0.23 0.61 ± 0.22 a*** 0.87 ± 0.17 a** b* 

LDL -c(mmol/L) 1.22 ± 0.25 2.42 ± 0.55 a*** 1.81 ± 0.50 a* b* 

Albumin (µmol/L) 568.76 ± 48.15 448.39 ± 55.67 a*** 511.59 ± 31.60 a* b* 

ALT (µkat/L) 0.69 ± 0.07 1.49 ± 0.20 a*** 0.94 ± 0.18 a** b*** 

AST (µkat/L) 1.34 ± 0.15 2.00 ± 0.20 a*** 1.59 ± 0.25 a* b** 

TNF-α (pg/ml) 15.25 ± 3.81 44.16 ± 9.41 a*** 32.83 ± 8.54 a*** b* 

hs-CRP (nmol/L) 0.42 ± 0.17 1.11 ± 0.35 a*** 0.76± 0.22 a* b* 

Hepatic TG (mg/g) 8.86± 0.69 15.29±0.95 12.00±0.81 
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Table (3): Oxidative stress markers in all studied groups 590 

Data are expressed as mean ± SD. P value by one-way ANOVA, followed by post hoc test "LSD"; a versus 591 

Control group; b versus HFD+T2DM group. P <0.05 is considered statistically significant. *P<0.05, 592 

**P<0.01***P<0.001. Abbreviations: MDA: malondialdehyde; SOD: superoxide dismutase; GST: 593 

Glutathione S-transferase; GPx: Glutathione Peroxidase. 594 

 595 

Table (4): Histopathological scoring of liver injury induced by HFD 596 

Data are expressed as mean ± SD. P value by one-way ANOVA, followed by post hoc test "LSD"; a versus 597 

Control group; b versus HFD+T2DM group. P <0.05 is considered statistically significant. ***P<0.001. 598 

Abbreviations NAS: NAFLD activity scoring.  599 

 600 

Table (5): Immunohistochemical expression of caspase -3 in the three studied groups 601 

 602 

 603 

 604 

Data are expressed as mean ± SD. P value by one-way ANOVA, followed by post hoc test "LSD"; a versus 605 

Control group; b versus HFD+T2DM group. P <0.05 is considered statistically significant. *P <0.05, **P 606 

<0.01***P <0.001.  607 

           Groups 

 Parameters 

Control HFD+T2DM HFD+T2DM+Fasudil 

MDA (nmol/g protein) 

2.04 ± 0.35 

 

4.13 ± 1.28 a** 

 

3.13 ± 1.06 a* 

 

SOD (U/mg protein) 

74.52 ± 16.16 

 

25.00 ± 10.43 a*** 

 

48.8 ± 15.53 a** b* 

 

GST activity (U/mg protein) 

11.88 ± 1.85 

 

5.58 ± 2.03 a*** 

 

9.25 ± 1.14 a* b** 

 

GPx activity (U/mg protein) 
1.88 ± 0.14 0.52 ± 0.15 a*** 1.33 ± 0.12 a*** b*** 

           Groups 

     Parameters 

Control HFD+T2DM HFD+T2DM+Fasudil 

NAS 0± 0 6.08 ± 1.42 a*** 2.33 ± 0.82 a***b*** 

           Groups 

     Parameters 

Control HFD+T2DM HFD+T2DM+Fasudil 

Caspase- 3 expression 0.78 ± 0.18 2.67 ± 0.79 a*** 1.83 ± 0.46 a** b* 
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FIGURE LEGEND 608 

Fig. (1) representative photomicrograph of H &E stain of liver tissue of normal control group (A): showing 609 

central vein (cv) surrounded with normal hepatocytes (arrow head) arranged in cords and separated by blood 610 

sinusoids (s); HFD+T2DM group (B):  liver tissue showing dilated central veins (CV), NASH with marked 611 

micro (wavy arrow) and macro (bifid arrow) -steatosis in hepatocytes with ballooning degeneration (short 612 

arrow) along with inflammatory cellular infiltration (if); HFD+T2DM+Fasudil group (C): showing mildly 613 

dilated central veins (cv) and partially restoring the normal architecture of the liver where most hepatocytes 614 

show normal vesicular nuclei (arrow head), but still showing mild fatty changes in the form of macrosteatosis 615 

in hepatocytes (bifid arrow)and hydrobic degeneration (short arrow)  (H& E X 400). 616 

Fig. (2) representative image of Sirius red stained liver tissue collected from all rats’ groups; (A) Control (B) 617 

HFD+T2DM group (C) HFD+T2DM+Fasudil group. Arrows in (A) point to the fine collagen deposition in 618 

the portal area (P) and surrounding the central vein (V), arrows and arrow head in (B) point to the heavy 619 

collagen deposition encircling the portal region (P) and extending in the septa. Whereas, arrows in (C) point 620 

to the fine collagen deposition around both portal area (P) and central vein (V). Magnification, X200. (D) 621 

represents a quantitative analysis of liver fibrosis determined by % collagen deposition calculation from 622 

Sirius red stain. Data are displayed as mean ± SD. ***p < 0.001 vs. control group and ### p < 0.001 vs. 623 

HFD+T2DM group.  624 

Fig. (3) representative image of immunohistochemical staining of liver sections with anti-caspase-3 antibody 625 

from various studied groups (A) Control (B) HFD+T2DM group (C) HFD+T2DM+Fasudil group. 626 

Arrowhead points to the brown coloration of the immuno-positive cells. (D) Histogram shows the % area of 627 

immuno- positive cells from the various experimental groups. HFD+T2DM group showed significant 628 

increase in caspase-3 immunostaining compared to other groups. HFD+T2DM+Fasudil group revealed 629 

weakly positive immunostaining. 630 
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Fig. 4 (A, B): TEM representative of the liver tissue of normal control rats, revealed normal hepatocytes as 631 

well as normal sinusoids with no abnormal features. The hepatocytes showed normal nucleoplasm with round 632 

nuclei surrounded by obvious nuclear envelop with fine granular chromatin. The cytoplasm showed 633 

mitochondria (M), rough endoplasmic reticulum (RER), glycogen inclusions (GL). 634 

Fig. 5 (A, B, C, D): TEM examination of the liver tissue of HFD+T2DM group, showed abnormal 635 

hepatocytes with wide sinusoids swollen mitochondria (M), marked fat droplets infiltration (L) with glycogen 636 

inclusions depletion. 637 

Fig. 6: TEM examination of the liver tissue of HFD+T2DM+Fasudil group, revealed improved hepatocytes 638 

appearance. The hepatocytes showed normal nucleoplasm with round nuclei surrounded by obvious nuclear 639 

envelop with fine granular chromatin. The cytoplasm showed mitochondria (M), rough endoplasmic reticulum 640 

(RER), reappearance of glycogen inclusions (GL), and Mallory body (MB). 641 

Fig.7:  A summarized graph of  the anti-NAFLD mechanistic activity of fasudil 642 
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Fig. 1 657 
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Fig. 2 682 
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Fig. 3 707 
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Fig. 4 732 
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Fig. 5 745 
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Fig. 6 753 
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Fig. 7 768 
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