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Mirror instability: From quasi-linear diffusion to coherent
structures
P. Hellinger,l E. A. Kuznetsov,2 T. Passot,3 P. L. Sulem® and P. M. Tr4vnicek®

A model for the nonlinear dynamics of mirror modes near thbi-Maxwellian distribution function, this coefficient iopitive and
instability threshold is presented. By matching the quiagiar the model predicts the formation of magnetic holes, whiledi
theory for the space-averaged distribution function witteduc- numer!cal simulation; with the same initial ponditionsimﬂe the
tive perturbative description of the mirror modes, the niodpro-  formation of magnetic humps. The formation of these stngsu
duces the early-time flattening of the distribution funatend the 1S 1n fact precede_d by a transient regime du_rlng Wh'.ch theridis
development of magnetic humps from an initial noise, in agrent bUtIO!’l .functlon dls.plays a 5|gn|f|cant flattening, remugatof a

- ! . . ’ . quasi-linear evolution. The aim of the present paper is ggest
with VIa_sov-MaxweII_n_umerlcaI S|_mulat|ons. Itsuggestsoa;gble a possible matching of the two descriptions, aimed at cataély
mechanism at the origin of the mirror structures observgulane- reproducing the numerical observations.

tary magnetosheaths and in the solar wind.

2. Quasi-linear description

1. Introduction 2.1. The quasi-linear model

Pressure-balanced magnetic structures in the form of ntiagne Jhe ?L %pprox;]matlon gssumes aﬁyv]det specl:trum of non-
enhancements (humps/peaks) and depressions (holesidibs) coherent random-phase modes (or a sufficient overlappingsof

small change in the magnetic field direction that are obseime nances). The modes are supposed to have low amplitudesi¢oget

the solar wind YMnterhalter et al., 1995] and in planetary magne- With slowly varying frequency (and growth/damping rate, tat

tosheathsJoy et al., 2006] are often associated with the nonlineaﬁhey can be treated at the linear level. At the second ordey, e-

evolution of the mirror instability Yedenov and Sagdeev, 1958]. act on the distribution function, which leads to a slow dsffin for
The understanding of the nonlinear processes involvedersau- the velocity distribution function averaged over the spaaables
ration of this instability remains nevertheless incomplein spite 2nd the gyroangle:

of its aperiodic character, a quasi-linear (QL) theory wast file- P P P 1 9 P P
veloped byShapiro and Shevchenko [1964] under the assumption of =—Dy 9f ==y (DJ_H 9f + Dll—f)
that for each unstable wave vectler the growth ratey, is much 9t 9y Ovy w1 vy L
smaller thark vy, wherev,y, is the ion parallel thermal velocity

andk is the parallel component df (for the sake of simplicity, with

electrons are assumed to be cold). This approach which is usu 5 2
ally assuming a random phase approximation and inducesua dif Dy = vl [be|” w5 , D= QﬂDHH

sion in the velocity space, cannot describe regimes inuglio- — 4 kjof + v1

herent structures. Phenomenological models, based ontlieg be |2

of trapped particles in magnetic troughisyelson and Southwood, p, |, = 2 Z Vi ﬁ7 (2)
1996; Pantellini, 1998], were constructed to explain the existence % 4

of deep magnetic holes, but hardly predict magnetic humps. |

order to address the onset of coherent structures as theneanl where the normalized magnetic fluctuatiohs = §B.(k)/Bo
development of the mirror instability, an asymptotic asédynear obey% = ~rbrs. The system is closed by using this instan-

L . . ot
threshold, based on a reductive perturbative expansionagov-  taneous distribution functioffi(v},v_ , ¢), which gives the thresh-

Maxwell (VM) equations was recently proposetlimetsov et al.,  old conditionI’ = 8r — 8. — 1 > 0 and the linear growth rate

2007a;Califano et al., 2008]. The resulting equation can be viewed 2 - 3.2,2 K .

as an extension of the dispersion relation of the mirror rsdde 7% = \/;|”‘7II|U(F — 5T kL = qX)v wherek , is the transverse

cluding the dominant nonlinear coupling whose effect iséim+ component ok and

force the mirror instability, thus leading to a finite-timagularity

associated with a subcritical bifurcatiokUznetsov et al., 2007b]. _mn v} pe d _ _mn [} Of a3 3

The form of this equation is generic, up to the coefficientsowh O = 5 — fd’v, and fr = "5 ) 4 922% " ®)

depend on the equilibrium distribution function. The sidnttee !

nonlinear coupling coefficient prescribes in particulae feome- Heren, is the background density of the protoms their mass, and

try (magnetic holes or peaks) of the emerging structurest a0 ;,, — B2 /8r denotes the background magnetic pressure. Further-
more, near threshold, one has the positive coefficignglijinger,
2007] €2 denoting the proton gyrofrequency),
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2.2. The numerical algorithm vy small but out of the resonance, the parallel diffusiop, term
. . is dominant in Equation (1). A simple analysis shows that at a
~We restrict ourselves to the case where the problem is ongreq time the solution of the diffusion equation only deperah
dimensional in the space variable. The anle: betweenk the self-similar coordinate; /v, whereas, in the region of small
and the ambient magnetic field is fixed to the value correspong” the self-similar variable is; /v? .

ing to the most unstable direction, leading#p = k cos 6z, Bottom - - (0)
oo o TS . . panel of Figure 2 plots the profile &f / f**’ as a func-
ki = ksin0xp. The distribution function is conveniently writ- tion of y, for v, = 2v.4 in the conditions of the top panel. In order

ten as a sum of the initial bi-Maxwellian contribution to interpret this graph, a simple model can be consideredhier
2 ) longitudinal diffusion. Concentrating on the most unstatviode,
f(o) _ 1 exp (- Y vl @) we neglect the wave-vector summation and define a rescahed ti
(2m)3/ 2003, | 207, 2057 by dr = |bx|*dt. Furthermore, since. ~ O(1), k; ~ e and
v ~ € (heree = I'/x < 1), we may restrict ourselves to the
and the variatiom f. model equation
For the numerical simulation of the QL system, the distribu-
tion function §f is defined on a two-dimensional grifif; ; = af _ o e of ®)
5f[(i—1/2)A’U||,(j—1/2)A’UL] with 4 :07...,N||+1and 87_81) v2 4+ €2 Ov
j = 0,...,Ni. + 1; only a quarter of the distribution func-
tion is considered, due to the assumed symme&ij&s;, v.) = supplemented by the initial conditigh”’ = exp(—v?/v},) (up to

6f(£v,+v.). This is reflected in the inner boundary condi-an irrelevant multiplicative constant). The variation loétdistribu-

tionsdfo; = df1,; anddfio = fi1. For the outer boundary tion functiondf = f — (% then obeys

conditions, we assume zero derivativégx, +1,; = 0fn,,; and

dfi,n, +1 = 0fi,n, . The wavenumber variableis discretized as a5f & & 85f 0 & of®

km =mAk,m=1,..., Ng. Or  witLe2 ov ov\wvrre o :
For solving the diffusion equation (1), the partially intti T vt e v vAvTHe Y

duFort-Frankel method is used, with space-centered desain  Assumingv < v:4, we have for the source tersy defined as the

the velocity space. This is a three level method requidrfgat r.h.s. of Equation (9),

timesnAt¢ and (n — 1)At (where At is the time step). The first

9)

time step is done using a forward time centered scheme. Tlge ma 2 e v -é

netic modes;, are advanced in a similar manner. S~ 02 02+ e 02+ €2 (10)
The calculation of various coefficients is performed by addi th

the initial bi-Maxwellian valuesg, = m"”?hL/PB’ B = S has a minimum ab, S(0) = —2/v2, and two maxima for

mnvgy /pe, Br = B1/B), 0 = vy /Br and7 = v (Br — 4 = L£./3¢, equal tol/4v2,. lts profile is qualitatively similar

ﬂl)l/Q/Q to the contributions originating fronmif. The integra- to that ofd f in Figure 2 (bottom panel). ThuS is of order unity
tion overv; andv_ is replaced by the summation ove(from 1 in the small-velocity range we are interested in, while yisical
to V) andj (from 1 to N.). To calculated, we fit the quantity scale (in thev variable) is of order. As a consequencef will
f0°° vl éfdv, around0 by a polynomialag + awﬁ + azvﬁ; the also have the same typical scalevinFurthermore, after a typical

. . . . i i i 2 2 H
coefficienta; is then used to evaluate the contribution freghto  diffusiontimer ~ %, we havej f ~ ¢”. Coming back to the phys-
pt ical time, we writet = 7/|bx|* ~ €°/|bx|°. Estimating the level
' ; ; ; P i of saturation of the magnetic fluctuations by balancing tifie-d
In the following simulations, we use initial conditions suthat sion timee®/ 3", |bx|> and the inverse growth time/c?, gives at

By = 1andpB, = 1.65, which givesT" = 0.0725, thus en- ; ) : ;
Slljlring that the system is close to threshold. We chabge — [ saturation imé_, [by|* ~ ¢*, in agreement with the numer-

83.3°, because this angle corresponds to the maximum growth rifg Wheree = 10  (as estimated fromy, = 10 *) and where
max(y) = 1.03 - 10779, reached fork = 0.118Q/v4. The %i |be|* ~ 107 at the saturation time~ 5 - 10%.

numerical parameters ardk = 9.2 - 10’49/1;,4, N, = 256,

Avp = 49 -10"%va, Ny = 1024, Avy = 4.9 - 10 %va, 3. Onset of coherent structures

N, = 1024, At = 0.2/Q. , . .

To address the regime of structure formation, the redugiere
turbative expansion near threshold developedimnetsov et al.
[2007a]; Califano et al. [2008], may be easily extended to any

Figure 1 shows the evolution of different quantities frone th (frozen) smooth equilibrium distribution functiof\(vﬁ, v1) (pro-
QL simulation. From left to right, the fluctuating magnetiteegy videdo > 0, #2 > 0, andx > 0). It leads to an equation
Wp =3, [bk|?, the distance from thresholdand the maximum for the (normalized) parallel perturbation of the magnétaid,
growth ratemax(v) are displayed as functions of time. Initially,b = §B..(r,t)/Bo, of the form
the wave energy increases exponentially, then the QL diffuse-
ducesl” and consequentlyax (), making the system to approach 2 3 o2
marginal stability. During thi(s évolutiorf; slightly increases (by ~ 9:b = \/jv (—H0-) (Fb 5 2ALb— x-=b— Ab2) :

2.3. Quasi-linear evolution

. A
about 0.1 %) wherea® decreases (by about 2 %) agdremains + (11)
essentially constant (its relative decay is of ortier ®). The linear part of this equation reproduces the linear gnosate,

The QL diffusion strongly affects the resonant region. g2 whereas the nonlinear term involves a coefficigrgiven by
displays the proton distribution function at the end of thrauda-
tion (t = 1.4-10°/Q): top panel provides a grayscale plotafs f B. 1 mn [0S 0%f 4
as a function oby andv, . We note a strong similarity with Figure A= 0 —20r + 5 T3 with Ba = s / ECICHE d*v,
4 of Califano et al. [2008] which displays the same quantity ob- I (12)

tained by direct numerical integration of VM equations, Boifing  where for a bi-Maxwellian distribution we havé = 3/24% /7.
the relevance of a QL description of the early stage of nealin These results are obtained by neglecting the contributfaesn-
mirror mode evolution. nant particles whose effect is subdominant in the case ofcom
The shape of the level lines of the distribution function ig-F distribution function with no sharp variations. Similarstdts
ure 2 is easily interpreted by noting that fer of order unity and were obtained using the drift-kinetic approachMgkhotelov et al.
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Figure 1. Results of the QL simulation: (top) fluctuating magneticrggéVp = >, |bx|?, (middle) distance from threshold, (bottom)
maximum growth ratenax(y) as functions of time.
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Figure 2. Results of the QL simulation at= 1.4 - 10° /Q: (top) Gray scale plot of . § f as a function ob andv_ . Black corresponds
to negative values and white to positive ones; (bottom) Rrofis f / f(*) as a function ob atvy = 2va.

20000

[2008]. We note here that most of the criticism of this papéhw ing to 54 ~ 1/¢ because the effective integration range on«he

respect tokuznetsov et al. [2007a] is due to a misunderstandingjs of ordere. The contribution of the resonant particles can thus no

about the used variables. . . . .
In order to take into account the QL regime observed at ear'lg)/nger be neglected in the evaluation of the nonlinear dogpiThe

time in VM simulations, we are led to modify the non-linearMagnitude of all the other coefficients remain in contrastealy
asymptotic equation (11), by assuming that the coefficiaresot estimated.

frozen to their initial values but are evaluated from thetansa- In order to retain the contribution of the resonant parﬁde
neous distribution function given by the QL diffusion eqaat The
computation of the coefficient needs however to be revisited be- i N X
cause, as previously mentioned, the QL evolution predfes in et al. [2008], and retain the full contribution 8, that is no longer
the time of orderl /e* needed for the nonlinearity to become relea number but becomes the operator

vant, the perturbation of the distribution function saéisfi f ~ €. . )

Since the typical variation takes place on a parallel v&Jo@inge B— mn / vl  v)0: o°f Po. (13)

of ordere, it follows thatd” f /(0vj)* ~ 1/€* nearv; = 0, lead- “pp ) 8 8+ (9v})?

A, We return to the pressure balance equation as giv@alifiano
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Neglecting the time derivative indeed reproduges From the
Plemenj formula, it follows that

25 5
\/: 3 5 0?2 )
" - b= ———(—HO.) (Tb+ =F*ALb— b—Ab?).

B=Paty g”Al(_Haz) k2 ) =T 8)< TRl A TR )
N (16)

The presence of a denominator in the right-hand side of exuat
6 9 (16) reminds one of the phenomenological correction to ggoa
mn / ”_L(;(UH) f &3 (15) (11) suggested bpokhotelov et al. [2008] to model the flatten-
pB 8 (0 ’ ing of the distribution function. A main difference origites from
the dynamical evolution of the coefficients involved in oesdrip-
whose initial bi-Maxwellian value s, /8a. This finally leads to tion.

with

-1
vy = V2
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Figure 3. Results of the simulation of equation (16): solid lines shbe time evolution of(from left to right, from top to bottom)
Wi =, |bk]?, I', maximum ofy,, maximum of the magnetic fluctuatiobér), A andv, '. For comparison, dashed lines show the
evolution in the QL model. The dotted line in the left-bott@anel refers to the evolution of the maximum-eb(z), as predicted by
equation (16).

gether with the coefficients andv ', as functions of time.

Let us investigate the predictions of our model that réFhe dotted line in the left-bottom panel corresponds to the
tains the diffusion equation of the QL theory for the distrib time variation of the maximum of-b(x). For comparison,
tion function, but prescribes the nonlinear equation (18) fthe dashed curves show the evolution in the QL model (see
the evolution of the magnetic fluctuations. Figure 3 showsgure 1).
the time variation of different quantities as obtained by th We observe that for a while, the dynamics is essentially
numerical integration of this model (solid line), using theescribed by the QL model, but a departure is observed when
same initial conditions as for the QL simulation. From lefthe QL evolution tends to saturate the magnetic field fluctu-
to right and top to bottom, it displays the time evolution oétions. In this model, the magnetic energy continues to grow
the energy of the parallel magnetic fluctuatidits, the dis- and the maximum of b(x) displays a sharp increase suggest-
tance to thresholf, the growth ratey, of the most unstable ing a finite-time blowup, consistent with a subcritical lifu
mode, the maximum of the magnetic fluctuatidis), to- cation Kuznetsov et al., 2007b]. The computation should

thus be interrupted due to the lack of resolution. The aokst
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the singularity would require additional effects, not ietal plasma, as revealed by satellite measurements. A main char-
in the present model, such as nonlinear finite Larmor radiasteristic of the present model is the role of kinetic efect
corrections Kuznetsov et al., 2007a]. Figure 4 shows thethat lead to small-amplitude but very sharp variations ef th
profile of the magnetic fluctuationsatt = 6.3 - 10%, shortly parallel-velocity distribution function of the resonararp-
before the numerical explosion. We observe that the presetds, which eventually prescribes the geometry of the emerg
model predicts the formation of magnetic humps, in agreg structures.
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