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Nonlinear Mirror Mode Dynamics: Simulations and Modeling

F. Califano,1 P. Hellinger,2 E. Kuznetsov,3 T. Passot,4 P.L. Sulem4 and P.

Trávńıček2

Abstract. With the aim to understand the origin of the pressure-balanced magnetic struc-
tures in the form of holes and humps commonly observed in the solar wind and planetary mag-
netosheaths, high-resolution hybrid numerical simulations of the Vlasov-Maxwell (VM) equa-
tions using both Lagrangian (particle in cells) and Eulerian integration schemes are presented
and compared with asymptotic and phenomenological models for the nonlinear mirror mode
dynamics. It turns out that magnetic holes do not result fromdirect nonlinear saturation of
the mirror instability that rather leads to magnetic humps.Nevertheless, both above and be-
low threshold, there exist stable solutions of the VM equations in the form of large-amplitude
magnetic holes. Special attention is paid to the skewness ofthe magnetic fluctuations (that is
negative for holes and positive for humps) and its dependency on the distance to threshold
and the beta of the plasma. Furthermore, the long-time evolution of magnetic humps result-
ing from the mirror instability in an extended domain far enough from threshold may, when
the beta of the plasma is not too large, eventually lead to theformation of magnetic holes.

1. Introduction

Since the first observations ofKaufmann et al.[1970], a strong
interest has been paid to the pressure-balanced magnetic structures
observed in regions of the solar wind and of planetary magne-
tosheaths whereβ is relatively large and the ion perpendicular tem-
perature exceeds the parallel one. These structures that are static
in the plasma frame, display a strong anticorrelation between mag-
netic intensity and pressure as well as density variations.Their
shape is cigar-like, elongated along a direction making a small an-
gle with the ambient magnetic field [Horbury et al., 2004, and ref-
erences therein]. Early observations tended to suggest a predomi-
nance of magnetic holes [Sperveslage et al., 2000], but more recent
data indicate that magnetic humps are also frequently encountered
[Lucek et al., 1999;Joy et al., 2006;Soucek et al., 2008]. Recently,
Joy et al.[2006] correlate the existence of magnetic holes or humps
with the relatively small or large value ofβ. Génot et al.[2006]
used a more quantitative characterization of the statistically domi-
nant type of magnetic structures by measuring the degree of skew-
ness that reflects the preference towards magnetic holes or humps,
depending of its negative or positive sign. Similar analyses were
performed bySoucek et al.[2008] after wavelet filtering of the data.
It turns out that there exists a clear statistical correlation between
the skewness and the distance to the mirror instability threshold.
Slightly above threshold, quasi-sinusoidal fluctuations dominate,
while at further distance (which often corresponds to larger values
of β), magnetic humps are preferably observed. Magnetic holes are
mainly observed both below threshold and slightly above in arange
corresponding to ion (proton)β‖ ≤ 5 and a temperature anisotropy
empirically fitted asT⊥/T‖ ≤ 2.15/β0.39

‖ [Soucek et al., 2008].
The nature and the origin of these structures remains the object

of different interpretations.Stasiewicz[2004a] interprets them as
magnetosonic solitons, an approach initiated byBaumgärtel et al.
[1997] (see also [Baumgärtel, 1999]). A more general opinion nev-
ertheless associates them to nonlinearly saturated mirrormodes.
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Such an origin, although plausible, is however not fully established.
In realistic situations, the mirror instability is often competing with
the anisotropic ion cyclotron instability, especially atβ of order
unity and moderate angles [Price et al., 1986;McKean et al., 1992],
although the presence of heliumHe++ can enhance the relative
importance of the former effect [Price et al., 1986;McKean et al.,
1994].

The question arises of the driver of these instabilities, probably
associated with the shock transition and the compression/expansion
of the magnetosheath plasma [Hellinger and Trávnı́ček, 2005;
Trávnı́ček et al., 2007], which may increase the ratio between the
perpendicular and parallel temperatures. The detailed mechanism
of such processes, albeit of great importance, are nevertheless dif-
ficult to include in numerical simulations of the mirror instabil-
ity. As a consequence, most of numerical simulations assumea
bi-Maxwellian distribution and a collisionless plasma, conditions
that are consistent with the separation between the time scale of the
addressed phenomena and that of collisional effects. In this con-
text, previous numerical integrations of VM equations, using hy-
brid particle-in-cell (PIC) methods [Baumgärtel et al., 2003] have
shown saturation of the mirror instability in the form of magnetic
humps and not holes. These authors nevertheless also noted that
initial conditions in the form of large-amplitude magneticholes
can persist during the whole simulation, both when the plasma is
linearly stable and unstable, indicating the existence of abistable
regime.

It is thus of interest to study in detail the nonlinear development
of the mirror instability. The linear regime has been extensively in-
vestigated and it is now well known that Landau and finite Larmor
radius (FLR) effects play an essential role in the instability growth
rate [Vedenov and Sagdeev, 1959; Hasegawa, 1969; Hall, 1979;
Gary, 1992; Southwood and Kivelson, 1993; Pokhotelov et al.,
2005;Hellinger, 2007]. In contrast, the understanding of the non-
linear regime and of the origin of the saturating processes is more
limited. The quasi-linear theory that assumes random-phase fluctu-
ations was first suggested byShapiro and Shevchenko[1964]. Nev-
ertheless, this approach cannot apply to regimes dominatedby co-
herent structures. Phenomenological models, based on the cooling
of trapped particles in magnetic troughs [Kivelson and Southwood,
1996;Pantellini, 1998], were then developed to interpret the exis-
tence of deep magnetic holes. These models are however hardly
consistent with the presence of magnetic humps that are onlypre-
dicted for exceptionally large values ofβ. The possible existence
of bistability is also not reproduced. Furthermore, these models are
aimed to describe the microscopic processes associated with the
existence of static coherent structures, rather than the dynamical
processes leading to their formation.
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In order to study the formation of coherent structures as thenon-
linear development of the mirror instability, an asymptotic analysis
near threshold, based on a reductive perturbative expansion of VM
equations was recently proposed. In this limit, the linearly unsta-
ble modes are confined at large scales, which suggests that FLR
corrections arise at a linear level only, making the nonlinear con-
tributions amenable to a simplified computation in the framework
of the drift-kinetic equation [Kuznetsov et al., 2007a]. The result-
ing asymptotic equation indicates that the retained nonlinearities
reinforce the mirror instability, leading to a finite-time singularity
associated with a subcritical bifurcation [Kuznetsov et al., 2007b]
and an early breaking of the asymptotic scalings. Nonlinearkinetic
effects then rapidly become relevant and saturate the instability in
a regime not amenable to a perturbative approach.

The aim of the present paper is to contribute to a better under-
standing of the nonlinear dynamics of mirror modes in a proton-
electron homogeneous plasma, by means of highly accurate numer-
ical simulations and asymptotic models. Vlasov-Maxwell equa-
tions are used for the proton distribution function, while afluid
description is assumed for the electrons that are assumed tobe cold
and massless for an easier comparison with theoretical develop-
ments. Section 2 is a short overview of the linear and quasi-linear
theories. Section 3 briefly describes the algorithms implemented in
the hybrid PIC and Eulerian simulations presented in the following
sections. Section 4 discusses the results of numerical simulations
near threshold, and points out the influence of the size of thedo-
main on the early nonlinear phase. Special attention is paidto the
conditions for the emergence of a quasi-linear phase that precedes
the structure formation. Section 5 describes a reductive perturba-
tive expansion directly performed on the VM equations, thatpro-
vides a systematic derivation of the asymptotic equation derived in
Kuznetsov et al.[2007a]. As already mentioned, this equation dis-
plays a finite time singularity, associated with a subcritical bifur-
cation, leading, near threshold, to the formation of large-amplitude
structures, not amenable to a perturbative calculation. Supplement-
ing phenomenologically the effects of the local variation of the ion
Larmor radius nevertheless provides a simple model for the non-
linear saturation, in good agreement with numerical simulations
and spatial observations [Génot et al., 2006;Soucek et al., 2008],
while models involving a saturation resulting from particle trap-
ping [Kivelson and Southwood, 1996;Pantellini, 1998;Pokhotelov
et al., 2007] are unable to reproduce the geometry of the created
mirror structures. Section 6 provides numerical evidence of the
persistence of initially assumed large-amplitude magnetic depres-
sions both in the mirror stable and unstable plasmas. In section 7
we present a simulation which demonstrates that in an extended do-
main far from threshold magnetic humps generated by the mirror
instability can transform to magnetic holes during the long-time
evolution. Section 8 summarizes the results and discusses afew
open problems.

2. Brief overview of the linear and quasi-
linear theories

Before presenting numerical simulations of the mirror instabil-
ity in an electron-proton plasma, it is useful to briefly review the
linear and quasi-linear theories.

For a gyrotropic proton distribution functionf (0) =
f (0)(v2

‖, v⊥) and cold electrons, the mirror instability condition is
given by [Shapiro and Shevchenko, 1964;Pokhotelov et al., 2005;
Hellinger, 2007]

Γ ≡ −mp
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andmp the proton mass. For a bi-Maxwellian proton distribution,
equation (1) reduces to the usual condition [Vedenov and Sagdeev,

1959;Hasegawa, 1969]
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are assumed to be positive [Hellinger, 2007]. The maximum
growth rate is given by
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For each(k, ω) mode, the linear response of the distribution
function is given by

f (1) =
v⊥
2

(
k‖v⊥

k‖v‖ − ω

∂f (0)

∂v‖
− ∂f (0)

∂v⊥

)
B

(1)
z

B0
. (9)

In the quasi-linear regime considered byShapiro and
Shevchenko[1964], the space-averaged distribution function〈f〉
obeys the diffusion equation (in velocity space)
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supplemented by

∂B
(1)
z (k)

∂t
= γkB(1)

z (k) (12)

whereγk refers to the instantaneous growth rate defined by equa-
tions (1,3–6) withf (0) replaced by〈f〉.

3. Numerical schemes for VM Equations

In order to address the nonlinear dynamics of mirror modes, nu-
merical simulations of the VM equations were performed in one
space dimension, by assuming variations only along a direction
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(parametrized by the coordinateζ) making a prescribed angleθ
with the ambient field (taken in thez-direction), usually corre-
sponding to the largest linear growth rate. In the(ζ, z)-plane,η
refers to the direction perpendicular toζ, andx to the direction
perpendicular toz. The direction perpendicular to the(ζ, z)-plane,
is parametrized by the coordinatey. Periodic boundary conditions
are assumed for the space variable. As already mentioned, both
hybrid PIC and Eulerian simulations of VM equations were per-
formed, the two methods appearing as complementary. The former,
based on a resolution of the Vlasov equation by the characteristic
method, is suitable for integration in large computationaldomains
because of its computational efficiency. The latter, that isusually
more accurate but also more time consuming, was implementedin
the case of relatively small boxes. This algorithm that is free from
statistical noise is especially adapted to simulations close to thresh-
old. Although in this case, the distribution function remains largely
unperturbed, a high resolution is nevertheless required inthe veloc-
ity space in order to make Landau resonances well resolved. Both
codes were extensively tested and compared with each other.We
checked that the resulting structures are the same, and so are the
typical time scales.

3.1. Hybrid PIC Simulations

We used a hybrid code based onMatthews[1994] for a proton-
electron plasma where electrons are considered as a massless,
charge neutralizing fluid, with a constant temperature heretaken
almost zero, while the protons are described by a particle-in-cell
model and are advanced by an implicit leapfrog scheme

vn+1 − vn

∆t
=

q

m

[
En+1/2 +

vn+1 + vn

2
× Bn+1/2

]
(13)

that requires the fields to be known at half time steps ahead of
the particle velocities, in order to guarantee a better energy con-
servation. This is achieved by advancing the current density to
this time step with only one computational pass through the par-
ticle data at each time step. The particle contribution to the cur-
rent density at the relevant mesh points is evaluated with bilinear
weighting followed by smoothing over three points. No smoothing
is performed on the electromagnetic fields, and no resistivity is in-
cluded in Ohm’s law. The magnetic field is advanced in time with a
modified midpoint method, which allows time substepping forthe
advance of the field.

A resolution of 1024 points is used for the space variable in both
simulations described below. In the former (Section 4.1) the mesh
size is∆ζ = 2dp, while in the latter (Section 7) it is∆ζ = dp,
wheredp = vA/Ωp is the proton inertial length, defined as the ra-
tio of the Alfvén velocity to the ion gyrofrequency. Such a large
computational box enables the system to evolve freely, withnegli-
gible finite-size effects. There are initially 500,000 macroparticles
per cell, in order to make the numerical noise as low as possible
with the available processor array. More specifically, the noise level
in one-dimensional particle simulations scaling like the inverse of
the particle number per cell, the large number of particles we used
is aimed to ensure a good separation between the generated waves
and the noise, both for the magnetic fluctuations and the distribu-
tion function. Such extremely high number of (macro) particles
per cell is not common in hybrid simulations. The evolution of
nonlinear structures in cases not too close to threshold canbe cap-
tured in simulations with a number of particles per cell smaller by
three orders of magnitude [Baumgärtel et al., 2003]. In both sim-
ulations, the time step for the particle advance is∆t = 0.05/Ωp ,
whereas the magnetic fieldB is advanced with a smaller time step
∆tB = ∆t/4.

3.2. The Eulerian Code

This hybrid approach is based on a fluid description of the elec-
trons which, in the present simulations, are assumed at zerotemper-
ature (in hybrid PIC simulations,βe = 10−2), and on an Eulerian

integration scheme for the VM equations. The latter advances the
proton distribution functionfp in the 4-dimensional phase space
(ζ, vζ , vη, vy), using the electromagnetic splitting method proposed
in Mangeney et al.[2002], where the space and velocity advection
terms are advanced separately. This method ensures that there will
be no secular growth in the energy conservation error. In partic-
ular, the advection equation is solved by using a third orderVan
Leer scheme. The splitting algorithm is coupled to the Current Ad-
vance Method (CAM) introduced inMatthews[1994] and extended
to the hybrid case inValentini et al.[2007]. Furthermore, by as-
suming quasi-neutrality and neglecting the displacement current,
the electric field is calculated by means of a generalized Ohm’s law
including electron inertia, while the magnetic field is obtained by
solving the Faraday equation.

A computational domain of sizeLζ = 15 × 2π dp is used, thus
smaller than in hybrid PIC simulations. The mesh sizes for the var-
ious variables are∆ζ = 0.73, ∆vζ = ∆vη = 0.16, ∆vy = 0.25.

The initial conditions of all Eulerian simulations presented here
are as follows. We assume an ambient homogeneous magnetic field
in the form

B0 = B0 cos θ êζ + B0 sin θ êη (14)

and an equilibrium bi-Maxwellian normalized proton distribution
function with a temperature anisotropyA = T⊥/T‖, given by

f (0) =
1

π3/2vth‖v2
th⊥

exp
{
− 1

v2
th⊥

[
(sin2 θ + A cos2 θ)u2

ζ

+(cos2 θ + A sin2 θ)u2
η + (A − 1) sin 2θ uζuη + u2

y

]}
,(15)

wherevth⊥ = (2T⊥/mp)
1/2 andvth‖ = (2T‖/mp)

1/2 are the
proton perpendicular and parallel thermal velocities respectively.
We consider two different types of initial perturbations. The first
one corresponds to density and magnetic fluctuations given by

δf = µ1

Nm∑

m=1

cos(2πmζ/Lζ + φm)/m (16)

δBη = µ2

Nl∑

l=1

cos(2πlζ/Lζ + φl)/l, (17)

where µ1 and µ2 are small coefficients, usually taken equal to
10−3. The phasesφm andφl are randomly chosen. The second
one consists in an initial magnetic hole or hump without density
fluctuations, and corresponds to

δf = 0 (18)
δBη = ±a (tanh2[(ζ − ζ0)/Lh] − 1), (19)

where the amplitudea is usually taken equal to0.5 and the width
Lh to 5. The structure is centered in the computational box by
choosingζ0 = Lζ/2. The positive sign corresponds to a magnetic
depression and the negative one to a bump like perturbation.

4. Simulations Near Threshold

Simulations were performed both in an extended domain and in
a relatively small computational box, in order to address the pos-
sible influence of finite-size effects. As discussed below, such ef-
fects can for example prevent the development of a quasi-linear
regime and enhance magnetic energy oscillations due to trapping.
As previously mentioned, different algorithms appear suitable in
these different configurations.

4.1. Dynamics in an Extended Domain

These simulations were done using the hybrid PIC algorithm.
The system evolves from a bi-Maxwellian proton distribution func-
tion with an inherent numerical noise. The initial proton parameters
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Figure 1. Simulation of the mirror instability in an extended
domain near threshold (β‖ = 1, T⊥/T‖ = 1.857, θ = 72.8◦).
Gray scale plot of the magnetic fluctuationBη as a function of
time and space (left top); Time evolution of skewness ofBη

(right top), of fluctuating magnetic energyδB2/B2
0 (left bot-

tom), of the instantaneous distance from the threshold (right
bottom): Γ (solid line) as given by equation (1) and the corre-
sponding bi-Maxwellian valueΓ∗ (dashed line) obtained from
equation (2).
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Figure 2. Same conditions as Figure 1. Profile (top) and
spectrum (bottom) ofδBη at timest = 2000/Ωp (left) and
t = 10000/Ωp (right).

areβ‖ = 1 andβ⊥ = 1.857, whereas the electrons are cold with
βe = 10−2. For these parameters,Γ = 0.6, and the full kinetic
linear theory predicts a maximum growth rateγ = 5 · 10−3Ωp

for a wavenumber direction making an angleθ = 72.8◦ with the
ambient field. Note that the asymptotic expression, given insec-
tion 2, predictsγm = 10−2Ωp. These parameters result from a
compromise between numerical constraints and the aim to be as
close as possible to threshold. The integration being performed in
a large domain (of size2048 dp), a broad range of modes is lin-
early unstable, even relatively close to threshold. Simulations were
also performed withβ ∼ 1, leading to a qualitatively similar dy-
namics. We however concentrate here on cold electrons, a regime
permitting an easier comparison with the theory that becomes more
complex when the electrons are warm.

Figure 1 (top left) displays the gray scale plot of the amplitude
Bη of magnetic fluctuations, as a function of time and space. Co-
herent structures in the form of magnetic humps are seen to emerge

relatively early. As time elapses, they exhibit a coarsening process
leading to the persistence at the end of the simulation of only a
few intense and well-separated magnetic peaks, in agreement with
previous simulations byBaumgärtel et al.[2003]. In order to quan-
tify the onset of the structures and their typical profile, weplot in
Figure 1 (top right) the skewness of the magnetic fluctuations Bη,
that starts around zero, rapidly increases within the period 600–
3000 Ω−1

p and saturates at a value exceeding 2.5. The period of
the rapid growth coincides with that of intensive coarsening, and
the evolution to a significant positive value is consistent with the
formation of strong magnetic humps.

The energy of magnetic fluctuations (Figure 1, left bottom) first
increases monotonically until3000 Ω−1

p when it rapidly saturates.
Later on, both the skewness and the fluctuation energy display only
weak variations on long time scales, associated with the slowing
down of the coarsening effect. Figure 2 illustrates typicalstages
of this evolution by displaying the profiles of magnetic fluctuations
Bη (top) and their Fourier spectra (bottom) at timet = 2000 Ω−1

p
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(left) during the period of active coarsening and at the later time
t = 10000 Ω−1

p of the simulation (right).
It is also of interest to analyze the global evolution of the plasma

in terms of the instantaneous distance to the instability threshold.
Figure 1 (right bottom) shows the time evolution of this distanceΓ
(solid line) given by equation (1) withf (0) replaced by the space-
averaged instantaneous proton distribution function. Dashed line
corresponds to the bi-Maxwellian expressionΓ∗ calculated from
equation (2) with the instantaneous parallel and perpendicular be-
tas. A main observation is thatΓ rapidly departs fromΓ∗ (that
hardly changes) and displays a monotonic decrease, becoming neg-
ative (att ≈ 2000 Ω−1

p ), while the energy of the magnetic fluctua-
tions is still growing. It saturates by3000 Ω−1

p , at about the same
time as the skewness and the energy of the magnetic fluctuations.
The very different behavior ofΓ andΓ∗ indicates a significant dis-
tortion of the proton distribution function during the evolution. In
order to make this observation more quantitative, let∆f denote
the difference between the proton distribution function attimes t
and 0. Figure 3 displays as gray scale plots the averaged value
of v⊥∆f over regions whereδBη/B0 > 0.01 (left panel) and
δBη/B0 < −0.01 (right panel), at timet = 1000 Ω−1

p which
roughly corresponds to the end of the linear phase. During this pe-
riod, the variation can be estimated by the linear response of the
distribution functionf (1) given by equation (9). On Figure 3, we
thus superimpose the contours ofv⊥f (1) at maximum (left) and,
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Figure 5. Schematic view of the prediction of the quasi-linear
theory: Effect of the diffusion operator on the initial proton dis-
tribution functionQkf (0) for the most unstable mode (left) and
for a weakly unstable mode (right). Solid (dashed) contours
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Figure 6. Time evolution of unstable modes in an Eulerian sim-
ulation very near threshold (β‖ = 6, temperature anisotropy
T⊥/T‖ = 1.25, with θ = 83.86◦).

symmetrically, minimum (right) value ofB(1)
z for the linearly most

unstable mode. These extrema are supposed to mimic the high and
low regions ofδBη. Solid and dashed curves denote positive and
negative values ofv⊥f (1), respectively. We observe that at max-
imum (minimum) ofδBη the density of resonant particles (with
v‖ ∼ 0) increases (decreases), whereas the density of non-resonant
particles decreases (increases) in good agreement with thelinear
prediction. Note that the noisy aspect of the distribution function
perturbation in magnetic humps is due to the poorer statistics in
these regions. These results are consistent with the schematic Fig-
ure 2 ofSouthwood and Kivelson[1993] and similar to the simula-
tion results displayed in Figure 1 (top) ofPantellini et al.[1995].

A main question concerns the detailed nonlinear processes lead-
ing to the saturation of the linear instability, and their signature at
the level of the ion distribution function. Using a gray scale plot
where here white corresponds to negative values whereas black to
positive ones, Figure 4 (top) indeed reveals important modifica-
tions of the space-averaged proton distribution function as mea-
sured byv⊥∆〈f〉, where∆〈f〉 = 〈f〉−f (0) at two different times
t = 2000/Ωp (left) andt = 10, 000/Ωp (right). The significant
changes mainly affect the resonant particles (withv‖ ∼ 0). The
two bottom panels of the figure show at these two times the profiles
(solid line) of〈f〉 integrated overv⊥, together with the correspond-
ing initial profiles (dotted line). The visible flattening ofthe distri-
bution profile is confirmed by detailed analysis of its behavior near
v‖ = 0, which shows that it is not parabolic inv‖ and consistent
with ∂〈f〉/∂v2

‖ ∼ 0.
This evolution of the distribution function can be plausibly inter-

preted in terms of a diffusion in velocity space, as predicted by the

Figure 7. Magnetic humps and density holes formed as the de-
velopment of the mirror instability presented in Figure 6. Here
and in the following figures displaying results of the Eulerian
simulations, dashed lines refer to initial conditions and solid
lines to the final time of the simulations.
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quasi-linear theory. To address this question it would be necessary
to resolve numerically the full quasi-linear system (Section 2). This
project is beyond the scope of this paper. Here we limit ourselves
to qualitatively estimate the effect of quasi-linear diffusion by cal-
culatingQkf (0) (defined by equation (11)). Figure 5 shows the
results of this calculation for the most unstable (left) anda weakly
unstable (right) modes. Solid and dashed curves denote positive
and negative values ofQkf (0), respectively. We see that the quasi-
linear theory predicts a preferable diffusion of particleswith small
parallel velocity to regions with higher parallel velocity, in qualita-
tive agreement with the simulation results (Figure 4, top).

These results lead to the conclusion that in an extended domain
near threshold, a quasi-linear regime can exist during the early non-
linear phase. However, later on, the onset of coherent structures in-
validates the random phase approximation of the quasi-linear the-
ory. Furthermore, as previously noted on Figure (1, bottom right),
the energy of the magnetic fluctuations continues to increase even
when the system is linearly stable, an effect which is also atvari-
ance with the quasi-linear theory.

The further evolution thus requires a different theoretical ap-
proach, more suitable for describing the dynamics of coherent non-
linear waves (see Section 5.1). Moreover, as already mentioned, the
quasi-linear regime that assumes an incoherent dynamics where the
phase of the various modes can be viewed as essentially random,
requires a large number of interacting modes and thus a largecom-
putational box. As discussed in the next section, this transient is in-
deed absent in a small computational domain where, after thelinear
phase, the system directly enters a regime of structure formation.

Figure 8. Magnetic and density fluctuation profiles at initial and
final times of the simulation, in the caseT⊥/T‖ = 1.4, β‖ = 15
andθ = 78.53◦.

4.2. Dynamics in a Small Computational Domain

As a first run (based on a Eulerian scheme) performed in a
small computational box, we consider a condition close to thresh-
old, namelyβ‖ = 6, θ = 83.86◦ andT⊥/T‖ = 1.25. The run
is initialized with a weak random noise as indicated in Section 3.2.
Figure 6 displays the time evolution of the linearly unstable modes
and their nonlinear saturation. The most unstable mode (m = 3)
has a growth rate1.7 · 10−3, which compares well with the value
2 · 10−3 computed from the full kinetic theory. In spite of its rel-
atively small value, it significantly differs from the asymptotic pre-
dictionγm = 3.6 · 10−2 (see Section 2), since in the conditions of
the simulationΓ = 0.88 initially. Here also the possibility of per-
forming simulations very close to threshold is limited by numeri-
cal resources. In physical space, the evolution leads to theforma-
tion of a steady magnetic hump with an anticorrelated density hole
(Figure 7). In this simulation in a small domain, which involves a
very low numerical noise, no flattening is visible on the distribu-
tion function, even at short times, consistent with the absence of a
quasi-linear dynamics.

Large values of the beta parameter were also observed in space
plasmas. For example,Soucek et al.[2008] report values ofβ‖ =
14 andLeckband et al.[1995] mention instances withβ = 30 in
the terrestrial magnetosheath. A second simulation was thus per-
formed at larger distance from threshold by takingβ‖ = 15 and
T⊥/T‖ = 1.4 with θ = 78.53◦, which corresponds toΓ = 7.4.
Essentially the same dynamics is observed, with nevertheless the
formation of structures with much larger amplitudes (Figure 8). It
is noticeable that in contrast with the dynamics in a large compu-
tational domain, the energy of magnetic fluctuations displays time
oscillations whose amplitude is progressively damped, suggesting
the relaxation to a steady nonlinear structure. This effectis shown
in Figure 9 that displays the grey scale plot of the magnetic fluctu-
ationsBη as a function of space and time (top) and the time evo-
lution of the magnetic-energy fluctuationsδB2/B2

0 (bottom). This
effect is in fact a consequence of the size of the domain, and not
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Figure 9. Grey scale plot of the magnetic fluctuationsBη as a
function of space and time and time evolution of the magnetic-
energy fluctuationsδB2/B2

0 in the conditions of Figure 8.
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of the distance from threshold. Indeed, a PIC simulation with the
same physical parameters as that reported in Figure 1 but performed
in a small box displays the same type of oscillations. In bothcases,
their period is consistent with the ion bounce timeT = 2π/ωtr,
whereω2

tr = (1/2)v2
th⊥

k2
‖(δB/B0), suggesting that particle trap-

ping is at the origin of this effect. We also note on Figure 9 (top)
that, in addition to the main structure, a weaker one is visible dur-
ing the time interval400 < t < 600. Afterwards, it is subject
to corsening. A signature of this effect is conspicuous on the time
vatiation of the magnetic-energy fluctuations neart = 600.

5. Reductive Perturbative Expansion Near
Threshold

5.1. Asymptotic Theory

Near threshold, the onset of coherent structures is amenable to
an asymptotic approach based on the remark that, in this limit, lin-
early unstable modes are located at large scales. This approach,
implemented inKuznetsov et al.[2007a] by patching the linear ki-
netic theory with an estimate of the nonlinear effects in theframe-
work of the drift-kinetic equation, is here revisited usinga system-
atic reductive perturbative expansion directly performedon the VM
equations.

The equation for the mean proton velocity, as classically derived
from the Vlasov equation, reads

du

dt
+

1

ρ
∇ · p − e

mp
(E +

1

c
u × B) = 0, (20)

where, for cold and massless electrons,

E = −1

c

(
u − j

ne

)
× B, (21)

with j = (c/4π)∇ × B. The ion pressure tensor is rewrit-
ten as the sum of gyrotropic and gyroviscous contributionsp =
p⊥n + p‖τ + Π, with n = I − b̂ ⊗ b̂ andτ = b̂ ⊗ b̂, where
b̂ = B/|B| is the unit vector along the local magnetic field. Equa-
tion (20) is then rewritten in the form

ρ
du

dt
= −∇

(
p⊥ +

|B|2
8π

)

+
(
1 +

4π

|B|2 (p⊥ − p‖)
)

B · ∇B

4π

−b̂
|B|2
4π

(b̂ · ∇)
(
1 +

4π

|B|2 (p⊥ − p‖)
)
− ∇ · Π.

(22)

Projecting this equation on the plane perpendicular to the local
magnetic field then gives

n · ρdu

dt
= −∇

(
p⊥ +

|B|2
8π

)

+
(
1 +

4π

|B|2 (p⊥ − p‖)
)

(B · ∇)B

4π

+(B · ∇)
(
p⊥ +

|B|2
8π

)
B

|B|2

−
(
1 +

4π

|B|2 (p⊥ − p‖)
)
(B · ∇)

( |B|2
2

)
B

4π|B|2 − n · ∇ · Π.

(23)

In order to address the asymptotic regime, we rescale the inde-
pendent variables in the formX =

√
εx, Y =

√
εy, Z = εz,

T = ε2t, whereε measures the distance to threshold, and expand
any fieldϕ in the form

ϕ =

∞∑

n=0

εn/2ϕn/2, (24)

as indicated in Appendix A. At this step, a remark is in order.The
ion bounce frequency in a structure of sizeε−1 is of orderε3/2

[Pantellini et al., 1995], suggesting a time scaleε−3/2 for the flat-
tening of the distribution function near the zero parallel velocity.
This time scale thus appears shorter than the one assumed by the
performed scaling. As discussed later, this flattening process turns
out to have a negligible effect on the nonlinear dynamics during the
considered time scale.

When retaining the two first nontrivial orders, we get(∇⊥ =
(∂X , ∂Y ) denoting the transverse gradient)

∇⊥

(
p
(1)
⊥ +

B0B
(1)
z

4π

)

+ε
{

∇⊥

(
p
(2)
⊥ +

B0B
(2)
z

4π
+

(B
(1)
z )2

8π

)

− 2

β⊥

(
1 +

β⊥ − β‖

2

)
p
(0)
⊥ ∂Z

(
B

(3/2)
⊥

B0

)

+∇⊥ · Π(2)
⊥ + ∂ZΠ

(3/2)
⊥Z

}
= O(ε2), (25)

that expresses the condition of pressure balance.
The condition∇⊥×B

(3/2)
⊥ = 0 established in Appendix B, to-

gether with the divergenceless condition∇⊥ · B(3/2)
⊥ + ∂ZB(1)

z = 0,
implies

B
(3/2)
⊥ = (−∆⊥)−1

∇⊥∂ZB(1)
z . (26)

Here, the subscript⊥ refers to vector component perpendicular to
the ambient field (taken alongz). Definingbz = B

(1)
z + εB

(2)
z and

p⊥ = p⊥
(1) + εp

(2)
⊥ , we can write at the order of the expansion

∇⊥

[
p⊥ +

B0

4π
bz

+ε
b2
z

8π
+

2ε

β⊥

(
1 +

β⊥ − β‖

2

)
p
(0)
⊥ (∆⊥)−1∂ZZ

bz

B0

]

+ε
(
∇ · Π

)(5/2)

⊥
= O(ε2), (27)

where the last term in the LHS, given by equation (C9), is alsoa
transverse gradient.

Using equations (C2) and (C9) to express the perpen-
dicular pressure and the gyroviscous force and rewriting
B2

0/8π = p
(0)
⊥ /β⊥, we obtain in the case of a bi-Maxwellian equi-

librium ion distribution function

−β⊥

(
β⊥

β‖
− 1 − 1

β⊥

)
B0bz

4π

+ε

√
π

vth ‖

(
−H ∂Z

)−1

∂T
β2
⊥

β‖

B0bz

4π

−εp
(0)
⊥

[
9

4β⊥
r2

L∆⊥
bz

B0

+
(
1 − 4

β⊥

β‖

+ 3
(

β⊥

β‖

)2)(
bz

B0

)2]

+ε
b2
z

8π
+ ε

(
2 − β‖

β⊥

)
p
(0)
⊥ ∆−1

⊥ ∂ZZ
bz

B0

−3

4
ε
(
1 − β⊥

β‖

)
p
(0)
⊥ r2

L∆⊥
bz

B0
= O(ε2). (28)

We note that the time derivative and the Hilbert transformH
originate from Landau resonance. The parameterrL = vth⊥/Ωp

is the ion Larmor radius. The two nonlinear terms, when put to-
gether, involve a coefficientλ that simplifies when noticing that it
can be evaluated by neglecting the distance to threshold, thus mak-
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ing the replacementβ⊥/β‖ = 1 + 1/β⊥. This gives

λ = 1 − 4
β⊥

β‖
+ 3

(
β⊥

β‖

)2

+
1

β⊥

=
3

β⊥

(
1 +

1

β⊥

)
. (29)

We thus obtain the asymptotic equation governing the nonlinear
dynamics of mirror modes near the instability threshold in the form

∂T
bz

B0
=

vth ‖√
π

β‖

β⊥

(
−H∂Z

){
1

ε

(
β⊥

β‖

− 1 − 1

β⊥

)
bz

B0

+
3

4β⊥
r2

L∆⊥
bz

B0
− 1

β⊥

(
1 +

β⊥ − β‖

2

)
∆−1

⊥ ∂ZZ
bz

B0

−3

2

(
1 + β⊥

β2
⊥

)(
bz

B0

)2}
= O(ε). (30)

This equation can be viewed as the linear dispersion relation of
large-scale mirror modes retaining leading order FLR corrections,
supplemented by dominant nonlinear contributions. It is noticeable
that kinetic effects (such as Landau and FLR effects) contribute
only linearly.

We now defineχ = 1 + (β⊥ − β‖)/2 and characterize the
regime of linear stability or instability by the parameter
σ = sgn(β⊥/β‖ − 1 − 1/β⊥). The expansion parameterε
is related to the distance to threshold by the condition
|β⊥/β‖ − 1 − 1/β⊥| = εχ/β⊥, or in other wordsε = Γ∗/χ
with Γ∗ defined in equation (2) as the bi-Maxwellian thresh-
old parameter. We then perform a simple rescaling by
introducing the new longitudinal and transverse coordinates

ξ = (2/
√

3)χ1/2r−1
L Z, R′

⊥ = (2/
√

3)χ
1/2

r−1
L R⊥, and the new

time variableτ = (2/
√

3)(
√

πβ⊥)−1(χβ‖/β⊥)3/2ΩpT . We also
write

bz/B0 = 2χβ⊥ (1 + β⊥)−1 U. (31)

The equation then reduces to

∂τU = −H∂ξ

[
σU + ∆⊥U − ∆−1

⊥ ∂ξξU − 3U2
]
, (32)

up to corrections of orderε.
Equation (32) further simplifies when the spatial variations are

limited to a direction making a fixed angle with the ambient mag-
netic field. After a simple rescaling, one gets

∂T U = K̂Ξ

[
(σ + ∂ΞΞ) U − 3U2

]
, (33)

where Ξ is the coordinate along the direction of variation and
KΞ = −H∂Ξ is a positive operator whose Fourier transform re-
duces to the multiplication by the wavenumber absolute value.

Equation (32) possesses the remarkable property of being ofthe
form

∂T U = −K̂ZδF/δU, (34)

whereF =
∫ [

−σ
2
U2 + U

2
∆−1

⊥ ∂ZZU + 1
2

(∇⊥U)2 + U3
]
d3R

has the meaning of a free energy or a Lyapunov functional. This
quantity can only decrease in time [Kuznetsov et al., 2007a].

A main property of equation (32) is the onset of a finite-time
singularity, for arbitrary initial conditions whenε > 0 and un-
der the assumption that they are large enough whenε < 0. Near
blowup,F is negative and dominated by the

∫
U3d3R contribution

that can be viewed as proportional to the skewness of the magnetic
fluctuations. This indicates that blowup solutions of the asymp-
totic equation (33) take the form of magnetic holes. This property
should however be taken with caution because, unless possibly ex-
tremely close to threshold (a regime almost impossible to achieve
in simulations and insufficiently generic to be relevant forspatial
observations), the involved scalings lead to an early breakdown of

the asymptotics. Specifically, the size of the structures should be
much larger than the ion Larmor radius, in order to make nonlin-
ear FLR corrections irrelevant. In fact, the singularity essentially
appears as the signature of a subcritical bifurcation (addressed in
detail inKuznetsov et al.[2007b]) where the hydrodynamic nonlin-
earities enhance the instability, leading to finite-amplitude solutions
where neglected contributions, such as the nonlinear kinetic effects,
become relevant. As discussed below, nonlinear kinetic effects do
not just provide a local smoothing of the singularity but, especially
above threshold, prevent the formation of magnetic holes driven by
the hydrodynamic nonlinearities. This suggest that the origin of
the observed magnetic holes is more complex. A few scenari are
discussed in Sections 6 and 7.

5.2. Beyond the Asymptotics: Saturation by

Nonlinear FLR Effects

Figure 10. Time evolution of magnetic structures resulting from
the mirror instability in the framework of the phenomenological
model forα = 1.54, ν = 10−2 and a weak initial noise. Panels
are displayed at timest = 3, 5, 9, and10 (from top to bottom).
The horizontal axis refers to grid point numbers.
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Retaining the saturating effects of nonlinear kinetic phenomena
is not possible within a rigorous asymptotics but their effects can
nevertheless be described phenomenologically. Models previously
suggested in order to interpret the nonlinear saturation ofthe mirror
instability were based on the cooling of a population of trapped par-
ticles, neglecting FLR corrections [Kivelson and Southwood, 1996;
Pantellini, 1998]. These models mainly explain the formation of
deep stationary magnetic holes, while, as seen in Section 2,Vlasov
simulations of the mirror instability lead to the formationof mag-
netic humps above threshold. They also do not reproduce the phe-
nomenon of bistability. A more quantitative, although still phe-
nomenological description was recently suggested byPokhotelov
et al. [2007], assuming a flattening of the equilibrium ion distri-
bution function on a range that extends with the wave amplitude.
This correction, that tends to reduce the Landau damping, results
in a renormalization of the time derivative in equation (33)by a
factor that depends on the wave amplitude and reduces to unity in
the zero amplitude limit. The leading order correction arising in
this factor scales likeU1/2, consistent with a bounce time scaling
like U−3/2. This correction, aimed to model the effect of ion par-
ticle bouncing, is nevertheless a subdominant term that does not
significantly affect the dynamics on the time scale of the present
asymptotics.

It turns out that a different saturating process that affectthe ge-
ometry of the structures can be phenomenologically supplemented
to the above asymptotic equation by retaining the local variation of
the ion Larmor radiusrL, making the resulting model consistent
with VM simulations [Kuznetsov et al., 2007a]. The argument is
that in regions of weaker magnetic field (and/or largeT⊥), the ion
Larmor radius is larger, making stabilizing effects of FLR correc-
tions more efficient than in the linear regime. Consequently, the
mirror instability is more easily quenched in magnetic fieldmin-
ima than in maxima, making magnetic humps more likely to form
in the saturating phase of the mirror instability.

More quantitatively, due to the conservation of the magnetic mo-
ment, the ion Larmor radius satisfiesr2

L ∝ T⊥/|B|2 ∝ 1/|B| ≈
1/Bz . Its variation can be retained in equation (32) by replacing
the term∆⊥U by [1/(1 + αU)]∆⊥U , whereα, given by equa-
tion (36) below, results from the rescaling procedure. In addition to
the Laplacian, which originates from the leading order expansion
of a nonlocal operator associated with FLR corrections [Pokhotelov
et al., 2005], it is possible to add the next order contribution in the
form (4/9)[ν/(1+αU)2]∆2

⊥U . This extra term quantitatively im-
proves the model predictions, in that it prevents the formation of
regions of very low magnetic field. On the other hand, higher order
terms do not drastically affect the value of magnetic field minima
Bmin = B0(1+αUmin). The model equation that was numerically
integrated then reads

∂T U = K̂Ξ

[
σU − 3U2 +

∂2
Ξ U

1 + αU
− 4ν ∂4

Ξ U

9(1 + αU)2

]
, (35)

S
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Figure 11. Variation of the skewness with the parameterσα, as
predicted by the phenomenological model.

where the coefficientν is related to the size of the computational
domain. The parameterα is a combination of the bi-Maxwellian
distance to threshold and of the value ofβ⊥ given by

α =
2ǫχβ⊥

1 + β⊥
=

2β⊥

1 + β⊥
Γ∗. (36)

Note that in addition to the sign ofσ that characterizes the system
relatively to the linear instability, and toν that fixes the domain
size, the present model only involves the parameterα, related to
the distance to threshold. It turns out that the magnetic field min-
imaBmin are found to be independent of the value ofα.

Equation (35) was integrated in a periodic domain of size
2π/

√
ν with a pseudo spectral method based on Fourier expan-

sions. Linear contributions, including, in addition to theterm pro-
portional toσ, the Laplacian and biLaplacian terms without the de-
nominators, are integrated exactly. The remaining nonlinear terms

Figure 12. Magnetic holes predicted by the phenomenological
model forσα = 0.05, −0.05, −0.3,−0.4 (from top to bottom),
when initialized with a random noise of small amplitude when
σ = +1 (over threshold) and of large amplitude whenσ = −1
(below threshold).
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are treated with a second-order Adams-Bashforth scheme. A first
integration of the model equation above threshold (σ = +1) was
performed in a domain containing512 grid points, withν = 0.01
and starting with a small random noise. Furthermore,β‖ = 6 and
T⊥/T‖ = 1.25, which corresponds toα = 1.54. We observe
the formation of magnetic humps whose number decreases as time
elapses, by a coarsening process very similar to that observed in the
Vlasov simulations when assuming the same plasma parameters.
Figure 10 exemplifies this evolution by displaying four snapshots
at timest = 3, 5, 9 and10. As already mentioned, the formation
of magnetic humps when the variations of the local Larmor radius
is retained can be understood on the basis that in regions of weak
magnetic field (and large perpendicular temperatures), theion Lar-
mor radius is larger, making the stabilizing effect of finiteLarmor
radius corrections more efficient than in the linear regime.The
mirror instability is thus more easily quenched in magneticfield

Figure 13. Persistence of initial perturbations in the form of
a magnetic hole (top) and resulting density hump (middle) for
β‖ = 6 andT⊥/T‖ = 1.36, with θ = 83.82◦. The bottom
panel displays the magnetic field component in the direction
perpendicular to the plane defined by the ambient field and the
direction of spatial variation.

minima than in maxima, making magnetic humps more likely to
form.

In order to address the influence of the parameterα on the nature
of the magnetic structures, we proceed asGénot et al.[2006], and
introduce the third standardized moment or skewnessS of the mag-
netic fluctuations, defined as the ratio of the third moment about
the mean divided by the third power of the standard deviation. It
is noticeable thatS is not constant during the simulation, in that it
displays significant jumps each time a structure disappears. Never-
theless, after a few steps, the coarsening becomes extremely slow
and we resorted to retain the value of the skewness in this quasi-
stationary regime. The resulting variation of the skewnesswith the
parameterα is displayed in Figure 11 that summarizes the results of
a series of simulations, starting with an initial random perturbation
whose amplitude is small in the simulations above thresholdand
much larger below threshold. These simulations were performed in
a domain containing2048 grid points withν = 10−3. The forma-
tion of magnetic holes is illustrated in Fig 12 which displays var-
ious structures which develop with a negative skewness. Slightly
above threshold (α = 0.05), deep holes are formed whose minima
are narrow and flat. In the subcritical case and the same valueof α,
holes are wider and magnetic field maxima slightly smaller, but the
minima are identical. As the value ofσα is decreased to−0.3 and
−0.4, holes become less deep in this unit (their depth remains the
same in physical units) and more spiky. Below this value ofσα,
the structure relaxes after a while towards the trivial solution.

6. Persistence of Large-Amplitude Magnetic
Holes

Figure 14. Persistence of a magnetic hole (top) and resulting
density hump (bottom) at relatively large distance from thresh-
old (β‖ = 15, T⊥/T‖ = 1.5, with θ = 83.82◦).
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In the previous sections, we presented numerical evidence that
the nonlinear development of the mirror instability leads to the for-
mation of magnetic humps (and density holes). Magnetic holes are
also predicted below threshold by the model discussed in Section
5.2, as an effect of bistability. It is thus of interest to askwhether
initially prescribed large-amplitude magnetic depressions are pre-
served by the evolution of the VM equations in a mirror unstable
plasma. For this purpose, we performed Eulerian integrations of
these equations in the conditions described above, usingβ‖ = 6,
θ = 83.82◦ andT⊥/T‖ = 1.36, a regime close to the instability
threshold. The run is initialized with a strong magnetic hole with a
maximal amplitude exceeding50% of the ambient field magnitude,
with no density perturbations. We observe on Figure 13 the forma-
tion of a density hump and the persistence of the magnetic hole
that evolves slightly, leading to the development of an overshoot
qualitatively similar to Cluster observations reported inGénot et al.
[2006]. A similar evolution is observed in Figure 14 at larger dis-
tance from threshold (β‖ = 6, T⊥/T‖ = 1.5). The overshoot is
however more important.

In order to test the bistability regime, we used the same initial
conditions and kept all the plasma parameters fixed, except that
now the plasma is strongly stable (β‖ = 6, T⊥/T‖ = 1). Figure
15 shows than in this case also magnetic holes are preserved but, in
contrast with the supercritical regime, do not develop overshoots.
Note that in such a stable plasma, initial magnetic humps with no
density perturbations cannot maintain, the system rapidlyrelaxing
to the trivial solution. A detailed theory of the geometry ofthe
nonlinear mirror structures is delicate. A partial understanding is
nevertheless provided by an energy minimization argument in the
simplified framework of usual anisotropic magnetohydrodynamics

Figure 15. Persistence of a magnetic hole (top) and resulting
density hump (bottom), in a plasma withT⊥ = T‖ andβ‖ = 6,
with θ = 83.82◦.

[Passot et al., 2006]. The component of the magnetic field perpen-
dicular to the(k,B0) plane, is like the longitudinal component,
symmetric with respect to the center of the magnetic hole (Figure
13, bottom). This property contrasts with all previous soliton mod-
els based on anisotropic Hall-MHD [Stasiewicz, 2004a, b;Mjølhus,
2006], where it is found to be antisymmetric. Similar signatures are
observed in hybrid PIC simulations of non-propagating rarefrac-
tive solitary structures generated by particle injection [Baumgärtel
et al., 2005]. Their symmetry properties however suggest that they
do not correspond to the same branch of solutions as the slow mag-
netosonic solitons, in contrast with the claim byStasiewicz[2004b].

7. Mirror Instability Far from Threshold

In order to address the nonlinear development of the mirror in-
stability far from threshold, we performed hybrid PIC simulations
in an extended domain withβ‖ = 1 andT⊥/T‖ = 4, with θ =
50.5◦ corresponding to a maximum growth rateγ = 0.156 Ωp.

       
0

200

400

600

800

1000

    
-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

S
ke

w
n
e
ss

       
time

0.00

0.01

0.02

0.03

0.04

0.05

0 200 400 600
time

0

2

4

6

8

10

12

Γ

B
η

δ
B

2
/
B

2 0

Figure 16. Evolution in an extended domain, forβ‖ = 1,
T⊥/T‖ = 4 andθ = 50.5◦. Gray scale plot of the magnetic
fluctuationBη as a function of time and space (left top); Time
evolution of skewness ofBη (right top), of fluctuating mag-
netic energyδB2/B2

0 (left bottom), of the instantaneous dis-
tance from the threshold (right bottom):Γ (solid line) as given
by equation (1) and the corresponding bi-Maxwellian valueΓ∗

(dashed line) obtained from equation (2).
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Figure 16 displays the evolution in the same format as in Fig-
ure 1. A large number of magnetic humps is formed in the early
nonlinear phase. They evolve in time but coarsening turns out to be
significantly less efficient than close to threshold. Furthermore, at
long times (typicallyt > 100 Ω−1

p ), one can observe a slow motion
of some of the structures. Other important differences withrespect
to the simulation near threshold (Section 4.1) are visible on the
skewness (Figure 16, right top) and on the energy of magneticfluc-
tuations (Figure 16, left bottom) that, after a brief increase, both
display a significant decay. In particular the skewness becomes
negative, which reflects a transformation of the early-timemagnetic
humps into magnetic depressions. This transition is illustrated in
Figure 17 that displays the magnetic fluctuations in a quarter of the
computational domain, at various instants of time: while magnetic
humps are visible at early times, the long-time regime (Figure 17,
right bottom) clearly displays magnetic holes.

Another important difference concerns the parameterΓ that
measures the distance from threshold, as well as the bi-Maxwellian
estimateΓ∗. They vary in a similar way, remaining close to each
other (Figure 16, right bottom). In contrast with the near-threshold
simulation in a similar computational domain,Γ saturates at a pos-
itive value that is essentially preserved until the end of the simu-
lation. The proximity ofΓ andΓ∗ indicates that the distribution
remains essentially bi-Maxwellian. This property is supported by
inspection of the distribution functions displayed in Figure 18. The
changes∆〈f〉 affect a broader region of the velocity space than in
the near-threshold simulation and it is compatible with a difference
between two, essentially bi-Maxwellian distribution functions. De-
tailed analysis of the profile〈f〉 confirms this Gaussian form (ex-
cept in the wings).

A significant result of this simulation concerns the transition
from magnetic humps to holes. The question arises of the roleof
the parameterβ‖ which, together with the distance from threshold,
control the instability dynamics. We noted the importance of β‖ by
performing a similar simulation withβ‖ increased from1 to 2. In
the latter case, the skewness remains positive and magneticholes
do not form. This remark is consistent with the energetic stability
argument given inPassot et al.[2006], but a detailed analysis of
this transition requires further investigations.

8. Conclusion
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Figure 18. Same conditions as Figure 16. Simulation results at
timest = 60/Ωp (left panels) andt = 100/Ωp (right panels):
(top panels) Gray scale plots of the proton distribution varia-
tion v⊥∆〈f〉 (black corresponds to negative values and white
to positive ones). Dotted lines correspond to the contours of the
initial condition v⊥f0. (bottom panels) Profiles (solid line) of
the proton distribution function〈f〉 integrated overv⊥, together
with the initial profile (dotted line).

Numerical investigations of the mirror instability in one space
dimension, based on the Vlasov-Maxwell equations, demonstrate
that the nonlinear saturation is associated with the formation of
magnetic humps (and anticorelated density holes). The early non-
linear dynamics near threshold is sensitive to the size of the inte-
gration domain. In an extended domain, it is indeed well described
by the quasi-linear theory that involves the diffusion of particles
essentially in the longitudinal velocity space and leads toa flatten-
ing of the distribution function near its maximum. After a while,
the system nevertheless evolves towards a different regime, associ-
ated with the formation of coherent structures in the form ofmag-
netic humps. During this phase, the linear growth rate calculated
from the instantaneous distribution function is negative but the in-
stability still proceeds due to hydrodynamic type nonlinearities. As
time evolves, a coarsening phenomenon is observed, with only a
few high amplitude peaks surviving, whose evolution becomes ex-
tremely slow. In a small domain, in contrast, the system is too
much constrained to develop a quasi-linear dynamics and directly
evolves towards structure formation with damped temporal oscil-
lations viewed as the signature of particle trapping.

In order to describe the structure formation, a reductive pertur-
bation analysis on the Vlasov-Maxwell system near threshold has
been performed. It led to an asymptotic pseudo-differential equa-
tion where kinetic effects arise at a linear level only. Thisequation
develops a finite-time singularity, indicating the existence of a sub-
critical bifurcation and the formation of large-amplitudestructures.
Saturation of the mirror instability is thus not amenable toa pertur-
bative approach. A mechanism based on the local variations of the
ion Larmor radius, was thus phenomenologically supplemented. In
contrast with other models where saturation is due to the cooling of
a population of trapped particles, the resulting equation correctly
reproduces the dynamical evolution observed in numerical simula-
tions of VM equations in a small computational box, such as the
development of magnetic humps from an initial noise, and theex-
istence of stable large-amplitude magnetic holes below threshold.
Such simulations also display the existence of large amplitude so-
lutions in the form of magnetic holes slightly above threshold, al-
though there is no indication that these solutions can be obtained
from direct saturation of the mirror instability.

In small domains, increasing distance from threshold does not
lead to any qualitative change, but only to different valuesof the
skewness parameter. This contrasts with the dynamics in large
simulation boxes. In this case, at sufficiently large distance from
threshold and for relatively small values of beta (kept neverthe-
less of order unity), the energy of the magnetic fluctuationsdis-
plays a maximum at the time where the linear instability saturates,
followed by a drastic reduction associated with the gradualtrans-
formation of magnetic peaks into magnetic holes. The instanta-
neous growth rate, that does not significantly depart from the bi-
Maxwellian estimate, remains positive. This scenario could pro-
vide a realistic mechanism for the generation of magnetic holes
in space plasmas at relatively small beta where they are indeed
preferably observed [Joy et al., 2006;Soucek et al., 2008]. A sim-
ilar transition from humps to holes is also observed in a domain
that expands in time in order to model the magnetosheath plasma
[Trávnı́ček et al., 2007;Génot et al., 2008]. Further work is needed
to address the possible relations between the results of thetwo sim-
ulations. Nevertheless, in both cases, the magnetic holes are not di-
rectly produced by the nonlinear saturation of the mirror instability,
but are rather outcome of nontrivial nonlinear evolution. This re-
mark could also apply to magnetic holes observed in space plasmas.
To support this conjecture, we note that the simulation discussed
in Section 4.1, and a similar one (withβ‖ = 3, T⊥/T‖ = 1.4,
θ = 72.4◦), that both involve parameters for whichSoucek et al.
[2008] observe magnetic holes, exhibit stable magnetic humps.

Several other problems remain open. From a theoretical per-
spective, it is interesting to ask whether there exist conditions (in
very large domains and/or very close to threshold) where themirror
instability saturates by quasi-linear effects. Numericallimitations
preclude to study such questions and also make difficult to obtain
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evidence of the singularity predicted by the reductive perturbative
expansion. These questions are probably not of importance for the
understanding of mirror structures observed in space plasmas but
could shed light on the role of the various microscopic phenomena
that govern their formation and stability. Another interesting issue
concerns the dimensionality of the structures. Again because of nu-
merical limitations, the computations were performed in one space
dimension. Such an assumption could be too constraining, espe-
cially when the beta of the plasma reaches very large values.This
problem is essentially open. We nevertheless mention the work
of Constantinescu[2002] which provides the explicit form of the
linear mirror mode with axial symmetry. Furthermore, we have an-
alyzed in the present paper simulations close to threshold where
trapped particles seemed to play a rather limited role on thelong-
time dynamics of the mirror structures. It is natural to ask whether
this conclusion still holds further away from onset, or in deep mag-
netic holes. Although possible mechanisms for the formation of
magnetic holes have been proposed, a clear picture is still miss-
ing and observational evidences are needed to confirm or infirm the
suggested ideas. In particular, a distinction between mirror struc-
tures (immobile in the plasma frame) and magnetosonic solitons
(whose propagation velocity is non zero but can be quite small)
could result from an analysis of their magnetic hodographs,ob-
tained from satellite data. Another issue concerns magnetic holes
observed in the solar wind byStevens and Kasper[2007], whose
size can reach several hundreds to one thousand ion gyroradii. Are
they also associated with the mirror instability, as seemedto be im-
plied by their analysis, and if so, by which mechanism can they
reach such large sizes?
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Appendix A: Perturbative Solution of the
Vlasov Equation

We consider the Vlasov equation for the distribution function of each
species (dropping the corresponding subscript indexr) in the form

∂tf + (v · ∇)f +
q

m
(E + v × B) · ∇vf = 0, (A.1)

where it is convenient to express the velocityv in a cylindri-
cal coordinate system by writingv = (v⊥ cos φ , v⊥ sin φ , v‖) and
∇v = (cos φ ∂v⊥ − (sin φ/v⊥)∂φ , sinφ ∂v⊥ + (cos φ/v⊥) ∂φ , ∂v‖

).
One then has

(v × B) · ∇v = −Bz∂φ + (cos φBy − sin φBx)D
+(v‖/v⊥)(cos φBx + sin φBy)∂φ, (A2)

whereD = v⊥∂v‖
− v‖∂v⊥ . Furthermore, neglecting the displacement

current that is irrelevant in this low-frequency asymptotics, the Maxwell
equations are written

1

c
∂tB = −∇× E (A3)

∇× B =
4π

c

∑

r

qrnr

∫
vfrd3v (A4)

∇ · E = 4π
∑

r

qrnr

∫
frd3v. (A5)

As suggested by the linear instability growth rate near threshold (equa-
tion (3)), the independent variables are rescaled in the form X =

√
εx,

Y =
√

εy, Z = εz, T = ε2t, whereε measures the distance to thresh-
old. Furthermore, suppressing the species index to simplify the writing, the
proton distribution function is expanded in the form

f = f(0) + εf(1) + ε3/2f(3/2) + ε2f(2) + · · · . (A6)

Similarly the magnetic field is written (we here denote by thesubscript⊥,
the transverse component of a vector whose two components are referred to
by thex andy indices)

B⊥ = ε3/2
B

(3/2)
⊥

+ ε5/2
B

(5/2)
⊥

+ · · · (A7)

Bz = B0 + εB
(1)
z + ε2B

(2)
z + · · · . (A8)

From the Faraday equation and the assumption of cold and massless elec-
trons that impliesE · B = 0, one has for the electric field

E⊥ = ε5/2
E

(5/2)
⊥

+ ε7/2
E

(7/2)
⊥

+ · · · (A9)

Ez = ε4E
(4)
z + ε5E

(5)
z · · · . (A10)

Introducing the ion gyrofrequencyΩ = eB0/(mc) and expanding the
Vlasov equation to the successive orders, one first getsΩ∂φf(0) = 0 and
Ω∂φf(1) = 0. The normalized equilibrium distribution function is taken
bi-Maxwellian, in the form

f(0) ≡ 1

π3/2vth‖v2
th⊥

exp−
( v2

‖

v2
th‖

+
v2
⊥

v2
th⊥

)
. (A11)

On the other hand,f(1) = f
(1)

, where the overline indicates averaging on
the gyroangleφ (the fluctuating part will be denoted by a tilde).

At the next orders, one has

Ω∂φf(2) = v⊥(cos φ ∂X + sinφ ∂Y )f(3/2) + v‖∂Zf
(1)

(A12)

Ω∂φf(3) = v⊥(cos φ ∂X + sinφ ∂Y )f(5/2) + ∂T f
(1)

+ v‖∂Zf(2)

+Ω

[
− B

(1)
z

B0
∂φf(2) +

(
cos φ

B
(3/2)
y

B0
− sin φ

B
(3/2)
x

B0

)
Df(3/2)

+
v‖

v⊥

(
cos φ

B
(3/2)
y

B0
+ sinφ

B
(3/2)
x

B0

)
∂φf(3/2)

]
. (A13)

and

Ω∂φf(3/2) = v⊥(cos φ ∂X + sin φ∂Y )f
(1)

+Ω

(
cos φ

B
(3/2)
y

B0
− sin φ

B
(3/2)
x

B0

)
Df(0) (A14)

Ω∂φf(5/2) = v⊥(cos φ ∂X + sin φ∂Y )f(2) + v‖∂Zf(3/2)

+
q

m
(cos φ E

(5/2)
x + sinφ E

(5/2)
y )∂v⊥f(0)

+Ω

[
− B

(1)
z

B0
∂φf(3/2) +

(
cos φ

B
(5/2)
y

B0
− sinφ

B
(5/2)
x

B0

)
Df(0)

+

(
cos φ

B
(3/2)
y

B0
− sinφ

B
(3/2)
x

B0

)
Df

(1)
]

(A15)

where, for convenience, integer and non integer orders are considered sepa-
rately. The solvability of equation (A15) supplemented by equations (A12)

and (A14), impliesf
(3/2)

= 0. Near threshold, it is useful to add the solv-
ability conditions at the two leading orders and write from equations (A12)
and (A13)

−v⊥〈(sin φ ∂X − cos φ∂Y )∂φ(f(3/2) + εf(5/2))〉

+(ε∂T + v‖∂z)f
(1)

+ εv‖∂zf
(2)

−εΩ

〈(
cos φ

B
(3/2)
x

B0
+ sinφ

B
(3/2)
y

B0

)(
D −

v‖

v⊥

)
(v⊥f

(1)
)

〉
= 0.

(A16)

Furthermore, equations (A14) and (A12) are solved as

f̃(3/2) =
v⊥

Ω

(
sin φ ∂X − cos φ ∂Y

)
f
(1)

+

(
sin φ

B
(3/2)
y

B0

+cos φ
B

(3/2)
x

B0

)
Df(0) (A17)
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and

f̃(2) = −
v2
⊥

4Ω2
[cos 2φ (∂XX − ∂Y Y ) + 2 sin 2φ ∂XY ]f

(1)

− 1

4Ω

[
cos 2φ

(
∂X

B
(3/2)
y

B0
− ∂Y

B
(3/2)
x

B0

)

− sin 2φ

(
∂X

B
(3/2)
x

B0
− ∂Y

B
(3/2)
y

B0

)]
v⊥Df(0).

(A18)

At the order of the present approximation, it is possible in (A18) to make
the replacement

f
(1)

=
v⊥

2v‖
Df(0) B

(1)
z

B0
= −

(
1

v2
th‖

− 1

v2
th⊥

)
v2
⊥f(0) B

(1)
z

B0
.(A19)

Definingbz = B
(1)
z + εB

(2)
z andF = f

(1)
+ εf

(2)
, it is possible at

the order of the present approximation, to replaceB
(1)
z by bz andf

(1)
by

F in the terms preceded byε. We get

(ε∂T + v‖∂Z )F = −v⊥

2
∂v⊥f(0)(ε∂T + v‖∂Z)

bz

B0

+
v⊥

2
∂v‖

f(0)∂Z
bz

B0
− ε∂ZA (A20)

with

A = −
3v3

⊥

16Ω2
∆⊥

(
bz

B0

)
Df(0) −

v⊥v‖

2Ω

4π

c
j
(2)
z Df(0)

+
v⊥

4

(
bz

B0

)2

D
(

f(0) − v⊥

2v‖
Df(0)

)
. (A21)

At the same order of approximation, we solve equation (A20) as

F = −v⊥

2
∂v⊥f(0) bz

B0
+ (ε∂T + v‖∂Z)−1

v2
⊥

2
∂v‖

f(0)∂Z
bz

B0
− ε

A

v‖
,

(A22)

where, as shown in Appendix B,j(2)
z = 0 and, consequently,A is in fact

proportional tov‖.

Appendix B: Consequences of Ampère
Equation

To leading order, equation (A4) gives

∂Y B
(1)
z =

4π

c

∑

r

qrnr

∫
v⊥ cos φf̃

(3/2)
r d3v

= −4π

c

∑

r

qrnr
1

Ωr

∫
v2
⊥

2
∂Y f

(1)
r d3v. (B1)

Using equations (A19), one easily checks that for cold electrons, only the
ions contribute to the current, leading to the threshold condition for the mir-
ror instability, in the form

0 = β⊥

(
T

(0)
⊥

T
(0)

‖

− 1

)
− 1 (B2)

or (see equation (2)),

Γ∗ = 0. (B3)

Hereβ⊥ = v2
th⊥/v2

A wherevth⊥ is the ion perpendicular thermal veloc-
ity andvA = B0/(4πmn)1/2 the Alfvén speed.

On the other hand,

∂XB
(3/2)
y − ∂Y B

(3/2)
x =

4π

c
j
(2)
z = ε−1 4π

c

∑

r

qrnr

∫
v‖F rd3v.

(B4)

SinceF is an even function ofv‖, equation (A22) then implies

j
(2)
z = ε−1

∫
v‖(ε∂T + v‖∂Z )−1 v⊥

2
∂v‖

f(0)d3v ∂Z
bz

B0

−
∫

v⊥v‖

2Ω

4π

c
j
(2)
z Df(0)d3v (B5)

The first term in the RHS does not contribute. The resulting equality then
prescribesj(2)

z = 0.

Appendix C: Estimate of the Pressure
Tensor

When dealing with the perpendicular pressure fluctuations,we define

p⊥ = p
(1)
⊥

+ εp
(2)
⊥

= (mn/2)

∫
v2
⊥Fd3v. (C.1)

Using equations (A22) and (A21), we obtain

p⊥ = β⊥

(
1 − β⊥

β‖

)
B0bz

4π
+ ε

√
π

vth ‖

∂T

(
−H ∂Z

)−1 β2
⊥

β‖

B0bz

4π

−εp
(0)
⊥

[
9

4β⊥
r2
L∆⊥

bz

B0
+

(
1 − 4

β⊥

β‖

+ 3
β2
⊥

β2
‖

)(
bz

B0

)2]
.

(C2)

HereH is the Hilbert transform along the direction of the ambient mag-
netic field. The operator−H ∂Z is thus a positive operator whose Fourier
transform reduces to|Kz|, whereKz denotes the variable conjugated toZ.

The leading order contributions of the nongyrotropic components of the
pressure tensor are given by

Π
(2)
xx = −mn

2

∫
v2
⊥ cos 2φf̃(2)d3v (C3)

Π
(2)
xy =

mn

2

∫
v2
⊥ sin 2φf̃(2)d3v (C4)

Π
(3/2)
xz = mn

∫
v‖v⊥ cos φf̃(3/2)d3v + (p

(0)
⊥

− p
(0)

‖
)
B

(3/2)
x

B0
,

(C5)

that are easily computed as

Π
(2)
xx = − mn

16Ω2

∫
v4
⊥(∂XX − ∂Y Y )f

(1)
d3v

= −3

4

(
1 − β⊥

β‖

)
p
(0)
⊥

r2
L(∂XX − ∂Y Y )

B
(1)
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(C6)

Π
(2)
xy = − mn

8Ω2

∫
v4
⊥∂XY f

(1)
d3v

= −3

2
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1 − β⊥

β‖

)
p
(0)
⊥

r2
L∂XY

B
(1)
z
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(C7)

Π
(3/2)
xz = 0. (C8)

As a consequence,

(
∇ · Π

)(5/2)

⊥
= −3

4

(
1 − β⊥

β‖

)
p
(0)
⊥

r2
L∆⊥∇⊥

B
(1)
z

B0
. (C9)
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