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SUMMARY  16 

The aim of this study was to evaluate the impact of diabetes mellitus type 2 (DM2) on the male 17 

endocrine system of Zucker Diabetic Fatty (ZDF) rats. Sexually mature ZDF rats were divided 18 

to a lean (control) and obese group, and had diabetes confirmed by blood tests. For the in vivo 19 

experiment, fasting blood was collected to obtain blood plasma. In case of the in vitro 20 

experiments, testicular fragments were cultured for 24 h, and the culture medium was collected. 21 

The concentrations of testosterone (T), androstenedione (A4), dehydroepiandrosterone 22 

(DHEA-S), estradiol (E2), follicle-stimulating hormone (FSH) and luteinizing hormone (LH) 23 

were quantified in the blood plasma and the medium by the ELISA method, while cholesterol 24 

(CHOL) was assessed spectrophotometrically. A significant decline of T (36.31%), A4 25 

(25.11%) and FSH (26.99%) as well as a significant increase of CHOL and E2 (36.17%) was 26 

observed in the blood plasma of obese ZDF rats in comparison to the control. Under in vitro 27 

conditions, a significant decrease of FSH (23.35%) accompanied by an increase of E2 was 28 

observed in the obese group compared to the control. In the case of CHOL, LH, T, DHEA and 29 

A4 no significant differences were observed. Our results suggest that except for FSH and E2 30 

all steroid biomolecules were synthetized normally by the testicular tissue, however a dramatic 31 

endocrine disturbance was observed at the system level. We may conclude that DM2 has 32 

negative effects on systemic hormone secretion and these alterations are more pronounced in 33 

combination with obesity.  34 

 35 
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Diabetes mellitus type 2 (DM2) is a metabolic disorder which develops when the 38 

feedback loops between insulin action and secretion do not function properly. Diabetes 39 

accelerates dyslipidaemia and chronic hyperglycaemia, ultimately disturbing the blood 40 

circulation [1,2]. The progress of DM2 is closely related to obesity, which may affect 41 

spermatogenesis by reducing the sperm quality and decreasing the synthesis of steroid 42 

biomolecules required for a proper function of the male reproductive system [3-5]. A commonly 43 

used experimental model for the study of DM2-associated pathogenesis are Zucker diabetic 44 

fatty (ZDF) rats. These are characterized by a reduced action of the leptin receptor, which 45 

controls satiety. As such, these rats develop obesity and hyperglycaemia [6]. In general, DM2-46 

associated male subfertility is largely studied in the context of sperm function and testicular 47 

structure, nevertheless specific mechanisms of action on the male endocrine system have not 48 

been elucidated in detail yet. Hence, in the present research, we evaluated the consequences of 49 

DM2 and/or obesity on the male steroidogenesis of ZDF rats under in vivo and in vitro 50 

conditions.  51 

The experiment comprised 31 sexually mature male rats (age of 270 days). The 52 

experimental group consisted of 15 obese ZDF rats, while the control group included 16 lean 53 

ZDF rats. Fasting blood glucose concentration was monitored using a FreeStyle Optium Neo 54 

Glucose and Ketone Monitoring System (Abbott Diabetes Care Ltd., UK). Diabetes was 55 

acknowledged when the concentration of blood glucose was equal to or higher than 16 mmol/l 56 

[7]. By week 8, all animals developed a persistent hyperglycaemia. The animals were obtained 57 

from the Institute of Experimental Pharmacology (Slovak Academy of Sciences, Slovakia). All 58 

producers were approved by the State Veterinary and Food Institute of the Slovak Republic (no. 59 

493/18-221/3) and Ethic Committee. The control group had not a continual access to the food, 60 

while obese rats had unrestricted food reservoir (Purina Rodent LabDiet 5008, IPS Product 61 

Supplies, UK) with a fat content of 6.50%, which lead into overeating and obesity development. 62 

Following anaesthesia by sevoflurane and decapitation, blood was collected into test 63 

tubes (S-Monovette® K3; Sarstedt, Nümbrecht, Germany), with EDTA 64 

(ethylenediaminetetraacetic acid) to prevent coagulation and subsequently centrifuged at 3000 65 

RPM for 20 min (20 °C) to obtain blood plasma. The testes were surgically removed, cleaned, 66 

and cut into smaller pieces. The resulting fragments of equal size and weight were cultured in 67 

Dulbecco’s modified Eagle Medium (Sigma-Aldrich, St. Louis, USA), 1% 68 

antibiotic/antimycotic (Sigma-Aldrich, St. Louis, USA), and 10% fetal bovine serum (Sigma-69 

Aldrich, St. Louis, USA) at 37 °C and 5% CO2 for 24 h. Subsequently, the culture medium was 70 

transferred into cryotubes and kept at -80 °C for further assessment.  71 
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The concentration of cholesterol (CHOL) was evaluated using the CHOD-PAP 72 

commercial kit (DIALAB, Vienna, Austria) and the Rx Monza (Randox Laboratories, Ltd., 73 

Crumlin, United Kingdom) automatic spectrophotometer. Concentrations of selected steroid 74 

molecules (testosterone-T; androstenedione-A4; dehydroepiandrosterone-DHEA-S; estradiol-75 

E2; follicle-stimulating hormone-FSH; luteinizing hormone-LH) were assessed using ELISA-76 

based commercial kits (My BioSource, San Diego, California, USA). The reaction was 77 

evaluated with a plate spectrophotometer at a wavelength of 450 nm (Glomax, Promega, 78 

Madison, Wisconsin, USA) [8]. 79 

The GraphPad Prism program (version 8.1 for Mac; GraphPad Software Inc.; San 80 

Diego, California, USA) was used for statistical analysis. All data were subjected to the 81 

Shapiro-Wilk normality test. Subsequently, differences between the groups were evaluated 82 

using an unpaired t-test. Statistical significance was set at ***P<0.001; **P<0.01 and *P<0.05. 83 

 The results in Table 1 indicate that the concentration of blood plasma (in vivo) CHOL 84 

and E2 were significantly increased (P<0.001; P<0.05) in ZDF obese rats when compared to 85 

the ZDF lean rats. In case of FSH, T and A4 statistical decrease (P<0.05) was observed in the 86 

ZDF obese group against the control. No significant differences were recorded in the 87 

concentrations of LH or DHEA among the groups. Under in vitro conditions significant 88 

differences (P<0.05) were observed only in case of FSH and E2. FSH was significantly lower 89 

(P<0.05) in ZDF obese rats, while the concentration of E2 was significantly higher (P<0.01) in 90 

comparison with ZDF lean rats. However, non-significant differences were observed in the 91 

concentrations of CHOL, LH, T, DHEA and A4.   92 

One of the main causes underlying alterations to the steroid biosynthesis may lie in 93 

obesity, which is closely connected with DM2, both negatively affecting proper metabolic 94 

functions as well as cellular homeostasis. An already moderate obesity and hyperinsulinemia 95 

may dramatically decrease total T due to an enhanced activity of aromatases from the 96 

cytochrome P450 family, which will increase the conversion of androgens (T, A4) to E2 in 97 

adipose tissue [9-11]. The presence of DM2 reduced the concentration of serum T which was 98 

not the case of intratesticular T. A significant decrease of serum T may be associated with a 99 

reduction of sex hormone binding globulin (SHGB), which is essential for T transportation in 100 

blood [12]. 101 

Elevated concentration of E2 as a result of peripheral aromatization of androgens may lead to 102 

an inhibition of the reproductive axis and a subsequent lower T synthesis. However, a partial 103 

reduction of T concentration in serum did not affect intratesticular T synthesis or 104 

spermatogenesis [13]. According to previous studies, the secretion of serum LH in diabetic rats 105 
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was elevated, which may be explained by decreased feedback of the LH subunit mRNA 106 

expression due to low T concentration [14]. There is a strong connection between a lack of 107 

insulin and modulation of FSH concentration in the serum. Insulin or glucose may have an 108 

impact on the pituitary biosynthesis and secretion of FSH accompanied by a decrease in the 109 

response of tubular FSH receptors [15].    110 

Kelly and Jones [16] hypothesize that the concentration of T may affect the process of 111 

adipogenesis by inhibiting the differentiation of new adipocytes. Accordingly, low T 112 

concentration may increase the fat mass and the risk of obesity development. Adipose tissue 113 

presents with an individual active secretory function by producing adipocytokines and 114 

converting stored or circulating sex steroids precursors (A4, DHEA) to T and E2 with the help 115 

of 17β-hydroxysteroid dehydrogenases (17β-HSD) and aromatase, thus modulating the lipid 116 

metabolism and steroid synthesis [17].   117 

 Diabetes may affect several enzymatic pathways of steroidogenesis by downregulating 118 

the expression of testicular mRNA transcripts for the androgen receptor, LH receptor, 119 

cytochrome P450 enzyme (CYP17A1), 3β-hydroxysteroid dehydrogenase (3β-HSD) and 17β-120 

HSD, which may cause a decreased synthesis of DHEA from pregnenolone regulated by 121 

CYP17A1, while 3β-HSD and 17β-HSD control T synthesis from DHEA, possibly leading to 122 

a reduced concentration of serum and intratesticular T [18].     123 

Generally, T synthesis is mediated through two pathways (Figure 1), the Δ-4 pathway 124 

(via A4) and Δ-5 pathway (via DHEA). We may speculate that the Δ-4 pathway failed because 125 

of the decline of A4 in the blood plasma of obese ZDF rats. This may activate the Δ-5 pathway 126 

in order to ensure normal concentration of T, however our data suggest that the Δ-5 pathway 127 

may not have fully compensated for the Δ-4 pathway failure, which could lead to a significant 128 

decrease of T in the blood plasma, as previously postulated by Ohta et al. [19].    129 

 Under in vitro conditions, testicular tissue revealed to carry out a proper synthesis of T, 130 

A4 as well as DHEA-S. This could be associated with the absence of adipose tissue, which 131 

originally surrounded the testicular tissue in the animal. The subsequent culture included the 132 

testicular fragments without additional adipose tissue, which might have acted as a barrier for 133 

a subsequent distribution of androgens into the blood. What is more, leptin is able to cross the 134 

blood-testis barrier, interact with testicular receptors of Leydig cells and subsequently inhibit T 135 

synthesis by disrupting the testicular leptin transduction pathway [20].  136 

 In summary, we may conclude that DM2 has a negative impact on the concentration of 137 

steroid biomolecules, especially in the blood plasma at the system level. Diabetes combined 138 

with obesity most likely disrupted the functions of specific receptors of the hypothalamic-139 
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pituitary-testicular axis, since the in vitro endocrine function of testicular tissue was affected 140 

by the presence of DM2 and obesity to a lower extent. Nevertheless, this study has potential 141 

limitations. The evaluation of the concentration of SHGB could further illustrate alterations to 142 

the transport pathways of steroid biomolecules in diabetic and/or obese males.       143 
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Table 1. In vivo and in vitro concentrations of selected steroid biomolecules of ZDF-lean and 247 

ZDF-obese rats.  248 

IN VIVO  ZDF-lean ZDF-obese IN VITRO  ZDF-lean ZDF-obese 

CHOL (mg/dL) 69.16±9.46 515.90±48.68*** CHOL (mg/dL) 6.44±0.27 5.48±0.55 

FSH (ng/mL) 30.31±3.26 22.13±4.06* FSH (ng/mL) 38.56±2.71 29.56±2.66* 

LH (ng/mL) 3.08±0.37 2.38±0.31 LH (ng/mL) 7.17±0.56 5.08±0.83 

T (ng/mL) 5.04±0.43 3.21±0.36* T (ng/mL) 89.27±0.87 87.94±1.95 

E2 (pg/mL) 2.46±0.65 3.35±0.72* E2 (pg/mL) 2.13±0.26 4.66±0.58** 

DHEA (ng/mL) 4.09±0.31 4.07±0.33 DHEA (ng/mL) 0.87±0.04 0.86±0.03 

A4 (ng/mL) 9.48±0.54 7.10±0.52* A4 (ng/mL) 6.28±0.07 6.24±0.04 

Mean±SD. ***P<0.001; **P<0.01; *P<0.05. 249 

 250 

 251 

Figure 1. Hypothalamic-pituitary-testicular axis and steroidogenesis via Δ-4 and Δ-5 pathway  252 


