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On Coulomb collisions in bi-Maxwellian plasmas
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Collisional momentum and energy transport in bi-Maxwellian plasmas with a drift velocity along
the ambient magnetic field are calculated from both the Fokker-Planck and Boltzmann integral
approximations. The transport coefficients obtained from the two approaches are identical to the
leading order (proportional to the Coulomb logarithm) and are presented here in a closed form
involving generalized double hypergeometric functions.

I. INTRODUCTION

Transport in weakly collisional plasmas may strongly
deviate from theoretical predictions obtained for a
collision-dominated plasma.1 Weak collisions are not gen-
erally able to keep particle distribution functions near the
thermal equilibrium, a phenomenon clearly evidenced in
the solar wind.2,3 For anisotropic (bi-Maxwellian) distri-
bution functions transport coefficients have been calcu-
lated starting from the Fokker-Planck approximation.4,5

However, the Fokker-Planck approximation fails far from
the thermal equilibrium6 and the Boltzmann integral has
to be used. This had been done for drifting bi-Maxwellian
gases in a general case of an inverse-power force7 but
those results were not given in a closed form and included
integrals which were calculated only in some cases/limits.
In this paper we calculate the collisional momentum and
energy transport in bi-Maxwellian plasmas with a drift
velocity along the ambient magnetic field from both the
Fokker-Planck and Boltzmann integral approximations.
The transport coefficients obtained from the two ap-
proaches are identical to the leading order (proportional
to the Coulomb logarithm) and are presented here in a
closed form involving generalized double hypergeometric
functions.

II. TRANSPORT COEFFICIENTS

Coulomb collision scattering may be approximated by
a two particle interaction term via the Boltzmann col-
lision integral. Concerning notation, here we use SI, ǫ0
denotes the electric permittivity, index s (and t) denotes
different species, qs and ms are the species charge and
mass, respectively; mst = msmt/(ms + mt) denotes an
effective mass, fs = fs(v) is the species velocity distribu-
tion function. The collisional variation of the distribution
function of species s is given by a sum of terms giving the
scattering on all species t in the form8
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where g = |g| = |v−u|, v′ and u′ are post-collision veloc-
ities with respect to v and u, respectively, the Rutherford
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and in the integration with respect to the solid angle Ω
the standard cut-off is used
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where χ the deflection angle between v and v′ and φ
gives the rotation around g. This cut-off (3) leads to the
Coulomb logarithm ln Λst.

Assuming a dominance of small angle deflections, ex-
panding the Boltzmann integral (1) in u′ −u and v′ − v

and taking first terms in the Taylor series one gets the
Fokker-Planck equation, which may be given in the Lan-
dau conservative form
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where the collisional current in the velocity space is
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where 1 is the unity tensor.

From (4) one may get basic transport coefficients by
taking the appropriate moments of (∂fs/∂t)c assuming
a specific form of the distribution function. Here we as-
sume that all considered species have bi-Maxwellian ve-
locity distribution functions with a mean velocity parallel
to the ambient magnetic field (assumed in the z direction)
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where ns is the particle number density,
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and vs⊥ =
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are parallel and perpendicular thermal velocities, respec-
tively (kB being the Boltzmann constant), and vs are
parallel drift velocities.

The calculation of these moments leads to integrals in
the form

∞
∫

0

π
∫

0

e−v2

e−Av2 cos2 θe−V v cos θP (v, sin θ, cos θ)dθdv (8)

where P is a low-degree, trivariate polynomial. The in-
tegral may be evaluated by expanding two exponential
terms with cos θ into infinite sums and integrating result-
ing terms (assuming the double infinite sum converges).
The double infinite sums are in the form of double hy-
pergeometric functions and one arrives at the transport
coefficients
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are combined effective parallel and perpendicular veloci-
ties, respectively,
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is an effective temperature anisotropy and
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is a collision frequency of species s on species t. Here F
(st)
abc

are defined through generalized double hypergeometric or
Kampé de Fériet functions9
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For the derivation and simplification of transport coef-
ficients (9–11) we have also used the recursive formulas

(B3–B7). Another expression for F
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abc could be obtained

from (B9)
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which may be derived by going through sin2 θ rather than
through cos2 θ in (8). The transport coefficients (9–11)
clearly conserve the total energy and momentum.

For inter-species collisions we have

F
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and one recovers the results of Ref. 4 considering that
the Kogan function4,5,7 ϕ defined as
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is related to the standard hypergeometric function
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and using relations (A5–A7). Similarly for vs = vt one
recovers the results of Ref. 5.

The transport coefficients can be also calculated di-
rectly from the Boltzmann collision integral. This cal-
culation also leads to integrals in the form of (8), cf.,
Ref. 7, Eq. (24–26). It can be easily shown that for bi-
Maxwellian distribution functions with velocities parallel
to the ambient magnetic field one gets the same transport
coefficients (9–11) as obtained from the Fokker-Planck
to the leading order ∝ ln Λ. Note that the Coulomb
logarithm used in Ref. 7 is twice the standard one (cf.,
Refs. 8,10). The agreement between the (leading order)
momentum and energy transport coefficients obtained
from the Boltzmann collision integral and the Fokker-
Planck approximations is in agreement with the results
of Ref. 6 which indicate that large-angle collisions impact
higher order moments.

III. CONCLUSIONS

We have presented a closed form of collisional trans-
port coefficients in bi-Maxwellian plasmas drifting along
the ambient magnetic field. These coefficients can be ex-
pressed in the form of double hypergeometric functions.
These results can be further generalized to an inverse-
power force interaction and to include a drift velocity per-
pendicular with respect to the ambient magnetic field; a
presence of the perpendicular drift velocity leads to triple
hypergeometric functions.
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APPENDIX A: HYPERGEOMETRIC FUNCTION

The standard Gauss hypergeometric function can be
defined as

2F1
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c

, x

)

=

∞
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(c)n

xn

n!
(A1)

where (a)n is a Pochhammer symbol

(a)n =
Γ(a + n)

Γ(a)
= a(a + 1) . . . (a + n − 1). (A2)

The infinite sum in (A1) is absolutely convergent for |x| <
1. For other values an analytic continuation is to be
used,11 e.g., using the linear transformation property
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or the integral representation12
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One can easily check the following recurrence formulas
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APPENDIX B: MULTIPLE HYPERGEOMETRIC

FUNCTIONS

A special class of double hypergeometric functions or
Kampé de Fériet functions9 is considered here. These
functions can be represented as double series
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The double infinite series in (B1) is absolutely conver-
gent for any y and for |x| < 1. Outside this region an
analytic continuation is needed. Expression (B1) may be
expressed in the following form
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One can easily check the following recurrence relations
for the double hypergeometric functions:
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for a 6= 0
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whereas for a = 0
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The double hypergeometric function F 2··
1·1 in case of

b = d are related to Humbert generalized double cofluent
hypergeometric function
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Finally, for b = d one can get the simple integral repre-
sentation
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The derivation of (B10) is analogic to (A4) for the stan-
dard hypergeometric function.12
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