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Nonlinear Mirror Mode Dynamics: Simulations and Modeling

F. Califano,l P. Hellinger,2 E. Kuznetsov,3 T. Passot,4 P.L. Sulem” and P.
Travnicek?

Abstract. With the aim to understand the origin of the pressure-badnoagnetic struc-
tures in the form of holes and humps commonly observed in thar svind and planetary mag-
netosheaths, high-resolution hybrid numerical simufatiof the Vlasov-Maxwell (VM) equa-
tions using both Lagrangian (particle in cells) and Euleriategration schemes are presented
and compared with asymptotic and phenomenological moaelshe nonlinear mirror mode
dynamics. It turns out that magnetic holes do not result fdirect nonlinear saturation of
the mirror instability that rather leads to magnetic humidevertheless, both above and be-
low threshold, there exist stable solutions of the VM equaiin the form of large-amplitude
magnetic holes. Special attention is paid to the skewnesheofmagnetic fluctuations (that is
negative for holes and positive for humps) and its dependencthe distance to threshold
and the beta of the plasma. Furthermore, the long-time #@wolwf magnetic humps result-
ing from the mirror instability in an extended domain far egb from threshold may, when
the beta of the plasma is not too large, eventually lead tofdhmation of magnetic holes.

1. Introduction Such an origin, although plausible, is however not fullyaetished.

In realistic situations, the mirror instability is oftenropeting with

Since the first observations &faufmann et al[1970], a strong the anisotropic ion cyclotron instability, especially @tof order
interest has been paid to the pressure-balanced magmetituses  unity and moderate angleBiice et al, 1986;McKean et al.1992],
observed in regions of the solar wind and of planetary magneakhough the presence of heliuffie™ ™ can enhance the relative
tosheaths wherg is relatively large and the ion perpendicular temimportance of the former effecPfice et al, 1986;McKean et al,
perature exceeds the parallel one. These structures thatatic 1994].
in the plasma frame, display a strong anticorrelation betwaag- The question arises of the driver of these instabilitiesppbly
netic intensity and pressure as well as density variatiofiseir  associated with the shock transition and the compressiparsion
shape is cigar-like, elongated along a direction making allsam-  of the magnetosheath plasmHellinger and Travnitek 2005;
gle with the ambient magnetic fielthprbury et al, 2004, and ref- Travnitek et al.2007], which may increase the ratio between the
erences therein]. Early observations tended to suggesidopni- perpendicular and parallel temperatures. The detailechamésm
nance of magnetic holeSperveslage et al2000], but more recent of such processes, albeit of great importance, are nevesthelif-
data indicate that magnetic humps are also frequently eneed ficult to include in numerical simulations of the mirror iakil-
[Lucek et al, 1999;Joy et al, 2006;Soucek et a] 2008]. Recently, ity. As a consequence, most of numerical simulations assame
Joy et al[2006] correlate the existence of magnetic holes or humgs-Maxwellian distribution and a collisionless plasmanditions
with the relatively small or large value gf. Génot et al[2006] that are consistent with the separation between the tinle stthe
used a more quantitative characterization of the statifyiclomi- addressed phenomena and that of collisional effects. fncib-
nant type of magnetic structures by measuring the degreleenf-s text, previous numerical integrations of VM equations,ngshy-
ness that reflects the preference towards magnetic holasnapd)  prid particle-in-cell (PIC) methodsBaumgértel et al.2003] have
depending of its negative or positive sign. Similar anadysere shown saturation of the mirror instability in the form of nmagic
performed bySoucek et a[2008] after wavelet filtering of the data. humps and not holes. These authors nevertheless also hated t
It turns out that there exists a clear statistical correfatbetween jnitial conditions in the form of large-amplitude magnetioles
the skewness and the distance to the mirror instabilitystioll.  can persist during the whole simulation, both when the péagsn
Slightly above threshold, quasi-sinusoidal fluctuationsnthate, Jinearly stable and unstable, indicating the existence bistable
while at further distance (which often corresponds to lexgdues  regime.
of 8), magnetic humps are preferably observed. Magnetic hotes a 't js thus of interest to study in detail the nonlinear depetent
mainly observed both below threshold and slightly aboveram@e  of the mirror instability. The linear regime has been exiegly in-
corresponding to ion (protor) < 5 and a temperature anisotropyyestigated and it is now well known that Landau and finite Larm
empirically fitted asl’, /7y < 2.15/4]** [Soucek et aJ.2008].  radius (FLR) effects play an essential role in the instgbgrowth
The nature and the origin of these structures remains thecbbjrate Medenov and Sagdeet959; Hasegawa 1969; Hall, 1979;

of different interpretations Stasiewic42004a] interprets them as Gary, 1992; Southwood and Kivelspri993; Pokhotelov et a).
magnetosonic solitons, an approach initiatecBayimgartel et al. 2005;Hellinger, 2007]. In contrast, the understanding of the non-
[1997] (see alsoBaumgartel 1999]). A more general opinion nev- jinear regime and of the origin of the saturating processesdre
ertheless associates them to nonlinearly saturated mimagtes. |imited. The quasi-linear theory that assumes randomgfiastu-

ations was first suggested Byapiro and Shevchenkt964]. Nev-

ertheless, this approach cannot apply to regimes domirpteo-

1 Dipartimento di Fisica and CNISM, Universita di Pisa, ytal herent structures. Phenomenological models, based omtfiag
2|nstitute of Atmospheric Physics, AS CR, Prague, Czech Biépu of trapped particles in magnetic troughéifelson and Southwood
3Lebedev Physical Institute and Landau Institute of Thecakt 1996; Pantellini, 1998], were then developed to interpret the exis-
Physics, Moscow, Russia tence of deep magnetic holes. These models are howevelhardl
4Université de Nice-Sophia Antipolis, CNRS, Observataiesla consistent with the presence of magnetic humps that aremaly
Cote d'Azur, Nice, France dicted for exceptionally large values gf The possible existence

of bistability is also not reproduced. Furthermore, theselets are

aimed to describe the microscopic processes associatédtivet
Copyright 2008 by the American Geophysical Union. existence of static coherent structures, rather than timardical
0148-0227/08/2007JA012898$9.00 processes leading to their formation.
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In order to study the formation of coherent structures astre  1959;Hasegawal1969]
linear development of the mirror instability, an asymptathalysis
near threshold, based on a reductive perturbative expanesigM . B1
equations was recently proposed. In this limit, the linearsta- m=p. (5_ - 1) —1>0.
ble modes are confined at large scales, which suggests thit FL
corrections arise at a linear level only, making the noraineon- Near threshold [ < 1), where it is possible to use a low-

tributions amenable to a simplified computation in the fram  frequency, long-wavelength expansion, the growth rate@fhtode
of the drift-kinetic equationfuznetsov et 812007a]. The result- of wavevectork is given by

ing asymptotic equation indicates that the retained nealiies
reinforce the mirror instability, leading to a finite-timengularity 5 3 12
associated with a subcritical bifurcatioKuznetsov et al2007b] Tk = \/j |k |0 (F — Sk - %X)
and an early breaking of the asymptotic scalings. Nonlikesatic n 2 k1
effects then rapidly become relevant and saturate thehititgain
a regime not amenable to a perturbative approach. where

The aim of the present paper is to contribute to a better under 1
standing of the nonlinear dynamics of mirror modes in a preto x=1+ 5(5L -6y 4)
electron homogeneous plasma, by means of highly accuratemu
ical simulations and asymptotic models. Vlasov-Maxwellaq m o
tions are used for the proton distribution function, whildlad 7= —V2r—=2 —HS(UH)
description is assumed for the electrons that are assuniezidold pB 4
and massless for an easier comparison with theoreticallajeve = my 1 ¢ Of© 450 3
ments. Section 2 is a short overview of the linear and quasaft T = T@/ (—MW —3vLf ) d’v (6)
theories. Section 3 briefly describes the algorithms impeletad in DB 3ip I
the hybrid PIC and Eulerian simulations presented in theiohg are assumed to be positivélgllinger, 2007]. The maximum
sections. Section 4 discusses the results of numericallaions — growth rate is given by
near threshold, and points out the influence of the size ofithe

)

®)

o1 s

avﬁ

v (5)

main on the early nonlinear phase. Special attention is {ailde _ 1w r? )
conditions for the emergence_of a quasi-!inear phase @m:emes Yo = 437 7 x1/?’
the structure formation. Section 5 describes a reductiveipgm-
tive expansion directly performed on the VM equations, frat  and appears dt, ., andk., given by
vides a systematic derivation of the asymptotic equatioivele in
Kuznetsov et a[2007a]. As already mentioned, this equation dis-
I finite ti ingularit iated with baaitioif kimT = L d kym? = L T (8)
plays a finite time singularity, associated with a subaaltigifur- ImP =4[5 an Ilm” = 2—\/6X1/2'

cation, leading, near threshold, to the formation of laageplitude
structures, not amenable to a perturbative calculatiopp&ment-
ing phenomenologically the effects of the local variatidthe ion
Larmor radius nevertheless provides a simple model for the n

For each(k,w) mode, the linear response of the distribution
function is given by

linear saturation, in good agreement with numerical sinore o o )
and spatial observation&enot et al, 2006; Soucek et a].2008], 7 = vL kjve  9f _ of\ B: ) )
while models involving a saturation resulting from pamidrap- 2 \kjy —w 9y vy Bo

ping [Kivelson and Southwood996;Pantellini, 1998;Pokhotelov
et al, 2007] are unable to reproduce the geometry of the createdIn the quasi-linear regime considered b$hapiro and
mirror structures. Section 6 provides numerical evidentéhe Shevchenk§l964], the space-averaged distribution functigf)
persistence of initially assumed large-amplitude magreipres- obeys the diffusion equation (in velocity space)

sions both in the mirror stable and unstable plasmas. lriogect

we present a simulation which demonstrates that in an egtedd-  0(f) |B§1) (k)2
main far from threshold magnetic humps generated by theomirr™ 5; — Z B2
instability can transform to magnetic holes during the ltinge
evolution. Section 8 summarizes the results and discus$es a
open problems.

Q(f) (10)

where

oupy = L{ o (_HL o (a1
2. Brief overview of the linear and quasi- VT4 kivi + ¢ v

linear theories . L 9 p oy 2kt o
Before presenting numerical simulations of the mirror sk vy Ovy \ T OvL kivf + ¢ Oy ’

ity in an electron-proton plasma, it is useful to briefly ®withe

linear and quasi-linear theories. supplemented by
For a gyrotropic proton distribution functionf(® =

f(o)(v2“ v ) and cold electrons, the mirror instability condition is aBgl)(k) 1)

given LJy [Shapiro and Shevchenkb964;Pokhotelov et a).2005; ot B2 (k) (12)

Hellinger, 2007]

where~ refers to the instantaneous growth rate defined by equa-

4 970 tions (1,3-6) withf(? replaced by f).
r=_Me [WO ", 5 150 (1) (1,3-6) withy™™ rep WS
PB 4 GUH
3. Numerical schemes for VM Equations
where pg = B3/8t is the magnetic pressuref; =
my [V /2fOd%/pp (similarly, B = m, [vf fOd%/pp), In order to address the nonlinear dynamics of mirror modes, n

andm,, the proton mass. For a bi-Maxwellian proton distributionmerical simulations of the VM equations were performed ir on
equation (1) reduces to the usual conditid@denov and Sagdeev space dimension, by assuming variations only along a drect
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(parametrized by the coordinaty making a prescribed angl® integration scheme for the VM equations. The latter advaitice
with the ambient field (taken in the-direction), usually corre- proton distribution functionf, in the 4-dimensional phase space
sponding to the largest linear growth rate. In flgez)-plane,n (¢, ve, vy, vy), using the electromagnetic splitting method proposed
refers to the direction perpendicular o and z to the direction in Mangeney et al2002], where the space and velocity advection
perpendicular ta.. The direction perpendicular to tif€, z)-plane, terms are advanced separately. This method ensures thewitie

is parametrized by the coordinage Periodic boundary conditions P& no secular growth in the energy conservation error. Itigaar
are assumed for the space variable. As already mentioned, bilan, the advection equation is solved by using a third okder
hybrid PIC and Eulerian simulations of VM equations were-pel-6€" Scheme. The splitting algorithm is coupled to the Curse-
formed, the two methods appearing as complementary. Theefor Vance Method (CAM) introduced iatthews1994] and extended
based on a resolution of the Vlasov equation by the chaiatiter 1 the hybrid case ivalentini et al.[2007]. Furthermore, by as-
method, is suitable for integration in large computatiotamnains tS#emellngct?ilﬁ?é]g?:E:rgllgzle?tgg Q;%L%ghnsgoih:g(gﬁg:gﬁggﬁgem%
r?qeci?eu:(?cﬁraﬁz Eﬂ?;:gagqoc:}il t?r;fglggﬁgﬁn:&;l%f/’fgigsiﬁ]agg te ncluding electron inertia, while the magnetic field is ab&l by

the case of relatively small boxes. This algorithm that éeffrom ol'\o/‘lré%;:];ult:;?ggglydeoqmueatit;]og% sizb; = 15 x 27 d, is used, thus

statistical noise is especially adapted to simulationseeto thresh-  ¢naiier than in hybrid PIC simulations. The mesh sizes fentr-

old. Although in this case, the distribution function remmlargely  joys variables aré\¢ = 0.73, Ave = Av, = 0.16, Av, = 0.25.
unperturbed, a high resolution is nevertheless requir¢idiveloc-  The initial conditions of all Eulerian simulations presemhere

ity space in order to make Landau resonances well resolveth B are as follows. We assume an ambient homogeneous magnletic fie
codes were extensively tested and compared with each otver. in the form

checked that the resulting structures are the same, andesther

typical time scales. Bo = Bocosfe; + Bosinfe, (14)

3.1. Hybrid PIC Simulations and an equilibrium bi-Maxwellian normalized proton dibtrtion

We used a hybrid code based Blatthews1994] for a proton- function with a temperature anisotropy = 7. /T, given by
electron plasma where electrons are considered as a massle%
charge neutralizing fluid, with a constant temperature haken f ) =
almost zero, while the protons are described by a particiesil

model and are advanced by an implicit leapfrog scheme +(cos® 0 + Asin® 0)u? + (A — 1) sin 20 ucu, + uf,} }’(15)

Vn+1 — Vp q
ot 2L \E,
At m /2%

.2 29y, 2
—————5— €exp { — {(sm 0+ Acos” O)u
20 |0 UihL ‘

Vin41 + Vn B 13
B X Buti/z| (13) \wherevy,, = (271 /m,)Y/> andv,, = (27} /m,)"/? are the
proton perpendicular and parallel thermal velocities eesipely.
that requires the fields to be known at half time steps ahead \&We consider two different types of initial perturbationsherfirst
the particle velocities, in order to guarantee a bettergyneon- one corresponds to density and magnetic fluctuations giyen b
servation. This is achieved by advancing the current densit

this time step with only one computational pass through tre p Nm
ticle data at each time step. The particle contribution ® ¢hbr- of =m Z cos(2rm(/L¢ + ¢m)/m (16)
rent density at the relevant mesh points is evaluated witheair m=1
weighting followed by smoothing over three points. No sniirg N,
is performed on the electromagnetic fields, and no resigtisiin- 8By = po Z cos(2rI¢/Le + o)/, (17)

cluded in Ohm’s law. The magnetic field is advanced in timdnwait

modified midpoint method, which allows time substeppingtfar

advance of the field. where ;1 and po are small coefficients, usually taken equal to
A resolution of 1024 points is used for the space variableihb 10=3. The phases,, and ¢; are randomly chosen. The second

simulations described below. In the former (Section 4.#)rtfesh  one consists in an initial magnetic hole or hump without dgns

size iISA¢ = 2d,, while in the latter (Section 7) it i&( = d,, fluctuations, and corresponds to

whered, = v4/Q, is the proton inertial length, defined as the ra-

tio of the Alfvén velocity to the ion gyrofrequency. Suchade 6f=0 (18)

computational box enables the system to evolve freely, néti- 6B, = +a (tanh?[(¢ — Co)/Ln] — 1), (19)

gible finite-size effects. There are initially 500,000 nwmarticles

per cell, in order to make the numerical noise as low as plEssilyhere the amplitude is usually taken equal t0.5 and the width
with the available processor array. More specifically, thisaelevel 1, to 5. The structure is centered in the computational box by
in one-dimensional particle simulations scaling like theeirse of choosingly = L. /2. The positive sign corresponds to a magnetic
the particle number per cell, the large number of particlesused depression and the negative one to a bump like perturbation.

is aimed to ensure a good separation between the generated wa

and the noise, both for the magnetic fluctuations and theillist . .

tion function. Such extremely high number of (macro) pdesc 4. Simulations Near Threshold

per cell is not common in hybrid simulations. The evolutidn 0 gjmylations were performed both in an extended domain and in
nonlinear structures in cases not too close to thresholdearap- 3 relatively small computational box, in order to address pbs-
tured in simulations with a number of particles per cell devahy  sible influence of finite-size effects. As discussed belmghsef-
three orders of magnitud®fumgartel et al.2003]. In both sim- fects can for example prevent the development of a quasiin
ulations, the time step for the particle advancéis= 0.05/€2,, regime and enhance magnetic energy oscillations due tpitrgp
whereas the magnetic fieH is advanced with a smaller time stepAs previously mentioned, different algorithms appear ahlit in
Atp = At/4. these different configurations.

=1

3.2. The Eulerian Code 4.1. Dynamics in an Extended Domain

This hybrid approach is based on a fluid description of the-ele  These simulations were done using the hybrid PIC algorithm.
trons which, in the present simulations, are assumed ateemper- The system evolves from a bi-Maxwellian proton distribatfanc-
ature (in hybrid PIC simulationgd. = 10~2), and on an Eulerian tion with an inherent numerical noise. The initial protomgraeters
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relatively early. As time elapses, they exhibit a coarsgiirocess
leading to the persistence at the end of the simulation of anl
few intense and well-separated magnetic peaks, in agreemitn
previous simulations bBaumgartel et al[2003]. In order to quan-
tify the onset of the structures and their typical profile, plet in
Figure 1 (top right) the skewness of the magnetic fluctuatiBp,
that starts around zero, rapidly increases within the plegi@0—
3000 2, ! and saturates at a value exceeding 2.5. The period of
the rapid growth coincides with that of intensive coarsgniand
the evolution to a significant positive value is consisteithwhe
formation of strong magnetic humps.

The energy of magnetic fluctuations (Figure 1, left bottoms} fi
increases monotonically uno00 le when it rapidly saturates.
Later on, both the skewness and the fluctuation energy ¢isply
weak variations on long time scales, associated with theistp
down of the coarsening effect. Figure 2 illustrates typiialges
of this evolution by displaying the profiles of magnetic fluations
B, (top) and their Fourier spectra (bottom) at time- 2000 Q;l

Figure 1. Simulation of the mirror instability in an extended
domain near thresholgs( = 1, T /T} = 1.857, 6 = 72.8°).
Gray scale plot of the magnetic fluctuatiéh, as a function of
time and space (left top); Time evolution of skewnessBaf
(right top), of fluctuating magnetic energy3?/BZ (left bot-
tom), of the instantaneous distance from the thresholdt(rig
bottom): T" (solid line) as given by equation (1) and the corre-
sponding bi-Maxwellian valu&* (dashed line) obtained from
equation (2).
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Figure 2. Same conditions as Figure 1. Profile (top) and
spectrum (bottom) of B,, at timest = 2000/, (left) and
t = 10000/, (right).

3 2 -1 0 2 1 0 1 2 3
vy /va vy /va

are3 = 1 and3, = 1.857, whereas the electrons are cold with 60

Be = 1072, For these parameterE, = 0.6, and the full kinetic 55l 1t ]

linear theory predicts a maximum growth rafe= 5 - 10730,

for a wavenumber direction making an angle= 72.8° with the =~ =50} 1F ]

ambient field. Note that the asymptotic expression, giveseicr

tion 2, predictsy,, = 1072Q,. These parameters result from a *or 1t ]

compromise between numerical constraints and the aim tesbe a 40

close as possible to threshold. The integration being peed in Lo 08 UHO/'%A 05 10 10 05 UHO/%A 05 10

a large domain (of siz048 d,), a broad range of modes is lin-
early unstable, even relatively close to threshold. Sitmrta were
also performed with3 ~ 1, leading to a qualitatively similar dy-
namics. We however concentrate here on cold electrons,imeeg
permitting an easier comparison with the theory that becomere
complex when the electrons are warm.

Figure 1 (top left) displays the gray scale plot of the anujplit
B, of magnetic fluctuations, as a function of time and space. Co
herent structures in the form of magnetic humps are seen ¢ogem

UlAf

-2 -1

0 0
v /va v/va
Figure 3. Same conditions as Figure 1. Gray scale plots of
v Af averaged over regions whebB,,/Bo > 0.01 (left
panel) andéB, /By < —0.01 (right panel), at timet
1000/€2,. White corresponds to positive values and black to
negative ones. Superimposed are the contours of the limear p
diction, v, £V, at maximum (left) and, symmetrically, mini-
mum (right) of BY, for the most unstable mode. Solid and
dashed lines denote positive and negative values g€V, re-
spectively.

ULAU)

v/ va

0

v A(f)
1 2 3

Figure 4. Same conditions as Figure 1. Simulation results at
times¢ = 2000/, (left panels) and = 10,000/52, (right
panels): (top panels) Gray scale plots of the proton disticin
variation v, A(f) (black corresponds to negative values and
white to positive ones). Dotted lines correspond to the marst

of the initial conditionv, f(*). (bottom panels) Profiles (solid
line) of the proton distribution functioff) integrated overn | ,
together with the initial profile (dotted line).
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(left) during the period of active coarsening and at therlétee
= 10000 2;,* of the simulation (right).

Itis also of interest to analyze the global evolution of thesma
in terms of the instantaneous distance to the instabilitgsimold.
Figure 1 (right bottom) shows the time evolution of this dratel’
(solid line) given by equation (1) withi(®) replaced by the space-
averaged instantaneous proton distribution function. heddine
corresponds to the bi-Maxwellian expressibh calculated from
equation (2) with the instantaneous parallel and perperatide-
tas. A main observation is that rapidly departs fronT* (that
hardly changes) and displays a monotonic decrease, begara(
ative (att =~ 2000 2, '), while the energy of the magnetic fluctua-

tions is still growing. It saturates b3000 2, !, at about the same .

d

time as the skewness and the energy of the magnetic fluatsati
The very different behavior df andT™* indicates a significant dis-
tortion of the proton distribution function during the eutibn. In
order to make this observation more quantitative, Aet denote
the difference between the proton distribution functionimies ¢
and 0. Figure 3 displays as gray scale plots the averaged val
of vy Af over regions wheré B, /By > 0.01 (left panel) and
§B,/By < —0.01 (right panel), at timet = 1000 ©2;,' which
roughly corresponds to the end of the linear phase. Durirsgpth-
riod, the variation can be estimated by the linear respoisbeo
distribution functionf*) given by equation (9). On Figure 3, we
thus superimpose the contourswof £ at maximum (left) and

Q f© Oy f©

1.0-1.0 -0.5 0.5 1.0

0.0
v)/va

Figure 5. Schematic view of the prediction of the quasi-linear
theory: Effect of the diffusion operator on the initial pootdis-
tribution functionQy. f(* for the most unstable mode (left) and
for a weakly unstable mode (right). Solid (dashed) contours
show positive (negative) values.

107%

m=2

7073

707

oo b e e b e e b
2000 3000 4000
time

T B
1000

Figure6. Time evolution of unstable modes in an Eulerian sim-
ulation very near threshold3( = 6, temperature anisotropy
Ty /T = 1.25, with § = 83.86°).

?7-5

symmetrically, minimum (right) value aB'Y for the linearly most
unstable mode. These extrema are supposed to mimic the migh a
low regions ofé B,,. Solid and dashed curves denote positive and
negative values of, /"), respectively. We observe that at max-
imum (minimum) of§ B,, the density of resonant particles (with
v ~ 0) increases (decreases), whereas the density of non-résona
particles decreases (increases) in good agreement witlintes
prediction. Note that the noisy aspect of the distributionction
perturbation in magnetic humps is due to the poorer stesisti
these regions. These results are consistent with the sc¢toeifig:

ure 2 of Southwood and Kivelsdi993] and similar to the simula-
tion results displayed in Figure 1 (top) Béntellini et al.[1995].

A main question concerns the detailed nonlinear processes |
ng to the saturation of the linear instability, and thegrsture at
the level of the ion distribution function. Using a gray scalot
where here white corresponds to negative values whereek tda
positive ones, Figure 4 (top) indeed reveals important fieadi
tions of the space-averaged proton distribution functiemeea-
ggred byvy A(f), whereA(f) = (f) — f© at two different times

2000/, (left) andt = 10,000/, (right). The significant
changes mainly affect the resonant particles (with~ 0). The
two bottom panels of the figure show at these two times thelesofi
(solid line) of (f) integrated ovev . , together with the correspond-
ing initial profiles (dotted line). The visible flattening tife distri-
bution profile is confirmed by detailed analysis of its bebaviear
v = 0, which shows that it is not parabolic in and consistent
with () /dvi ~ 0.

This evolu{ion of the distribution function can be plausilviter-
preted in terms of a diffusion in velocity space, as predidig the
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Figure 7. Magnetic humps and density holes formed as the de-
velopment of the mirror instability presented in Figure Gerkl
and in the following figures displaying results of the Euderi
simulations, dashed lines refer to initial conditions awotids
lines to the final time of the simulations.
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quasi-linear theory. To address this question it would keegsary
to resolve numerically the full quasi-linear system (Sacf). This
project is beyond the scope of this paper. Here we limit duese
to qualitatively estimate the effect of quasi-linear diffon by cal-
culating Qi f© (defined by equation (11)). Figure 5 shows th
results of this calculation for the most unstable (left) andeakly
unstable (right) modes. Solid and dashed curves denotéiveosi

4.2. Dynamics in a Small Computational Domain

As a first run (based on a Eulerian scheme) performed in a
small computational box, we consider a condition close tegh-
old, namelyg;, = 6, § = 83.86° andT'. /T}, = 1.25. The run

§s initialized with a weak random noise as indicated in Sec8.2.

Figure 6 displays the time evolution of the linearly unsgatvlodes
and their nonlinear saturation. The most unstable made={ 3)

and negative values @, (), respectively. We see that the quasihas a growth raté.7 - 10~3, which compares well with the value

linear theory predicts a preferable diffusion of partickéth small
parallel velocity to regions with higher parallel velogity qualita-
tive agreement with the simulation results (Figure 4, top).

2. 102 computed from the full kinetic theory. In spite of its rel-
atively small value, it significantly differs from the asytofic pre-
diction~,, = 3.6 - 1072 (see Section 2), since in the conditions of

These results lead to the conclusion that in an extended idom#€ simulation’ = 0.88 initially. Here also the possibility of per-

near threshold, a quasi-linear regime can exist during aiky aon-
linear phase. However, later on, the onset of coherenttstiesin-
validates the random phase approximation of the quasilitiee-
ory. Furthermore, as previously noted on Figure (1, bottayht},
the energy of the magnetic fluctuations continues to inereasn
when the system is linearly stable, an effect which is alseadt
ance with the quasi-linear theory.

The further evolution thus requires a different theorétimp-
proach, more suitable for describing the dynamics of cafteren-
linear waves (see Section 5.1). Moreover, as already mesdidhe
quasi-linear regime that assumes an incoherent dynamiesawie

forming simulations very close to threshold is limited bynmeri-
cal resources. In physical space, the evolution leads téotinea-
tion of a steady magnetic hump with an anticorrelated dgihsite
(Figure 7). In this simulation in a small domain, which inves a
very low numerical noise, no flattening is visible on the st
tion function, even at short times, consistent with the absef a
quasi-linear dynamics.

Large values of the beta parameter were also observed i spac
plasmas. For exampl&oucek et al[2008] report values off) =
14 andLeckband et al[1995] mention instances with = 30 in
the terrestrial magnetosheath. A second simulation was et
formed at larger distance from threshold by takifig = 15 and

phase of the various modes can be viewed as essentiallymandd@’L /7)) = 1.4 with § = 78.53°, which corresponds tb' = 7.4.

requires a large number of interacting modes and thus a tzmge
putational box. As discussed in the next section, this tesnss in-
deed absent in a small computational domain where, aftdingber
phase, the system directly enters a regime of structuresgftom

56,
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Figure8. Magnetic and density fluctuation profiles at initial and
final times of the simulation, in the ca8g /T) = 1.4, 8 = 15
andf = 78.53°.

Essentially the same dynamics is observed, with nevedhdle
formation of structures with much larger amplitudes (Feg8j. It

is noticeable that in contrast with the dynamics in a largago-
tational domain, the energy of magnetic fluctuations disptame
oscillations whose amplitude is progressively dampedgssiing
the relaxation to a steady nonlinear structure. This efieshown

in Figure 9 that displays the grey scale plot of the magnatictdi-
ations B, as a function of space and time (top) and the time evo-
lution of the magnetic-energy fluctuatiof®? /B¢ (bottom). This
effect is in fact a consequence of the size of the domain, ahd n
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Figure 9. Grey scale plot of the magnetic fluctuatioBs as a
function of space and time and time evolution of the magrnetic
energy fluctuation§ B%/ B3 in the conditions of Figure 8.
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of the distance from threshold. Indeed, a PIC simulatiomdie as indicated in Appendix A. At this step, a remark is in ordére
same physical parameters as that reported in Figure 1 Horpesd  ion bounce frequency in a structure of size' is of orders>/2
in a small box displays the same type of oscillations. In leates, [Pantellini et al, 1995], suggesting a time scale®/? for the flat-

their period is con5|stent with the ion bounce tiffie= 27 /wyr, : o . )
Wherewgr _ (1/2)1% (63/30) suggesting that particle trap- tening of the distribution function near the zero parallelocity.

ping is at the origin of th|s effect. We also note on Figuredpjt This time scalg thus appears shorter than the one assumén by t
that, in addition to the main structure, a weaker one is igsitur- performed scaling. As discussed later, this flattening gsedurns
ing the time interva00 < t < 600. Afterwards, it is subject out to have a negligible effect on the nonlinear dynamicéndvthe

to corsening. A signature of this effect is conspicuous entine  gnsidered time scale.

vatiation of the magnetic-energy fluctuations neat 600. When retaining the two first nontrivial orders, we ¢&7 . —

. . . Jdx, Oy ) denoting the transverse gradient
5. Reductive Perturbative Expansion Near (0x, 8v) g g )

Threshold - ( W, BoBil))
5.1. Asymptotic Theory a7
. (2) (1)
Near threshold, the onset of coherent structures is amerabl +5{V ( @ , BoB:” | (B:') )
an asymptotic approach based on the remark that, in thig limi 4 8T
early unstable modes are located at large scales. This agpro 9 BL—f , BG/?
implemented irkKuznetsov et a[2007a] by patching the linear ki- (1 + =0 ) R, (L—)
netic theory with an estimate of the nonlinear effects inftaee- A 2 Bo
work of the drift-kinetic equation, is here revisited usiagystem- 2 (3/2)} _ 2
atic reductive perturbative expansion directly performadhe VM VLI 4 020D 7 ¢ = 0(e), (25)
equations. N
The equation for the mean proton velocity, as classicaltivded ~ that expresses the condition of pressure balance.
from the Vlasov equation, reads The conditionV | x B{*/?) = 0 established in Appendix B, to-
Ju . gether with the divergenceless conditi®n, - B{*/* + 9,B" =0,
E+ V p—m—p(E+cu><B)—0 (20) implies
(3/2) _ -1 (1)
where, for cold and massless electrons, B =(-AL) 'V.10zB.". (26)
1 j Here, the subscript. refers to vector component perpendicular to
E= e (u o E) x B, (21) the ambient field((t)aken along). Definingd. = B + B and
5, = (1) 2 ; .
. . . . = +ep)’, we can write at the order of the expansion
with j = (¢/47)V x B. The ion pressure tensor is rewrit-" -~ Pt L P
ten as the sum of gyrotropic and gyroviscous contributipns= By
pin+p T +1II, withn =I-b®bandr = b® b, where VL[PL+ i b=
b = B/|B| is the unit vector along the local magnetic field. Equa- b2 2 — b
tion (20) is then rewritten in the form +e— + = (1 + M)pf)(AL)ilf)ZZ—z}
ﬂJ_ 2 Bo
2 (5/2)
o (o + |B| Liy +g(v : H)L — 0(?), (27)
- VB . . . .
( 7 2( p“)) where the last term in the LHS, given by equation (C9), is also
|B| dm transverse gradient.
_b|B| (b V) (1 + = Ar (pL — pH)) -V .-IL Using equations (C2) and (C9) to express the perpen-
4m |B|? dicular pressure and the gyroviscous force and rewriting

(22)  B3/8r = p” /3., we obtain in the case of a bi-Maxwellian equi-

I . . . librium ion distribution function
Projecting this equation on the plane perpendicular todball

magnetic field then gives N Bob,
o)
2 ﬂl B1 4
n. o9 = —V( + ﬂ) Bob.
pdt o 81 —&-Eﬁ(—?‘[az) 8Tﬁl o
+(1 LA )) (B-V)B Ven | By Am
o \PL—pP I S—
EE I ir —ep© [i,«gmb_z
2 4681 By
+(B-V)(m+ﬂ)£ 4B B 2
S 1BF (15 (3)) (5)
4m B.v B>\ B v Gl Bi Bo
14+ = — . = =  _n.V.-IIL 2
( +|B|2(PJ. pn))( )( B )47r|B|2 n +€b_z+€(2_ BH) (0)A Y97 bz
(23) 8 61 B
2e(1- )it AL = = 0, (29)
In order to address the asymptotic regime, we rescale the ind 1 By
pendent variables in the fortY = /ez, Y = ey, Z = ez,
T = £t, wheree measures the distance to threshold, and expand We note that the time derivative and the Hilbert transfdkm
any f'eld%o in the form originate from Landau resonance. The parametee= v, /€,
o is the ion Larmor radius. The two nonlinear terms, when put to
o= Z 6"/2%/2, (24) 9ether, involve a coefficient that simplifies when noticing that it

= can be evaluated by neglecting the distance to threshald rtak-
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ing the replacement, /3 = 1+ 1/3.. This gives the asymptotics. Specifically, the size of the structuresikhbe
much larger than the ion Larmor radius, in order to make manli

81 B1\? 1 ear FLR corrections irrelevant. In fact, the singularitpetially

A =1 45_ + 3(5_) BL appears as the signature of a subcritical bifurcation (@siglrd in
3 I 1 I detail inKuznetsov et a[2007b]) where the hydrodynamic nonlin-

= = (1 + _) (29) earities enhance the instability, leading to finite-anuolé solutions

B B where neglected contributions, such as the nonlinearikieéects,

become relevant. As discussed below, nonlinear kineteceffdo
not just provide a local smoothing of the singularity bupesally
above threshold, prevent the formation of magnetic holeedby
the hydrodynamic nonlinearities. This suggest that thgiorof

We thus obtain the asymptotic equation governing the neafin
dynamics of mirror modes near the instability thresholchiaform

aTb_z _ Vel ﬂ ( — Haz){l(ﬁ—L -1- L) be the observed magnetic holes is more complex. A few scenari ar
Bo VT BL e\ g 81/ Bo discussed in Sections 6 and 7.
3 5 b 1 BL =B\ « 1 b
+—4ﬁl 7’LAJ-B_O - E (1 + 9 )AJ_ aZZB_O 5.2. .Beyond the Asymptotics: Saturation by
2 Nonlinear FLR Effects
() ()} o0
2\ B By o '
This equation can be viewed as the linear dispersion relaifo 0.253
large-scale mirror modes retaining leading order FLR aiiogs,
supplemented by dominant nonlinear contributions. It isceable 0.128 |
that kinetic effects (such as Landau and FLR effects) dountei :
only linearly. =
We now definex =1+ (8. — 3)/2 and characterize the 0.004 | .
regime of linear stability or instability by the parameter
o=sgn(B./6 —1—-1/61). The expansion parameter —0.121
is related to the distance to threshold by the condition ’
|BL/8) —1—1/B1|=ex/BL, or in other wordse =I""/x ° 100 200 300 400 500
with T defined in equation (2) as the bi-Maxwellian thresh-
old parameter. We then perform a simple rescaling by
introducing the new longitudinal and transverse coordisat
1/2 -1 / 1/2 _q 0.280
€= 2/V3)x'?r;'Z, R’ = (2/V3)x ' “r;'R., and the new
time variabler = (2/v/3)(v75.) " (x8/B1)**QT. We also 0.147} ]
write ’
o]
b./Bo=2xBL (1+8L) ' U. (31) 0.013F
The equation then reduces to —0.121\
0 100 200 300 400 500
0.U = — Mo [aU FALU — AT 09U — 3U2} ., (32
up to corrections of orde. 0.296
Equation (32) further simplifies when the spatial variasi@ne ’
limited to a direction making a fixed angle with the ambiengma
netic field. After a simple rescaling, one gets 0.157
o]
orU = Kz [(0 + 0==) U - 3U7], (33) 0.018F
where E is the coordinate along the direction of variation and ~ _, ..,
K= = —HO0= is a positive operator whose Fourier transform re- ’
duces to the multiplication by the wavenumber absoluteezalu 0 100 200 300 400 500
Equation (32) possesses the remarkable property of beitigeof
form
orU = —Kz0F /U, (34) 0.299
whereF = [ [-3U% + SAT 022U + 1 (VLU)? + U®| &°R 0.159
has the meaning of a free energy or a Lyapunov functionals Thi o
guantity can only decrease in tim€yznetsov et gl2007a]. 0.019 |
A main property of equation (32) is the onset of a finite-time ’
singularity, for arbitrary initial conditions whea > 0 and un-
der the assumption that they are large enough when0. Near —0.121
00 300 400 500

blowup, F" is negative and dominated by ttfel/>d* R contribution 0 100 2
that can be viewed as proportional to the skewness of the atiagn

fluctuations. This indicates that blowup solutions of thgnas-

totic equation (33) take the form of magnetic holes. ThiPRIYy  gjgyre 10, Time evolution of magnetic structures resulting from
should however be taken with caution because, unless pp&sib o irror instability in the framework of the phenomendtz
tremely close to threshold (a regime almost impossible toeae model fora — 1.54. v = 10—2 and a weak initial noise. Panels

in simulations and insufficiently generic to be relevant $patial . ; _
observations), the involved scalings lead to an early lteak of are displayed at timess= 3, 5, 9, and10 (from top to bottom).
The horizontal axis refers to grid point numbers.

[1]
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Retaining the saturating effects of nonlinear kinetic ghmana
is not possible within a rigorous asymptotics but their efffecan
nevertheless be described phenomenologically. Modelsqugy
suggested in order to interpret the nonlinear saturatidghemirror
instability were based on the cooling of a population of pegbpar-
ticles, neglecting FLR correction&{velson and Southwood996;

Pantellini, 1998]. These models mainly explain the formation of

deep stationary magnetic holes, while, as seen in Sectiglagov
simulations of the mirror instability lead to the formatiofmag-
netic humps above threshold. They also do not reproducehae p
nomenon of bistability. A more quantitative, althoughlgthe-
nomenological description was recently suggestedPbihotelov

et al. [2007], assuming a flattening of the equilibrium ion distri-

bution function on a range that extends with the wave ang#gitu
This correction, that tends to reduce the Landau dampirsylte
in a renormalization of the time derivative in equation (23)a
factor that depends on the wave amplitude and reduces tp innit
the zero amplitude limit. The leading order correction iagsin

?7-9

where the coefficient is related to the size of the computational
domain. The parameter is a combination of the bi-Maxwellian
distance to threshold and of the value/f given by

:26XﬂL _ 2ﬂL F*
1+68. 1480

Note that in addition to the sign ef that characterizes the system
relatively to the linear instability, and to that fixes the domain
size, the present model only involves the parameterelated to

the distance to threshold. It turns out that the magnetid figih-

ima Bmin are found to be independent of the valuexof

Equation (35) was integrated in a periodic domain of size
27 /+/v with a pseudo spectral method based on Fourier expan-
sions. Linear contributions, including, in addition to tieem pro-
portional too, the Laplacian and biLaplacian terms without the de-
nominators, are integrated exactly. The remaining noalinerms

(36)

this factor scales liké/'/2, consistent with a bounce time scaling

like U~3/2. This correction, aimed to model the effect of ion par
ticle bouncing, is nevertheless a subdominant term thas dot
significantly affect the dynamics on the time scale of thespne
asymptotics.

It turns out that a different saturating process that affleetge-
ometry of the structures can be phenomenologically supgteed
to the above asymptotic equation by retaining the locabyimm of

the ion Larmor radius;,, making the resulting model consistent

with VM simulations Kuznetsov et al.2007a]. The argument is
that in regions of weaker magnetic field (and/or laiige), the ion
Larmor radius is larger, making stabilizing effects of FL&mec-
tions more efficient than in the linear regime. Consequettitig
mirror instability is more easily quenched in magnetic fiehch-

ima than in maxima, making magnetic humps more likely to form

in the saturating phase of the mirror instability.
More quantitatively, due to the conservation of the magnen-
ment, the ion Larmor radius satisfie§ oc T /|B|? o 1/|B| ~

1/B.. Its variation can be retained in equation (32) by replacing_

the termA U by [1/(1 + aU)]A LU, wherea, given by equa-
tion (36) below, results from the rescaling procedure. Iditoh to
the Laplacian, which originates from the leading order eian
of a nonlocal operator associated with FLR correctidtakhotelov
et al, 2005], it is possible to add the next order contributionhe t
form (4/9)[v/(1+aU)?]A% U. This extra term quantitatively im-
proves the model predictions, in that it prevents the foromaof
regions of very low magnetic field. On the other hand, highhdeo
terms do not drastically affect the value of magnetic fielsima

Buin = Bo(14+aUmin). The model equation that was numerically

integrated then reads

~ o2U woiU

8rU = K= |oU — 3U? £ _ = 35
T =19 tira0 oarenz| G

F I
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Figure 11. Variation of the skewness with the parameter, as
predicted by the phenomenological model.
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Figure 12. Magnetic holes predicted by the phenomenological
model foroca = 0.05, —0.05, —0.3, —0.4 (from top to bottom),
when initialized with a random noise of small amplitude when
o = +1 (over threshold) and of large amplitude wher= —1
(below threshold).
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are treated with a second-order Adams-Bashforth schemerstA fiminima than in maxima, making magnetic humps more likely to
integration of the model equation above threshetd= +1) was form.
performed in a domain containirigl2 grid points, withy = 0.01 In order to address the influence of the parameten the nature
and starting with a small random noise. Furthermgie= 6 and of the magnetic structures, we proceeda&not et al[2006], and
T, /Ty = 1.25, which corresponds tar = 1.54. We observe introduce the third standardized moment or skewrfestthe mag-
the formation of magnetic humps whose number decreasesas thetic fluctuations, defined as the ratio of the third momemtuab
elapses, by a coarsening process very similar to that obsémthe the mean divided by the third power of the standard deviation
Vlasov simulations when assuming the same plasma parametgs noticeable thaf is not constant during the simulation, in that it
Figure 10 exemplifies this evolution by displaying four ssias displays significant jumps each time a structure disappéser-
at timest = 3,5,9and10. As aIready mentioned, the fOfmatlonthe|ess’ after a few steps, the coarsening becomes exyratoel
of magnetic humps when the variations of the local Larmoiuid and we resorted to retain the value of the skewness in thisiqua
1S I’etaln_ed_ can be understood On_the basis that in reg_|0n$akw Stationary regime_ The resumng variation of the skewneigls the
magnetic field (and large perpendicular temperaturesjothéar-  parameter is displayed in Figure 11 that summarizes the results of
mor radius is larger, making the stabilizing effect of finlif@rmor 3 series of simulations, starting with an initial randomtpesation
radius corrections more efficient than in the linear reginihe  \hose amplitude is small in the simulations above threshold
mirror instability is thus more easily quenched in magnéigtd  mch larger below threshold. These simulations were peréorin
a domain containing048 grid points withv = 10~2. The forma-
tion of magnetic holes is illustrated in Fig 12 which disgayar-
5b, , t=7800 ious structures which develop with a negative skewnesghth)i
‘ above thresholdo = 0.05), deep holes are formed whose minima
are narrow and flat. In the subcritical case and the same whluge
holes are wider and magnetic field maxima slightly smallettbe
**************** e\ [N e minima are identical. As the value et is decreased te-0.3 and
‘ —0.4, holes become less deep in this unit (their depth remains the
same in physical units) and more spiky. Below this valueraf
the structure relaxes after a while towards the trivial Sotu
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Figure 13. Persistence of initial perturbations in the form of 0 20 40 60 80

a magnetic hole (top) and resulting density hump (middle) fo ¢

B = 6andT, /T = 1.36, with § = 83.82°. The bottom

panel displays the magnetic field component in the direction Figure 14. Persistence of a magnetic hole (top) and resulting
perpendicular to the plane defined by the ambient field and the density hump (bottom) at relatively large distance fronesn-
direction of spatial variation. old (3 =15, T, /T) = 1.5, with 6 = 83.82°).
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In the previous sections, we presented numerical eviddrate t[Passot et al.2006]. The component of the magnetic field perpen-
the nonlinear development of the mirror instability leadsie for-  dicular to the(k, Bo) plane, is like the longitudinal component,
mation of magnetic humps (and density holes). Magneticshamte symmetric with respect to the center of the magnetic holgufe
also predicted below threshold by the model discussed itiddec 13, bottom). This property contrasts with all previous @wiimod-
5.2, as an effect of bistability. It is thus of interest to aghether els based on anisotropic Hall-MH3{asiewicz2004a, bMjglhus
initially prescribed large-amplitude magnetic depressiare pre- 2006], where it is found to be antisymmetric. Similar sigmes are
served by the evolution of the VM equations in a mirror unktab observed in hybrid PIC simulations of non-propagating frae
plasma. For this purpose, we performed Eulerian integnatiof ~tive solitary structures generated by particle injectiBalimgartel
these equations in the conditions described above, uing 6, &t al, 2005]. Their symmetry properties however suggest that the
0 = 83.82° andT, /T = 1.36, a regime close to the instability do not cprres_pond to the same t_aranch of _solutlons as the sbgyw m
threshold. The run is initialized with a strong magneticenaith a netosonic solitons, in contrast with the claim®tasiewic2004b].
maximal amplitude exceediri% of the ambient field magnitude,

with no density perturbations. We observe on Figure 13 th@de 7. Mirror Instability Far from Threshold

tion of a density hump and the persistence of the magnetie hol

that evolves slightly, leading to the development of an sieot In order to address the nonlinear development of the mirrer i
qualitatively similar to Cluster observations reportedianot et al. stability far from threshold, we performed hybrid PIC simtibns
[2006]. A similar evolution is observed in Figure 14 at larges- in an extended domain with; = 1 andT'. /T = 4, with § =
tance from thresholdd, = 6, T'. /T = 1.5). The overshoot is 50.5° corresponding to a maximum growth rate= 0.156 2,,.
however more important.

In order to test the bistability regime, we used the saméainit
conditions and kept all the plasma parameters fixed, ex¢eit t 1000
now the plasma is strongly stablg(= 6, 7'  /T}, = 1). Figure
15 shows than in this case also magnetic holes are presentgd b ey —
contrast with the supercritical regime, do not develop skieots. - 600
Note that in such a stable plasma, initial magnetic humpk mit
density perturbations cannot maintain, the system rapafxing
to the trivial solution. A detailed theory of the geometry tbk 200
nonlinear mirror structures is delicate. A partial undensting is
nevertheless provided by an energy minimization argumethe
simplified framework of usual anisotropic magnetohydraaiyics

Skewness

time

Figure 16. Evolution in an extended domain, fgf = 1,
T, /Ty = 4 andf = 50.5°. Gray scale plot of the magnetic
fluctuation B, as a function of time and space (left top); Time
evolution of skewness oB,, (right top), of fluctuating mag-
netic energys B2/ B¢ (left bottom), of the instantaneous dis-
tance from the threshold (right bottom): (solid line) as given
by equation (1) and the corresponding bi-Maxwellian vdltie

—0.6L . (dashed line) obtained from equation (2).
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Figure 17. Profiles of§B,, as a function of in a fraction of
Figure 15. Persistence of a magnetic hole (top) and resulting the simulation box, in the conditions of Figure 16. From teft
density hump (bottom), in a plasma with = 7} andg; = 6, right and top to bottomt = 60/, t = 100/, t = 150/€2),
with 6 = 83.82°. andt = 600/,.
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Figure 16 displays the evolution in the same format as in Fig- Numerical investigations of the mirror instability in onpage
ure 1. A large number of magnetic humps is formed in the earliimension, based on the Vlasov-Maxwell equations, dematest

nonlinear phase. They evolve in time but coarsening turtsodoe
significantly less efficient than close to threshold. Furthare, at

that the nonlinear saturation is associated with the faonaof
magnetic humps (and anticorelated density holes). Thg eari-

long times (typicallyt > 100 ©2;,"), one can observe a slow motionlinear dynamics near threshold is sensitive to the size firite-

of some of the structures. Other important differences vatpect
to the simulation near threshold (Section 4.1) are visibietiee
skewness (Figure 16, right top) and on the energy of magfietic
tuations (Figure 16, left bottom) that, after a brief in@eaboth
display a significant decay. In particular the skewness ineso
negative, which reflects a transformation of the early-timagnetic
humps into magnetic depressions. This transition is ilaist in
Figure 17 that displays the magnetic fluctuations in a quaftthe
computational domain, at various instants of time: whilegnegtic
humps are visible at early times, the long-time regime (FedLr,
right bottom) clearly displays magnetic holes.

Another important difference concerns the paramétethat
measures the distance from threshold, as well as the bi-ldiiaw

gration domain. In an extended domain, it is indeed well dieed
by the quasi-linear theory that involves the diffusion oftjzdes
essentially in the longitudinal velocity space and leads flatten-
ing of the distribution function near its maximum. After a ieh
the system nevertheless evolves towards a different regisseci-
ated with the formation of coherent structures in the fornmaig-
netic humps. During this phase, the linear growth rate dated
from the instantaneous distribution function is negatiuéethe in-
stability still proceeds due to hydrodynamic type nonliitéss. As
time evolves, a coarsening phenomenon is observed, withanl
few high amplitude peaks surviving, whose evolution become
tremely slow. In a small domain, in contrast, the system & to
much constrained to develop a quasi-linear dynamics aredttir

estimatel'™". They vary in a similar way, remaining close to eactyolves towards structure formation with damped temposalio

other (Figure 16, right bottom). In contrast with the neaeshold

simulation in a similar computational domain saturates at a pos-

itive value that is essentially preserved until the end ef $hmu-

lations viewed as the signature of particle trapping.
In order to describe the structure formation, a reductiveype
bation analysis on the Vlasov-Maxwell system near threthals

lation. The proximity ofl" andI'* indicates that the distribution pgen performed. It led to an asymptotic pseudo-differéetima-

remains essentially bi-Maxwellian. This property is suped by

tion where kinetic effects arise at a linear level only. Téigiation

inspection of the distribution functions displayed in Figd8. The develops a finite-time singularity, indicating the existeif a sub-

changesA(f) affect a broader region of the velocity space than iyjtical bifurcation and the formation of large-amplitusteuctures.
the near-threshold simulation and it is compatible withfeedence  gatyration of the mirror instability is thus not amenable fgertur-

between two, essentially bi-Maxwellian distribution ftioos. De-
tailed analysis of the profiléf)
cept in the wings).

A significant result of this simulation concerns the traiosit

from magnetic humps to holes. The question arises of theafole
the parametef) which, together with the distance from threshold

control the instability dynamics. We noted the importantgpby
performing a similar simulation witl#, increased from to 2. In
the latter case, the skewness remains positive and madreés
do not form. This remark is consistent with the energetibitits

argument given irPassot et al[2006], but a detailed analysis of

this transition requires further investigations.

8. Conclusion

U”/’UA ’U”/’UA

Figure 18. Same conditions as Figure 16. Simulation results at

timest = 60/, (left panels) and = 100/, (right panels):
(top panels) Gray scale plots of the proton distributionasar

tion v A{f) (black corresponds to negative values and white

to positive ones). Dotted lines correspond to the contofitiseo
initial conditionv, f°. (bottom panels) Profiles (solid line) of
the proton distribution functioxf) integrated over  , together
with the initial profile (dotted line).

bative approach. A mechanism based on the local variatibtieo

confirms this Gaussian form (ex- jon |armor radius, was thus phenomenologically supplegttnin

contrast with other models where saturation is due to thérggpof

a population of trapped particles, the resulting equatiomectly
reproduces the dynamical evolution observed in numericalis-
tions of VM equations in a small computational box, such &s th
development of magnetic humps from an initial noise, andethe
istence of stable large-amplitude magnetic holes belogstiwld.
Such simulations also display the existence of large aogsiso-
lutions in the form of magnetic holes slightly above thrddhal-
though there is no indication that these solutions can bairmdx
from direct saturation of the mirror instability.

In small domains, increasing distance from threshold dags n
lead to any qualitative change, but only to different valoéshe
skewness parameter. This contrasts with the dynamics ge lar
simulation boxes. In this case, at sufficiently large distafrom
threshold and for relatively small values of beta (kept e
less of order unity), the energy of the magnetic fluctuatidiss
plays a maximum at the time where the linear instability s,
followed by a drastic reduction associated with the gradrzads-
formation of magnetic peaks into magnetic holes. The iratan
neous growth rate, that does not significantly depart froenkh
Maxwellian estimate, remains positive. This scenario dqaro-
vide a realistic mechanism for the generation of magnetieso
in space plasmas at relatively small beta where they aresthde
preferably observedlpy et al, 2006;Soucek et al.2008]. A sim-
ilar transition from humps to holes is also observed in a doma
that expands in time in order to model the magnetosheatimplas
[Travnicek et al.2007;Génot et al. 2008]. Further work is needed
to address the possible relations between the results tfitheim-
ulations. Nevertheless, in both cases, the magnetic hrdewoa di-
rectly produced by the nonlinear saturation of the mirratétility,
but are rather outcome of nontrivial nonlinear evolutiorhisTre-
mark could also apply to magnetic holes observed in spaseyals.
To support this conjecture, we note that the simulationudised
in Section 4.1, and a similar one (wiity = 3, 7. /T = 1.4,

0 = 72.4°), that both involve parameters for whiGoucek et al.
[2008] observe magnetic holes, exhibit stable magneticgsum

Several other problems remain open. From a theoretical per-

spective, it is interesting to ask whether there exist caon (in
very large domains and/or very close to threshold) wherertiner
instability saturates by quasi-linear effects. Numerigaitations
preclude to study such questions and also make difficult taiob
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evidence of the singularity predicted by the reductive ybdtive As suggested by the linear instability growth rate nearshoéd (equa-
expansion. These questions are probably not of importasrafé tion (3)), the independent variables are rescaled in then i&r = /e,
understanding of mirror structures observed in space @asmt Y = vey, Z = ez, T = £°t, wheres measures the distance to thresh-
could shed light on the role of the various microscopic pimeasa ©!d: Furthermore, suppressing the species index to signipléf writing, the
that govern their formation and stability. Another intdeg issue Proton distribution function is expanded in the form

concerns the dimensionality of the structures. Again beead nu- F=rfO 4 op@® 4 3/250B/2) L 252 4. (AB)
merical limitations, the computations were performed ie space | o )
dimension. Such an assumption could be too constrainirmg-essh'mIIarIy the magnetic field 'fs written (V‘;f here denote by$hb?§|ptd_,
cially wht_an the bet_a of the plasma reaches very Iarge_ vallieis. Lyetgggsgﬁézei:;?epsnem ofa vector whose two componentsfrred to
problem is essentially open. We nevertheless mention thé wo

of Constantinescii2002] which provides the explicit form of the B, = ¢3/?B/? 4 5/2B(/2) 1 ... (A7)
linear mirror mode with axial symmetry. Furthermore, we &iawn- 1 2
alyzed in the present paper s?;mulatic);ns close to threshbierev B:=Bo+eBl +62B 4. (A8)
trapped particles seemed to play a rather limited role oridhg- From the Faraday equation and the assumption of cold andesassec-
time dynamics of the mirror structures. It is natural to adlether trons that impliest - B = 0, one has for the electric field

this conclusion still holds further away from onset, or iredenag- 5/2 7/2
netic holes. Although possible mec)r/1anisms for the foF:nnaogb E, =2EY? + 2R 4o (A9)
magnetic holes have been proposed, a clear picture is s6-m £, = 1E® 4 S5EO) ... (A10)
ing and observational evidences are needed to confirm omirtifie
suggested ideas. In particular, a distinction betweenomgtruc- Viasov equation to the successive orders, one firstg@éisf©) — 0 and

tures (immobile in the plasma frame) and magnetosonicostlit o) : S T o
(whose propagation velocity is non zero but can be quite I$mati2.8¢f = 0. The normalized equilibrium distribution function is take
i-Maxwellian, in the form

could result from an analysis of their magnetic hodograuiis,
tained from satellite data. Another issue concerns magmeties ©) _ 1 v v7

observed in the solar wind b$tevens and Kaspg2007], whose = 73200 102 exXp — (vz— + Uz—) (Al1)
size can reach several hundreds to one thousand ion gyirohaeli i Teh L thil - Tthd

they also associated with the mirror instability, as seetods im-  op the other handf(™) = 7", where the overline indicates averaging on
plied by their analysis, and if so, by which mechanism cary thene gyroangles (the fluctuating part will be denoted by a tilde).

reach such large sizes? At the next orders, one has
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Appendix A: Perturbative Solution of the 90,11 = v1.(c0s 9 Ox + sin g Dy ) 4007

Vlasov Equation +% (cos @ B+ sing B )y, 7
) ) o . B BG/2) B/2)
We consider the Vlasov equation for the distribution fumctof each 40 [ — La(bf(S/z) + (COS¢ Yy — sing¢=2 )Df(o)
species (dropping the corresponding subscript ingér the form Bo B Bo
q BB/2) B3/2) (1)
8tf+(v-V)f+E(E+v><B)-VUf:O, (A.1) +(cos¢ ?;3 —sinqb””B—)'Df } (A15)
0 0

where it is convenient to express the velocity in a cylindri- where, for convenience, integer and non integer ordersarsidered sepa-
cal coordinate system by writing = (v, cos¢, v  sin¢g, v) and rately. The solvability of equation (A15) supplemented byations (A12)

Vy = (cos¢ Dy, — (sind/vy )0y, sing 0y, + (cosd/v1)dy, Ov). and (A14), impliesf®/?) = 0. Near threshold, it is useful to add the solv-

One then has ability conditions at the two leading orders and write froguations (A12)
. and (A13)
(vxB):Vy =—=B,04 + (cos By — sin $ By )D
; 3/2 5/2
oy /o1 )(cos 6By + sin 6B,)0, (h2)  —vLl(sinox —cosgoy)os(/ YD +fC/))

—(1) —(2)
whereD = v 9y, — v dv, . Furthermore, neglecting the displacement +(e0r + v 0:)f " +evd:f
current that is irrelevant in this low-frequency asymptstithe Maxwell 39(63/2) B(B/2) v) —)
equations are written —eQ< ( cos ¢ + sin d)yB—) (D — —) (vo f )> =0.
0

vl
(A16)

0

1
-:B=-VxE (A3)
¢ Furthermore, equations (A14) and (A12) are solved as
(3/2)

V xB = 4—7r E qrnr /vfrdgv (A4) - v B
¢ = f(g/z):ﬁ(sinqﬁ@x—cos(ﬁa}/)?(l)-i-(Sin¢ 73
0

_ 3 (3/2)
V-E=4r) gn, / frdo. ORI )oro (A17)
r Bo




?7-14 CALIFANO ET AL.:

and
2

~ v —
7 = =L [cos 20 (0xx — dyy) +2sin 20 0xv |7

X BE/D /)
- 2¢ (9x —2 — oy = )
Q [COS d)( X By v Bo

BS’/Q) 3153/2)
— By

Bo Bo

—sin2¢ (Z)X ):|ULDf(O).

(A18)

At the order of the present approximation, it is possibleAd ) to make
the replacement

1
W) _ YL 50 B

! ZUH Bo

(1)
1 1 B
= _(2— ) )”if(O)B—(Alg)
th| thl 0
Definingb, = B(l) + aB(Q) andF = f(l) + ET(Z), it is possible at

the order of the present approximation, to replaR‘éé) by b andf(l) by
Fin the terms preceded ky We get
(E@T + Uuaz)F =

vl 0 b
_78UJ_ f( )(aBT + ’l)”az)B—O

+%au” F@a, ]l;—zo —edzA (A20)
with
3v3 b VLY AT (2
A=——L A Z)D 0) _ —'i )p £(0)
1602 (B( ! 20 o’ Pt
b
2 ) _ (0)
(= —+p ) A21
L(5) (10 - g0 (h2)

At the same order of approximation, we solve equation (A20) a

— v b, V2 b A
F = _%aMfW)B—O + (07 +v)0z) " Dy f<°>aZB—O e
(A22)

where, as shown in Appendix B,Ez)
proportional tov).

= 0 and, consequently is in fact

Appendix B: Consequences
Equation

of Ampere

To leading order, equation (A4) gives

ayBil) = 4—7T E qrnr/vl Cosd)ﬂg/z)d?’v
c
4#2 1 vl <)
- qrnTQ—T/ —0y f, "d°v

Using equations (A19), one easily checks that for cold sdest only the
ions contribute to the current, leading to the thresholdi@@mn for the mir-
ror instability, in the form

(B1)

7
ozgl(w—l)—l (82)
or (see equation (2)),
r* = (B3)

NONLINEAR MIRROR MODES

Appendix C: Estimate of the Pressure
Tensor

When dealing with the perpendicular pressure fluctuatiamsdefine

= (1) (2) _

pL=p +ep’ = (mn/2)/v2lfd3v. (C.1)

Using equations (A22) and (A21), we obtain

8L VT 183 Bob.
L ar( —Ho oL 200
ﬁu) 6vthu T( Z) By 4

Epﬂ?)[4§ T’LAJ_g—O+(1—4BB—J”' +36”)(b_)2]'

Bob:
47

ﬁL:ﬁL(l_

(€2

Here H is the Hilbert transform along the direction of the ambierdgn
netic field. The operatorH 0 is thus a positive operator whose Fourier
transform reduces tx . |, whereK . denotes the variable conjugatedZo

The leading order contributions of the nongyrotropic comgrts of the
pressure tensor are given by

H;zz) = —% /Ui cos 2¢>]7(2)d311 (C3)
) = v? sin20f d3v (C4)
o (3/2)
chz/z) = mn/vHUJ_ cos ¢f(3/2)d3v + (p(O) P‘(‘O)) BwB )
0
(C5)
that are easily computed as
2 mn —(1)
) = - 662 /vi(axx —oyy)f d*v
B
3 BJ_) (0,2 B;
= 1—-— [o) 0 C6
4( 5 p) rp(Oxx —Oyy) By (C6)
2 mn —(1)
) = 5 vt axy T dBy
(1)
3 BJ_) B;
=_Z(1-= C7
2( By Pt By €
n/? =o (C8)
As a consequence,
(5/2) 3 81 B(l)
V-I'I) :——(1— ) O2A v, 22 (C9
( . 1 5 PLTLALY L5 (C9)

Heres, = vtzhl/vi wherevyy, | is the ion perpendicular thermal veloc- References

ity andvy = Bo/(4wmn)/2 the Alfvén speed.
On the other hand,

(3/2) (3/2) _ 4w (2) 147 — 4
axBy — Oy By _7]2 = TZanT/U“FTd v.
(B4)
SinceF is an even function ob), equation (A22) then implies
v b,
j§2) =¢7! /’U”(&aT + v”6z)71—L81,H f(o)dgv Oz —
2 Bo
VLY AT 2) 1y £(0) g3
D d’v B5
/ 2Q ¢ I (BS)

The first term in the RHS does not contribute. The resultingaéty then
prescribeg’éz) =0.
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