Physiological Research Pre-Press Article

1 Footshock-induced activation of the claustrum-entorhinal

2 cortical pathway in freely moving mice

3

4	Wushuang HUANG ^{1,#} , Jing QIN ^{1,#} , Chunqing ZHANG ² , Han QIN ^{3,*} , Peng XIE ^{1,*}
5	¹ Department of Neurology, The First Affiliated Hospital of Chongqing Medical University,
6	Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional
7	Diseases, Chongqing Medical University, Chongqing, 400016, China, ² Department of Neurosurgery,
8	Xinqiao Hospital, Army Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing
9	400037, China, ³ Center for Neurointelligence, School of Medicine, Chongqing University,
10	Chongqing 400044, China.
11	
12	Corresponding author: Peng Xie, Department of Neurology, The First Affiliated Hospital of
13	Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and
14	Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, 400016, China.
15	E-mail: xiepeng@cqmu.edu.cn.
16	Han Qin, Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing
17	400044, China. E-mail: qinhan@cqu.edu.cn.
18	
19	[#] Wushang Huang and Jing Qin contributed equally to this work.
20	*Peng Xie and Han Qin are co-corresponding authors.
21	
22	Short title: Footshock-induced activation of the CLA-MEC pathway
23	

25 Summary

26 Footshock is frequently used as an unconditioned stimulus in fear conditioning behavior studies. 27 The medial entorhinal cortex (MEC) contributes to fear learning and receives neuronal inputs from 28 the claustrum. However, whether footshocks can induce a neuronal response in claustrum-MEC 29 (CLA-MEC) projection remains unknown. Here, we combined fiber-based Ca²⁺ recordings with a 30 retrograde AAV labeling method to investigate neuronal responses of MEC-projecting claustral 31 neurons to footshock stimulation in freely moving mice. We achieved successful Ca²⁺ recordings in 32 both anesthetized and freely exploring mice. We found that footshock stimulation reliably induced 33 neuronal responses to MEC-projecting claustral neurons. Therefore, the footshock-induced 34 response detected in the CLA-MEC projection suggests its potential role in fear processing.

35

36 Keywords

37 Claustrum • Fear • Footshock • Fiber photometry • GCaMP

38

39 Introduction

40 Fear, which can elicit defensive behaviors to avoid or reduce harm, is an important emotion for 41 survival [1, 2]. Fear is regulated by multiple brain regions and complex neural circuits. The amygdala 42 nuclei are essential for the acquisition and expression of fear [3, 4]. Fear responses are involved in 43 dispersed brain networks, such as the sensory cortex, the medial prefrontal cortex, the 44 hippocampus and the entorhinal cortex [1, 5]. Footshock-induced pain is frequently used as the 45 unconditioned stimulus in fear conditioning experiment paradigms [4, 6]. The claustrum, a slender 46 region underneath the cortical area, has a neuroanatomical basis that allows it to participate in 47 high-order functions [7, 8]. The medial entorhinal cortex (MEC), which has been reported to 48 participate in fear learning, receives neuronal projections from the claustrum [9-11]. Thus, the 49 neuronal projection from the claustrum to the MEC (CLA-MEC) may be involved in fear processing 50 [9]. However, whether footshock can induce any response in the CLA-MEC projection remains 51 unknown.

52 Real-time monitoring approaches are needed to answer this question. Traditional 53 electrophysiological recording provides the highest temporal resolution in neural activity recording. 54 Combined with optogenetics, optrodes provide cell-type or projection information for recorded

neurons [11-14]. However, the application of this technique is limited by a low recording efficiency. Two-photon microscopy provides a high recording efficiency but is restricted to cortical areas in anesthetized or head-fixed animals [15, 16]. Fiber photometry combined with genetically encoded Ca²⁺ indicators provides a simple but efficient method for projection-specific recording in freely moving animals [17, 18]. Recent studies have developed recording methods in the claustrum in freely moving mice [19, 20]. However, the real-time recording of a specific CLA-MEC projection under specific behavioral tasks is still lacking.

62 Here, we utilized fiber-based Ca²⁺ recording to investigate the possible role of the CLA-MEC 63 projection in footshock-induced neural responses. We observed a stable labeling of MEC projection 64 neurons in the claustrum by local injection of retrograde AAV carrying the Ca²⁺ indicator GCaMP6m gene into the MEC. The method was then validated by Ca²⁺ recording in anesthetized and freely 65 66 moving mice. Moreover, we performed Ca²⁺ recording of MEC projection neurons in the claustrum 67 with the application of footshock stimuli in freely moving mice. Robust neuronal responses of these 68 neurons to footshock stimuli were observed, suggesting a possible role of CLA-MEC projection in 69 fear-related information processing.

70

71 Methods

72 Animals

Fieven adult male C57BL/6J mice (aged between 8-12 weeks) were used for all described studies.
Mice were housed in groups under 12-hour light/dark cycle conditions, with *ad libitum* access to
food and water. All experiments were performed according to institutional animal welfare
guidelines and were approved by the Third Military Medical University Animal Care and Use
Committee.

78

79 Optical setup

A custom-built fiber photometry system was used to record Ca^{2+} activity. Excitation light with a wavelength of 488 nm (Coherent, OBIS 488 LX-50 mW) was delivered to tissue by an optical fiber with a diameter of 200 μ m (Doric Lenses, MFP_200/230/900-0.48). The optical fiber was glued into a short metal cannula (ID. 0.51 mm, OD. 0.82 mm, length 18 cm) with a fiber tip extending ~3.5 mm out of the cannula. Emission fluorescence was detected with an avalanche photodiode 85 (Hamamatsu Photonic, Si APD, S2382). Data acquisition was controlled by user-customized
86 software on the LabVIEW platform (LabVIEW 2014, National Instruments).

87

88 Virus injection

89 The mice were anesthetized with 1.5% isoflurane in pure oxygen for 3-5 min. mice were then 90 moved onto a stereotactic apparatus with a heating pad that maintained a temperature of 91 approximately 37 °C during the entire surgery, and anesthesia was maintained by continuous 92 delivery of isoflurane. The hair at the top of the head was shaved, and an 8-10-mm-long incision 93 was made along the midline. Then, one small craniotomy $(0.5 \times 0.5 \text{ mm})$ above the MEC (AP: -4.9 94 mm, ML: 3.5 mm) was made. A glass micropipette with a tip diameter of \sim 10 μ m was inserted 95 down to a depth of 2.5 mm (from the dura) to infuse the virus. Approximately 300 nL of retroAAV-96 GCaMP6m viral solution was gradually injected while the micropipette was slowly lifted to a depth 97 of 1.5 mm. Each injection took 5-10 min. The micropipette was kept in place for 5 min before being 98 slowly withdrawn. After virus injection, the scalp wound was closed with surgical sutures, and each 99 mouse was kept in a warm plate. Mice were then returned to their home cage for recovery. 100 Meloxicam oral suspension (Metacam) was provided in drinking water for three days after surgery.

101

102 Fiber recording in anesthetized mice

Recording experiments were conducted approximately one month after virus injection. The preprocessed fiber probe was slowly inserted through another craniotomy above the claustrum (AP: 1.1 mm, ML: 2.5 mm) to a depth of ~2.7 mm. After the fiber probe was secured to the skull by UV-curing hardening dental cement (Tetric EvoCeram, 595953WW), the concentration of isoflurane was increased to 1.8%. Following an adaptation period of 10 min, Ca²⁺ recordings were performed for 10 min at each anesthesia level, and the initial 3 min of each level was excluded for data analysis. The concentrations of isoflurane were 1.8%, 1.5%, 1.2%, and 0.8%.

110

111 Fiber recording in freely moving mice

The cannula was fixed to the mouse skull with dental cement after recording data from the mice in an anesthetized state, and then the mice were returned to their home cages for recovery. Meloxicam oral suspension (Metacam) was provided in drinking water immediately after surgery for three days. Freely moving mice were placed into an opaque plastic rectangular box (30 cm \times 17 cm) for 30 min. Ten sound stimulation trials (8944 Hz pure tone, 1 s, 70 dB sound pressure level, 3 min inter-sound interval) were played for mice. Subsequently, mice were moved to an electric shock box (50 cm \times 50 cm) for 10 footshock trials (1 s, 0.6 mA, 3 min inter-shock interval). In the meantime, a camera was set above the recording box to monitor the behaviors of the mice. Ca²⁺ signals and mouse behaviors were recorded simultaneously. Event markers were used to synchronize the Ca²⁺ signals and behavior videos.

122

123 Histology and imaging

All experimental mice were perfused after recording to confirm the virus expression areas and fiber positions. Mice were perfused with phosphate-buffered saline (PBS) for ~ 5 min and then with 4% paraformaldehyde for 15-20 min to ensure complete tissue fixation. Brain samples were collected and placed in 4% paraformaldehyde overnight at 4 °C. Brain tissue was sectioned into 50-µm-thick slices with a freezing microtome and then stained with 4',6-diamidino-2-phenylindole (DAPI). Fluorescent images were collected with a fluorescent microscope using a 2.5× or 4× objective.

130

131 Data analysis and statistics

The Ca²⁺ data were acquired at a sampling rate of 2000 Hz and analyzed as previously described [18, 21, 22]. A Savitzky–Golay finite-impulse smoothing filter (50 side points and 3 polynomial orders) was first applied to the data. Then, the relative fluorescence change was calculated by $\Delta f/f$ = (f - f_{baseline})/f_{baseline}, where f_{baseline} was the baseline fluorescent intensity. A transient was identified as a Ca²⁺ event if the amplitude was three times larger than the standard deviation of the baseline segment.

Nonparametric and 1-way ANOVA with *post hoc* Tukey's multiple comparisons tests in
 MATLAB (MATLAB 2016b, MathWorks) were used for comparison. All summarized data were from
 individual mice and plotted as the mean ± SEM.

141

142 Results

143 Specific labeling of claustral neurons that project to the MEC by GCaMP6m

We used the fiber photometry system [18, 21, 22] to monitor the population Ca²⁺ activity of claustral neurons that project to the MEC (CLA^{MEC}-projecting neurons, Fig. 1a). We expressed the genetically encoded Ca²⁺ sensor GCaMP6m [23] specifically in CLA^{MEC}-projecting neurons by
injecting retroAAV-syn-GCaMP6m [24] into the MEC (Fig. 1b,c). Then, an optical fiber was
implanted above the claustrum to record the Ca²⁺ activity from CLA^{MEC}-projecting neurons (Fig. 1b,
d). The expression of GCaMP6m was verified and was restricted in the MEC by *post hoc* histology
(Fig. 1e). Robust expression of GCaMP6m in the claustrum was also confirmed (Fig. 1f).

151

152 Population Ca²⁺ recordings of MEC-projecting claustral neurons in anesthetized mice

Next, we determined whether the Ca²⁺ signals in the claustrum could be recorded by optical fibers 153 with our labeling method. The Ca²⁺ signals of CLA^{MEC}-projecting neurons were recorded under 154 different anesthesia levels by isoflurane. Figure 1g shows examples of Ca²⁺ signals from CLA^{MEC}-155 156 projecting neurons at decreasing anesthesia levels (1.8%, 1.5%, 1.2%, and 0.8%). We observed slow 157 oscillation-associated population Ca²⁺ events, similar to the observations that have been previously described in the cortex [21, 25-27], in CLA^{MEC}-projecting neurons. The amplitude and frequency of 158 159 the Ca²⁺ events changed with different anesthesia levels. The amplitude ($\Delta f/f$) decreased from 0.13 160 \pm 0.05 to 0.05 \pm 0.01 when the isoflurane concentration decreased from 1.8% to 0.8% (Fig. 1h, 161 repeated measures 1-way ANOVA with Tukey's multiple comparisons test, F = 16.37, 1.8% vs. 0.8%, P = 0.006; 1.5% vs. 0.8%, P = 0.0002; 1.2% vs. 0.8%, P = 0.007). Meanwhile, the frequency increased 162 163 from 0.36 ± 0.05 Hz to 3.29 ± 0.35 Hz under these conditions (Fig. 1i, repeated measures 1-way 164 ANOVA with Tukey's multiple comparisons test, F = 37.27, 1.8% vs. 1.5%, P = 0.03; 1.8% vs. 1.2%, P 165 = 0.00004; 1.8% vs. 0.8%, P = 0.00003, 1.5% vs. 1.2%, P = 0.004; 1.5% vs. 0.8%, P = 0.002). Thus, 166 the retrograde labeling method can be combined with fiber photometry for real-time neural activity recording of CLA^{MEC}-projecting neurons. 167

168

Population Ca²⁺ response in MEC-projecting claustral neurons induced by footshock in freely behaving mice

To investigate the response induced by footshock in freely moving mice, we conducted optical fiber recordings of CLA^{MEC}-projecting neurons together with behavioral video surveillance. We performed the recordings at least 5 days after fiber implantation. Mice were placed in a white rectangular box for free exploration, with an infrared camera placed above them to monitor their behavior (Fig. 2a). Figure 2b shows a 200-s recording of Ca²⁺ signals (black trace) synchronized with body movements (gray trace). Mouse locations during the corresponding recording period were automatically tracked and are plotted in Figure 2c. According to both the example in Figure 2b and statistical analysis in Figure 2d, we found significantly higher Ca^{2+} signals during locomotion than during grooming behavior (Fig. 2d, two-sided Wilcoxon rank-sum test, z = 6.3, p = 2.88e-10).

We next performed fiber recordings of CLA^{MEC}-projecting neurons during the application of 180 181 sound or footshock in freely moving mice (Fig. 2e). We found that sound stimulation could not 182 induce any Ca²⁺ signal (four example trials from one mouse in Figure 2f, left; summary of 19 trials 183 from 3 mice in Fig. 2g), while footshock stimulation induced clear and stable responses from 184 CLAMEC-projecting neurons (four example trials from one mouse in Fig. 2f, right; summary of 21 trials from 3 mice in Fig. 2h). The onset latency of these footshock-induced Ca²⁺ responses was 48.3 185 ± 4.8 ms (21 trials from 3 mice). The peak amplitude ($\Delta f/f$) of footshock-induced Ca²⁺ responses 186 187 was significantly larger than that of sound stimulation (Fig. 2i, two-sided Wilcoxon rank-sum test, z 188 = 5.3, *p* = 1.28e-7).

189

190 Discussion

191 In this study, we utilized fiber photometry to investigate the neural responses in CLA-MEC 192 projection to footshock stimulation. We used a retrograde AAV carrying the genetically encoded 193 Ca²⁺ indicator GCaMP6m to specifically label MEC-projecting neurons in the claustrum. To test the 194 effectiveness of the retrograde labeling, we first performed Ca²⁺ recording in the anesthetized state 195 by implantation of an optical fiber probe in the claustrum of retroAAV-GCaMP6m-injected mice. We found that the amplitude of the population Ca^{2+} events decreased with decreasing isoflurane 196 concentration. In contrast, the frequency increased in this process. Then, we demonstrated Ca²⁺ 197 recordings of CLA^{MEC}-projecting neurons in freely moving mice. Stable neuronal responses induced 198 199 after footshock but not sound stimulation were detected in the CLAMEC-projecting neurons. These 200 Ca²⁺ responses after footshock could result from locomotion, pain sensation or startle reflex caused 201 by footshock [28]. Future work is needed to differentiate these possibilities.

The claustrum has been hypothesized to be involved in higher-order processes, depending on its dense connection to and from the associative cortex [9, 10, 29, 30]. Moreover, it has been suggested to participate in multiple brain functions, such as sensory information integration, attention and consciousness [29-32]. The projection from the claustrum to MEC has been less studied. Kitanishi et al. reported that CLA-MEC projection was activated by novel context and

207 modulated contextual memory [9]. However, the real-time activity pattern of CLA-MEC projection 208 has not been clearly investigated. Here, we showed that a fiber-based recording method combined 209 with retrograde AAV labeling can achieve real-time recording of specific projections in freely 210 behaving mice, which will aid our understanding of the function of specific neural projections.

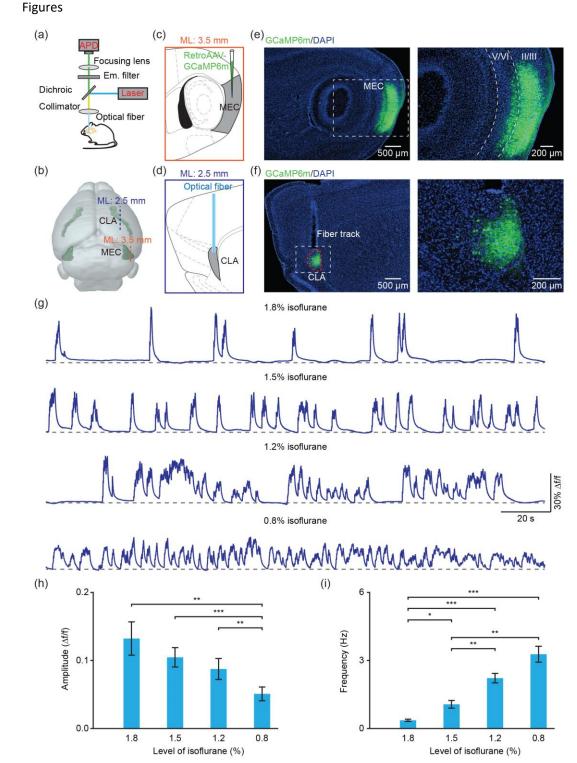
Overall, we demonstrated that fiber-based Ca²⁺ recording combined with retrograde AAV labeling is ideal for real-time monitoring of CLA-MEC projection in freely moving mice. With this approach, we found a stable and reliable response of CLA^{MEC}-projecting neurons induced by footshock stimulation. These findings may lead to a clearer understanding of neural circuits in fear learning and pain.

216

217 Acknowledgments

- 218 The authors are grateful to Ms. Jia Lou for help in composing and editing the layout of the figures.
- 219 This work was supported by grants from the National Natural Science Foundation of China
- 220 (82171463) to CZ.
- 221

222 Conflicts of interest


- There are no conflicts of interest.
- 224

225 **References**

- 2261.Tovote P, Fadok JP, Lüthi A. Neuronal circuits for fear and anxiety. Nat Rev Neurosci.2272015;16(6):317-331.
- 228 2. Garcia R. Neurobiology of fear and specific phobias. Learn Mem. 2017;24(9):462-471.
- 229 3. LeDoux JE. Emotion circuits in the brain. Annu Rev Neurosci. 2000;23:155-184.
- 230 4. LeDoux J. The amygdala. Curr Biol. 2007;17(20):R868-874.
- Wahlstrom KL, Huff ML, Emmons EB, Freeman JH, Narayanan NS, McIntyre CK, LaLumiere
 RT. Basolateral amygdala inputs to the medial entorhinal cortex selectively modulate the
 consolidation of spatial and contextual learning. J Neurosci. 2018;38(11):2698-2712.
- Phillips RG, LeDoux JE. Differential contribution of amygdala and hippocampus to cued and
 contextual fear conditioning. Behav Neurosci. 1992;106(2):274-285.
- Jackson J, Smith JB, Lee AK. The anatomy and physiology of claustrum-cortex interactions.
 Annu Rev Neurosci. 2020;43:231-247.
- 238 8. Smith JB, Lee AK, Jackson J. The claustrum. Curr Biol. 2020;30(23):R1401-r1406.
- 239 9. Kitanishi T, Matsuo N. Organization of the claustrum-to-entorhinal cortical connection in
 240 mice. J Neurosci. 2017;37(2):269-280.
- Zingg B, Dong H-W, Tao HW, Zhang LI. Input–output organization of the mouse claustrum.
 J Comp Neurol. 2018;526(15):2428-2443.
- 11. Narikiyo K, Mizuguchi R, Ajima A, Shiozaki M, Hamanaka H, Johansen JP, Mori K, Yoshihara
 Y. The claustrum coordinates cortical slow-wave activity. Nat Neurosci. 2020;23(6):741-

245		753.
246	12.	Anikeeva P, Andalman AS, Witten I, Warden M, Goshen I, Grosenick L, Gunaydin LA, Frank
247		LM, Deisseroth K. Optetrode: a multichannel readout for optogenetic control in freely
248		moving mice. Nat Neurosci. 2011;15(1):163-170.
249	13.	Stark E, Koos T, Buzsaki G. Diode probes for spatiotemporal optical control of multiple
250		neurons in freely moving animals. J Neurophysiol. 2012;108(1):349-363.
251	14.	Chevée M, Finkel EA, Kim SJ, O'Connor DH, Brown SP. Neural activity in the mouse
252		claustrum in a cross-modal sensory selection task. Neuron. 2022;110(3):486-501.e487.
253	15.	Denk W, Strickler JH, Webb WW. Two-photon laser scanning fluorescence microscopy.
254		Science. 1990;248(4951):73-76.
255	16.	Yuste R, Denk W. Dendritic spines as basic functional units of neuronal integration. Nature.
256		1995;375(6533):682-684.
257	17.	Adelsberger H, Garaschuk O, Konnerth A. Cortical calcium waves in resting newborn mice.
258		Nat Neurosci. 2005;8(8):988-990.
259	18.	Qin H, Fu L, Hu B, Liao X, Lu J, He W, Liang S, Zhang K, Li R, Yao J et al. A visual-cue-
260		dependent memory circuit for place navigation. Neuron. 2018;99(1):47-55.e44.
261	19.	White MG, Panicker M, Mu C, Carter AM, Roberts BM, Dharmasri PA, Mathur BN. Anterior
262		cingulate cortex input to the claustrum is required for top-down action control. Cell Rep.
263		2018;22(1):84-95.
264	20.	White MG, Mu C, Qadir H, Madden MB, Zeng H, Mathur BN. The mouse claustrum is
265		required for optimal behavioral performance under high cognitive demand. Biol Psychiatry.
266		2020;88(9):719-726.
267	21.	Zhang Q, Yao J, Guang Y, Liang S, Guan J, Qin H, Liao X, Jin W, Zhang J, Pan J et al.
268		Locomotion-related population cortical Ca(2+) transients in freely behaving mice. Front
269		Neural Circuits. 2017;11:24.
270	22.	Qin H, Lu J, Jin W, Chen X, Fu L. Multichannel fiber photometry for mapping axonal terminal
271		activity in a restricted brain region in freely moving mice. Neurophotonics. 2019, 6(3):1-
272		10, 10.
273	23.	Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, Schreiter ER, Kerr RA, Orger
274		MB, Jayaraman V et al. Ultrasensitive fluorescent proteins for imaging neuronal activity.
275		Nature. 2013;499(7458):295-300.
276	24.	Tervo DG, Hwang BY, Viswanathan S, Gaj T, Lavzin M, Ritola KD, Lindo S, Michael S,
277		Kuleshova E, Ojala D et al. A designer aav variant permits efficient retrograde access to
278		projection neurons. Neuron. 2016;92(2):372-382.
279	25.	Luczak A, Bartho P, Marguet SL, Buzsaki G, Harris KD. Sequential structure of neocortical
280		spontaneous activity in vivo. Proc Natl Acad Sci USA. 2007;104(1):347-352.
281	26.	Stroh A, Adelsberger H, Groh A, Ruhlmann C, Fischer S, Schierloh A, Deisseroth K, Konnerth
282		A. Making waves: initiation and propagation of corticothalamic Ca ²⁺ waves in vivo. Neuron.
283		2013;77(6):1136-1150.
284	27.	Adelsberger H, Grienberger C, Stroh A, Konnerth A. In vivo calcium recordings and
285		channelrhodopsin-2 activation through an optical fiber. Cold Spring Harb Protoc.
286		2014;2014(10):pdb prot084145.
287	28.	Zhang K, Förster R, He W, Liao X, Li J, Yang C, Qin H, Wang M, Ding R, Li R et al. Fear learning
288		induces α 7-nicotinic acetylcholine receptor-mediated astrocytic responsiveness that is

289		required for memory persistence. Nat Neurosci. 2021;24(12):1686-1698.
290	29.	Liu J, Wu R, Johnson B, Vu J, Bass C, Li J-X. The claustrum-prefrontal cortex pathway
291		regulates impulsive-like behavior. J Neurosci. 2019;39(50):10071-10080.
292	30.	Terem A, Gonzales BJ, Peretz-Rivlin N, Ashwal-Fluss R, Bleistein N, Del Mar Reus-Garcia M,
293		Mukherjee D, Groysman M, Citri A. Claustral neurons projecting to frontal cortex mediate
294		contextual association of reward. Curr Biol. 2020;30(18):3522-3532.e3526.
295	31.	Atlan G, Terem A, Peretz-Rivlin N, Sehrawat K, Gonzales BJ, Pozner G, Tasaka G-I, Goll Y,
296		Refaeli R, Zviran O et al. The claustrum supports resilience to distraction. Curr Biol.
297		2018;28(17):2752-2762.e2757.
298	32.	Jackson J, Karnani MM, Zemelman BV, Burdakov D, Lee AK. Inhibitory control of prefrontal
299		cortex by the claustrum. Neuron. 2018;99(5):1029-1039.e1024.
300		
301		

Figure 1 Population Ca²⁺ recordings of CLA^{MEC}-projecting neurons in anesthetized mice with GCaMP6m. (a) Schematic of the fiber photometry setup. (b-d) Experimental design of retroAAV-GCaMP6m injection in the MEC (c) and fiber implantation in the claustrum (d); ML: mediolateral, CLA: claustrum; MEC: medial entorhinal cortex. (e) *Post hoc* histological images showing the expression of GCaMP6m in the MEC. (f) *Post hoc* histological confirmation of GCaMP6m expression and optical fiber position in the claustrum. (g) Examples showing the population Ca²⁺ signals of CLA^{MEC}-projecting neurons at different anesthesia levels. (h) Amplitude of Ca²⁺ events of CLA^{MEC}-

- 311 projecting neurons at different anesthesia levels (*n* = 11 mice; repeated measures 1-way ANOVA
- 312 with Tukey's multiple comparisons test, **P < 0.01, ***P < 0.001). (i) Frequency of Ca²⁺ events of
- 313 CLA^{MEC}-projecting neurons at different anesthesia levels (n = 11 mice; repeated measures 1-way
- ANOVA with Tukey's multiple comparisons test, *P < 0.05, **P < 0.01, ***P < 0.001)
- 315

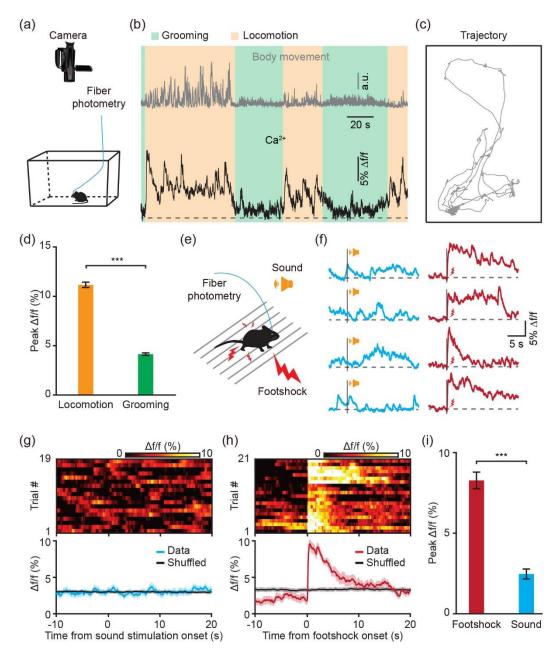


Figure 2 Population Ca²⁺ transients of CLA^{MEC}-projecting neurons induced by footshock stimulation 317 in freely moving mice. (a) Diagram of the recording setup in freely moving mice. (b) Example 318 showing the relative body movements (gray trace) and the Ca²⁺ transients recorded in CLA^{MEC}-319 320 projecting neurons (black trace) in a freely moving mouse; green shaded areas: grooming; yellow 321 shaded areas: locomotion. (c) The corresponding locomotion trajectory of the recording period in 322 b. (d) Summary of peak $\Delta f/f$ during locomotion or grooming (locomotion: n = 31 trials from 3 mice; grooming: n = 24 trials from 3 mice, two-sided Wilcoxon rank-sum test, ***p < 0.001). (e) Schematic 323 diagram of Ca²⁺ recording with footshock or sound stimulation. (f) Representative Ca²⁺ signals 324

induced after sound (blue) or footshock (red) in CLA^{MEC}-projecting neurons from one mouse. (g, h) Color-coded intensities (top) and average trace (bottom) of Ca²⁺ signals aligned to sound (g, 19 trials from 3 mice) or footshock (h, 21 trials from 3 mice) stimulation. The black trace is the shuffled data, and shaded areas represent s.e.m. (i) Summary of peak $\Delta f/f$ during sound and footshock stimulation (sound: n = 19 trials from 3 mice, footshock: n = 21 trials from 3 mice, two-sided Wilcoxon rank-sum test, z = 5.1, ***p < 0.001).