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Proton core-beam system in the expanding solar wind: Hybrid
simulations

Petr Hellinger1’2 and Pavel M. Travnicek™?3

Abstract. Results of a two-dimensional hybrid expanding box simatatbf a proton beam-
core system in the solar wind are presented. The expansitnanstrictly radial magnetic field
leads to a decrease of the ratio between the proton perpsgadand parallel temperatures

as well as to an increase of the ratio between the beam-ctiezeditial velocity and the lo-

cal Alfvén velocity creating a free energy for many diffeténstabilities. The system is in-

deed most of the time marginally stable with respect to thelfgh magnetosonic, oblique Alfvén,
proton cyclotron and parallel fire hose instabilities whadtermine the system evolution coun-
teracting some effects of the expansion and interactinp edétch other. Nonlinear evolution

of these instabilities leads to large modifications of thet@m velocity distribution function.

The beam and core protons are slowed with respect to each artideheated, and at later stages
of the evolution the two populations are not clearly distiispable. On the macroscopic level
the instabilities cause large departures from the doubigbatic prediction leading to an ef-
ficient isotropization of effective proton temperaturesagreement with Helios observations.

1. Introduction and Gary 1998] based on a linear analysis assuming two drifting
bi-Maxwellian velocity distribution functions. Such adar analy-
Thermal and nonthermal proton properties in the fast solladw sis [Marsch and Livj 1987] indicate even strongly unstable cases in
are not well understood. The protons are essentially amtlisss contradiction with the theoretical expectations [Efellinger et al,
but they do not follow the double adiabatic prediction; tipgirpen- 2006, in the case of proton temperature anisotropy]. Theepiee
dicular temperature decreases with distance more slovilgreas of the parallel magnetosonic instability is moreover iadéd by a
the parallel temperature decreases faster than what istexpieom  linear analysis based on the observed proton velocityilligion
the double-adiabatic predictioMprsch et al, 1982]. Proton ve- function [Dum et al, 1980]. The beam-driven instabilities natu-
locity distribution functions are largely gyrotropic anekaypically ~rally reduce the relative beam-core velocity as a part ofttara-
skewed carrying a heat flux along the magnetic field in thecdiretion mechanismipaughton et al.1999] and may be responsible for
tion away from the SunNlarsch et al, 1982]. The proton heat the beam deceleration. In the solar wind the plasma systets st
flux (or its radial gradient) seems to be negligible for thetpn N the stable region and the expansion may continuouslyedhie
thermal energetics. However, the proton heat flux is typjicaim- system unstableMatteini et al, 2011]. In this paper we investi-

parable to the corresponding saturation heat fMarbch et al, 92t€ the evolution of the beam-core proton System usingythech

1982; Hellinger et al, 2011] indicating a presence of nonnegligi-€XPanding box model which self-consistently models thepetin

le secondarybeam populaton o a suongly istorecproe. (o7 DELUEeN 1 ipAnEon 200 o7 ket netableseisn 2
locity distribution function Feldman et al. 1973]. Helios obser- Fies section 3 presenqts the numericgl model and its resittally;
vations indeed shpw that the proton velocity d|str|but|c1ng‘pon in section 4 we discuss the simulation results and companma th
in the fast solar wind can be typically regarded as a supéipos |, - :

. h . X with observations.
of two populations, a more abundant, typically anisotropice
with perpendicular temperature greater the parallel onkaasec- . . .
ondary/beam population drifting with respect to the comnglthe 2. Theoretical considerations
ambient magnetic fieldlarsch et al, 1982]. Helios observations

indicate that the drift velocity between the core and thebea- Proton velocity distribution functions in the fast solanitypi-
creases with the distance roughly following the local Affve- cally exhibit two populationsNlarsch et al, 1982]: first one, nomi-
locity. This effect is on the macroscopic level connectethvei nally more abundant, called here core and a second one talted

cooling of the total/effective parallel proton temperat(ivarsch beam. The two populations can be described to some extend as

: two bi-Maxwellian distributions Goldstein et al. 2000] drifting
and Rlchter 1987]. A transfer of the parallel energy fo the PETWith respect to each other along the ambient magnetic fialdhS
pendicular one may be partly responsible for the observetbpr

perpendicular heatingghwartz et a).1981]. a description is a useful approximation to investigatedimstabil-

: . ity of the system with respect to different instabilities owkver
Processes responsible for the formation of the beam and {ﬁ/[ Y P '

. ; . X s approximation is not generally sufficient for resoniaistabil-
its deceleration with respect to the core are not well eistadti iog [Dum et al, 1980; Gary, 1993] where the linear dispersion

[Matteini et al, 2011]. Helios Marsch and Livj 1987;Tu et al, s |argely determined by a small resonant portion of the cigfo
2004] and Ulyssegjoldstein et a|.2000] data sets indicate a presjistribution function.

ence of beam-driven electromagnetic instabilities [Jarahagne-  The proton distribution function consisting of two bi-

tosonic, oblique Alfvén, cf.Montgomery et a).1976; Daughton  pMaxwellian velocity distributions drifting with respeco teach
other may be a source of free energy for many different inigiak.
Temperature anisotropy of the (core and possibly also b@eaoa)

1 Astronomical Institute, AS CR, Prague, Czech Republic tons can generate at least four electromagnetic insiabilfiBary,
2|nstitute of Atmospheric Physics, AS CR, Prague, Czech Rigpu  1993;Hellinger et al, 2006]: for7}, . > Ty, there are the proton
3SSL, UC Berkeley, USA cyclotron and mirror instabilities while fdf}, ;. < T, there are

the parallel and oblique fire hose instabilities (for themi@fins of

all symbol used here see Appendix C).
Copyright 2012 by the American Geophysical Union. The secondary/beam population drifting with respect to the
0148-0227/12/2011JA016940$9.00 core protons may drive another set of electromagneticbiigtas
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[Daughton and Gary1998, and references therein]; the most reldtop right), the Landau resonance (bottom left), and theradous
vant ones are usually the parallel magnetosavicritgomery etal.  cyclotron resonance (bottom right) as functions)pfaindv, . The
1976] and oblique Alfvéen [numbered as (I) IBaughton and Gary  solid curves show isocontours féyf /6t > 0 whereas the dotted
1998] instabilities. It is important to note that the pagbfire hose  curves show isocontours féif /6t < 0. The dash-dotted lines de-
and the magnetosonic instabilities drive waves at the saamch pote the resonant velocities, (cyclotron), v, (Landau), anta.
and are related [cfHellinger and TrévnjéelQOOﬁ;Mattelnl et a}lz (anomalous cyclotron) given by Equation (1). Figure 1 gively
g?tlhle]'pﬁ?ﬁ%}ﬁi&?&iﬁ%&%ﬂﬂ gé‘ﬁg'ﬁg&?ﬁg'r:‘?gtggg%eﬁg?n qualitative results, the isocontour levels on the difféqgamels are
5 : arbitrary and independent. Figure 1 shows that the obligieA
found that for a wide range of parameters the parallel magoeic instability slows the resonant beam particles and heat tinetime

instability is dominant. However, as the two instabilitigspend ) L e
differently on the many present parameters (core and beam d erpendicular direction, has a tendency to flatten the itgldistri-

sities and temperatures, differential velocity, and etecparame- Pution function alongy in the Landau resonant region and heats in
ters) the oblique Alfvén instability becomes dominant doother the perpendicular direction and accelerate the resonagprotons
wide range of parameters (e.g., for large beam density aediall through the cyclotron resonance. On the quantitative lékelam-
core temperatures). Moreover, these instabilities areayly res-  Plitudes of|d f /5t| are strongest for the anomalous cyclotron reso-
onant and their properties strongly depend on the detatlseofe- nance, weaker for the Landau resonance and they are the steake
locity distribution function in the resonant region. Udyabnly for the cyclotron resonance.

the three basic resonances, cyclotron, Landau and anosnajsu
clotron ones, are relevant. The corresponding resonaatitiels

(for a wave with the real frequency. and the parallel component 3
of the wave vectok) are given as

— Wr — Wep _ Wr _ wr + Wep
Vo= —— UL = e Vae = ———
I

b 1
ky ky @

The resonant particles may importantly contribute to timedr
(Equation (Al)) as well as to the nonlinear/quasi-lineaqu&
tion (B5)) properties of the plasma.

At the parallel propagation, the linear dispersion sphitshree

branches separating the cyclotron, anomalous cyclotraudE B 2 . 2

tion (A4)) and Landau resonances. The parallel fire hose and= ®

the magnetosonic instabilities interact through the arousacy- a3 tr

clotron resonanceMatteini et al, 2006] while the proton cyclotron

Tgs;zgl])ility interacts through the cyclotron resonanGaiy et al, PR '1";01 Y e o0 o1 02
i ,'H — v ,'H — Vge

Atoblique propagation, the unstable waves can resonaiadhr  Figyre 1. (top left) Example of unstable proton velocity dis-
more than one resonance at the same time. For example, whilgipytion function f, as a function ofy; andv,. The other
the mirror nonpropagating mode resonate with particlesniyai - panels show the contribution of the most unstable mode to the
through the Landau resonanckijelson and Southwoodl996; ¢ jasi-linear diffusions f/5¢ (Equation (3)) near the cyclotron
Califano et al, 2008] the nonpropagating oblique fire hose res- Lasonance (top right), the Landau resonance (bottom &ft),

onate through both cyclotron and anomalous cyclotron @&soes : ;
[Hellinger and Travnicek2008]. Let us here look at the case of the g}i\?gﬁ:invilofhgysccljﬂg%rr\?essgﬁcr;\?vei s(gg(gft?urrgg;/?; f;xr:)stl
oblique Alfvén instability. For the following parameters whereas the dotted curves show isocontourssfpfst < 0.
Dashed dotted lines denote the resonant velocitiesyr,, and
=0. =0. =1. . '
np = 0.9, np, = 0.1ne, Vpp 8va, vae (Equation (1)).

ﬂpH = 0.2, ﬂb” = 0.1, TpL/TpH =1.8, TbL/TbH =1, (2)

the system is unstable with respect to the oin%ue Alfvé&stain One can for a comparison calculate the impact of the most un-
bility with the maximum growth rate/m.. ~ 10" “we, atk ~ stable mode for the magnetosonic instability and the resust
0.8v4 /wep andbyp ~ 50.8° havingw, ~ 0.38w.p. In this case, qualitatively very similar to the anomalous cyclotron nesoce of
the unstable waves resonate with the protons strongly girthe  the oblique Alfvén instability (Figure 1, bottom right)n l case
anomalous cyclotron resonance. Furthermore, they resoat- of 5 syfficient core temperature anisotrdpy > T the proton
negligibly through the Landau resonance whereas the agelot .10 instability is destabilized and resonates tgtothe cy-
;g:gz:zgg;% r:gtggrr] \c,:vaeI(&:lLljl.atl-c;heesitHagst z&rﬁ]lgmgs?mme clotron resonance. This instability has diffusion proarsimilar

p to those shown in Figure 1 (top right) but with the opposifedf

on th.ellinitialdpfrfotqn velocity distribution functioffy through the 5f/8t — —6f/5t, cooling in the perpendicular direction and de-
quast-linear drftusion celerating (resonant) core protons.

o _ 0 { Hu—afo + D\u—afo}

6t vy dv) Ov, 3. Simulation results
——=——wvy |Dy % + Dy % . 3) The two dominant beam driven instabilities, the paralleymex
vl 8vJ_ 8'0“ 81)1_

tosonic and oblique Alfvén ones, have different linear andlin-

The diffusion coefficientsD have been derived biennel and ear properties. They compete for essentially the same freegy.

Engelmann[1966] and are given in a more explicit form in Ap- | N€éir nonlinear behavior and competition is a highly corrpieob-
pendix B. Figure 1 displays the result of such a calculatartiie €M which needs a kinetic modelinpaughton et al{1999] per-
example case with the parameters given by Equation (2). dine formed a set of standard two-dimensional (2-D) hybrid (k@iens
left panel of Figure 1 shows the proton velocity distribationc-  and fluid electrons, see below) simulations and investitated
tion fo as a function ofv; andv.. The other three panels showparametrized the saturation properties of these instiaiili They
the contribution of the most unstable mode to the quasatlimif- have assumed weakly unstable initial conditions and oleseouly
fusion ¢ f /6t given by Equation (3) near the cyclotron resonancereak wave amplitudes and small changes in the proton vglocit
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distribution functions which is compatible with the quéiskear ex-
pectations. They have confirmed that these instabilitidaae the
differential velocity between the beam and core and heatlytie
beam in the perpendicular direction.

3.1. Model and initial conditions

A11101 -3

which leads to beam driven instabilities.

For initial conditions we have chosen these parameters:

np = 0.9ne, Ny, = 0.1ne, vbp = 1.3v4,

Bl = 0.2, By = 0.1, Tp1 [Tpy = 1.8, Ty /Ty = 1. (8)

In standard numerical studies of kinetic instabilities sigstem This choice is comparable with the proton properties in #se $o-

starts in the unstable region and the simulation revealsliffer-
ent instability phases, initial exponential grow, satiaragnd post-
saturation evolution including effects of competitionweeén dif-
ferent instabilities Daughton et al. 1999]. However, in the solar
wind the system typically starts in the stable region andettpan-
sion may continuously drive the system unstaihatteini et al,

lar wind atRo ~ 0.3 AU (but no alpha particles and other minor
ions are considered here for simplicity). The characterigne is
chosen to be, = 104/wcp0, which is about 10 times faster than
in the solar wind. The system of Equation (8), is marginatabte
with respect to all the relevant instabilities (see below).

2011]. To study the response of the solar wind plasma to a slci2- Waves

expansion we use in this paper the expanding box ma@iedpin
et al, 1993] implemented to the hybrid code batthews[1994].
The Hybrid Expanding Box (HEB) simulations self-consigkgn
model the competition between the expansion driven freeggne
for instabilities and the relaxation owing to these inditiés. In
the HEB model Liewer et al, 2001; Hellinger et al, 2003] the
expansion is described as an external force where a corsstiant
wind radial velocityvs., is assumed. The radial distanBds then

t

R = Ro + vswt = Ro <1+t_) (4)

whereR, is an initial radial distance and = Ry /v is a charac-
teristic expansion time. Transverse scales (with respebetradial
direction) of a small portion of plasma, co-moving with thaas

wind velocity, increase with timec (1 + ¢/t.). The expanding
box uses these co-moving coordinates, replacing the sgdapan-
dence by the temporal one (Equation (4)). The physical enss
scales of the simulation box increase with time [d¢éellinger and

Travniek 2005, for a detailed description of the code].

The characteristic spatial and temporal units used in théeino
areva/wepo and1/wepo, respectively (for the definitions of sym-
bols used here see Appendix C). We use the spatial resolut
Az = Ay = va/wepo, and there ar@, 048 particles per cell for
the core protons antl, 024 particles per cell for the proton beam.
Fields and moments are defined on a 2-& grid with dimensions

512 x 512 with the periodic boundary conditions. Protons are ad-

vances using the Boris’ scheme with a time stefp= 0.05/wepo,

while the magnetic fieldB is advanced with a smaller time step
At/10. The initial ambient magnetic field is directed

Atp
along the radial direction, Bo = (Bo,0,0) and we impose a
continuous expansion in the transvergeadz) directions.

For simplicity we here only consider a strictly radial matine

field. In this case the expansion leads to a decrease of thieaimb

density and magnitude of the magnetic field as

-2
1+i)

- ©)

nocBoc(

The wave activity is initially on the noise level which is tigg
ble owing to the large number of particles per cell. Consatiye
the system follows the double adiabatic prediction durtmefirst
phase. Later on, the system becomes unstable and geneeates w
alter the double adiabatic evolution. Figure 2 displaysti@ution
of the wave spectra: The top panel shows the fluctuating ntiggne
field 682 /B¢ as a function of time (solid line). The dashed line
denotes the fluctuating magnetic field with oblique propagat
|0x| > 30°. The middle and bottom panels display gray scale
plots of the fluctuating magnetic fiefdB as a function of time and
wave vectolk and as a function of time and propagation artgle,
respectively.
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Figure 2. Evolution of the wave spectra: (top) Fluctuating
magnetic fieldd B2/ B¢ (solid line) as a function of time. The
dashed line shows the fluctuating magnetic field at obliqop-pr
agation with|0,z| > 30°. Gray scale plots of the fluctuating
magnetic fieldy B as a function of time and wave vecto(mid-
dle panel) and as a function of time and propagation afigle
(bottom panel).

and the double adiabatic prediction of the proton tempegatu

anisotropy and parallel beta in the expanding box is

2
1+i) . ©)

t

The expansion tends to increa$g /7, leading to the corre-
sponding temperature anisotropy driven instabilitlésl[inger and
Travnicek 2008].
va o« 1/(1 + t/t.) whereas the parallel differential velocity,,
between the proton core and beam populations is constarthéo
strictly radial magnetic field) when no wave activity or ¢sitbns
are present. This results in a continuous increase of thgdr, r

Vbp
vaA

@)

Ey

Figure 2 clearly demonstrates that soon after the beginoing
the simulation electromagnetic waves are generated, fiasjaasi-
parallel propagation with wave vectors abOui-1.1v4 /wcp, pre-
sumably due to the parallel magnetosonic instability, datér,
oblique waves appear with lower amplitudes and with wave vec
tors abou).1-0.5v4 /w.p, probably due to the oblique Alfvén in-

Furthermore, the Alfven velocity decrease§tability. To understand better properties of the gendrateses let

us look at the density fluctuations. Figure 3 display the wiah

of the density fluctuations in a format similar to Figure 2.eTth
panel of Figure 3 shows the fluctuating total proton den®if§)/ng

as a function of time, whereas, the middle and bottom parigis d
play a gray scale plot of the fluctuating total proton denéityas

a function of time and wave vectérand as a function of time and
propagation anglé, s, respectively.
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teini et al, 2006;Rosin et al. 2011].

0.004 and a second saturation aroune- t.. When speaking about sat-
~e 00035 - uration, it is important to note that both the background #rel
3= 0002 E fluctuating magnetic fields decrease with time with gengrditf-

5 0.001E ferent_rates. The background magneti_c field dec_rea}sewvintlp

0.000 Equation (5) and the_rate for the fluctuating magnetlc,flemds

15F ~ on the wave properties [e.g.,_ for low-frequency AIf_ven ws\one

L TE ] expects WKB evolution, cf.l.iewer et al, 2001;Hellinger et al,

E 1.0F e 2005]. Furthermore, the wave modes which have been gederate

I osE E may (and likely will eventually) become damped/stabili&tht-

Lo UUE 5
oof e :

90°¢ E 3.3. Velocity distribution functions
450} ——— E . . . . opege .
8 b = = E Further investigation of instabilities (or other procegsehich
< e e are responsible for the observed waves it is necessaryéstigate
'450? E the evolution of the proton velocity distribution functioRigure 4
'90(; 1 > 3 displays the proton distribution function at three timesp(pan-

t/t, els)t = 0.2t., (middle panelsy = t., and (bottom panels) at
t = 3te. The left panels show the total proton distribution func-
tion, the middle panels shows the distribution function aftpns
which initially formed the core while the right panels shaws dis-
tribution function of protons which initially formed the &e pop-
ulation. Figure 4 shows that the proton velocity distribatfunc-
tion is strongly modified owing to the interaction betweentpns
and the generated waves. The beam particles are clearlgdlow

Figure 3 shows that the quasi-parallel waves are essgritiall down. The perpendicular cooling expected from the doubie-ad
compressible in agreement with the linear expectationsedsshe Patic prediction concerns only a portion of the proton distiion
oblique waves are weakly compressible. Further analysisates With roughly [v | < va. The superalfvénic protons are heated in
that the oblique waves have comparable transverse magoeatic the perpendicular direction for both the beam and core fatjouis.
ponentss B, ~ 6B, ~ §B, and that the parallel componefB, This is consistent with the quasi-linear predictions far parallel
evolves similarly tosn (see Figure 3) and has similar amplitudegnagnetosonic and oblique Alfvén instabilities for thenstard and
§B2/B ~ 6n*/nd. anomalous cyclotron resonances. Furthermore, there digain

The top panels of Figures 2 and 3 also indicate that the abligtions of a formation of a quasi-linear plateau due to the lsand
waves grow in two stages with a first saturation around 0.4t  resonance.

Figure 3. Evolution of the density fluctuations: (top) Fluctu-
ating proton densityn?/ng as a function of time. Gray scale
plots of the fluctuating densityn as a function of time and wave
vectork (middle panel) and as a function of time and propaga-
tion angledy (bottom panel).
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Figure 4. Proton velocity distribution functions as functionswgfandv, (normalized to the initial Alfvén velocity
va0) at (top panels} = 0.2t., (middle panels} = t., and (bottom panels) at= 3t¢.. Left panels show the total
distribution function, the middle panels shows the disttitn function of particles which initially formed the core
while right panels shows the distribution function of palds which initially formed the bean population. Dashed
lines displays the local Alfvén velocitya .

least at the beginning of the simulation as the initial vitijoc
The complex proton velocity distribution functiondistribution function has this form.

presents a problem when we attempt to separate the core and
beam particles. In the code the core and beam populations
are treated as separated species and we can determine their*”
mean velocities and temperatures. In reality, howeves, iti  °sf
impossible to determine the origin of a given proton. One sl
possibility how to characterize the proton velocity distri ‘
tion function is to fit it by a given analytical form. Here we
fit the proton velocity distribution function as a superposi
tion of two bi-Maxwellian distribution drifting with resp
to each other along the ambient magnetic field [Gold-
stein et al, 2000]. We expect that such a fit would work at

10

UENYAENT

.
Q

10
10

Tyr/Th1o

0 1 2 3 0 1 2 3

t/te t/t,
Figure 5. Evolution of the beam properties: (top left) number
density,n,, (bottom left) mean velocityy,, (top right) parallel,
and (bottom right) perpendicular temperatutgs, and7; ., as
functions of time. Solid lines show results of a fit of the tota
proton distribution function as a sum of two bi-Maxwelliag-v
locity distribution functions. Dashed lines show momerdb ¢
culated from protons which initially formed the beam. Ddtte
lines denote the double-adiabatic prediction.
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Figure 5 shows the evolution of the beam properties ohbly from the calculated moments and after 1.5¢., there
tained from the fit (solid lines) compared to the moments the jump in the fitted results.
calculated from protons which initially formed the beam
(dashed lines). Figure 5 displays (top left) number densi8-4. Instabilities and nonlinear effects
ny, (bottom left) mean velocity,,, (top right) parallel, and  The fitted results now may be used to estimate the lin-
(bottom right) perpendicular temperaturégy and7i,1, as ear stability of the proton distribution. It turns out, how-
functions of time. For a comparison the dotted lines denogger, that the linear prediction based on the fitted results
the double-adiabatic prediction. Figure 5 shows thataljti may strongly depart from the linear calculation based on the
the fit and the moments give similar results following theelocity distribution since the relevant instabilities aes-
double adiabatic prediction. As the important wave actisnant. Figure 7 shows the linear prediction, the maximum
ity develops the double adiabatic prediction is brokennibeagrowth ratey,,., as a function of time for the relevant insta-
protons slow down and are heated in the perpendicular @itities. The top left panel shows,.., the parallel magne-
rection while they cool in the parallel directions. Duritgst tosonic/fire hose instability for waves propagating aldme t
time the fitted results departs considerably from the calcbeam,v,,,kjw > 0. The bottom left panel shows,.x for
lated moments and aftee> 1.5¢t. there is ajumpinthe fitted the parallel fire hose instability for the propagation again
results which indicates that the proton velocity distribot the beamuypkyw < 0. The top right panel shows,,.x
cannot be at later times characterized as a superpositiorf@fthe oblique Alfvén instability. Finally, the bottomgfit
two bi-Maxwellian distributions (see Figure 4). panel showsy,,.. for the parallel proton cyclotron instabil-
ity for the propagation along the beam. The solid lines show
the results for the two bi-Maxwellian fit of the proton ve-
locity distribution function (the results are only showrr fo
t < 1.5t., see above for the problems with the fitting pro-
cedure) whereas the dots display the linear prediction cal-
culated from the actual distribution function. For the para
lel propagating instabilities Equation (A4) is used (witte t
appropriate sign) whereas for the oblique Alfvén insiapil
the general from of the dispersion relation, Equation (Agl),
used (in the infinite sum only the subset0 < n < 10 is
taken into account; for more details see Appendix A).

0 1 11, z 3 0 1 t/t,~ 2 3 é—o.oos—
Figure 6. Evolution of the proton core properties: (top left)
number densityps,, (bottom left) mean velocity,,, (top right)

0.002

parallel, and (bottom right) perpendicular temperatufgs and 0000
T, , as functions of time. Solid lines show results of a fit of the 0010
total proton distribution function as a sum of two bi-Maxligah 0008
velocity distribution functions. Dashed lines show monsent So00sf
calculated from protons which initially formed the core. tbo 3

ted lines denote the double-adiabatic prediction. .

0.002-

T—— o
0.000 o i q
As for the core protons, Figure 6 shows the correspond- T

ing plot for the evolution of the core obtained from the fit _ ) )
(solid lines) compared to the moments calculated from profigure 7. Maximum growth rateymax as a function of time
for the relevant instabilities: (top left) the parallel nmag

tons which initially formed the beam (dashed lines). l:ig'tosonic/fire hose instability for the propagation alonglikam,

ure 6 shows (top left) number density,, (bottom left) mean  (bottom left) parallel fire hose instability for the proptiga
velocity, vy, (top right) parallel, and (bottom right) perpen- against the beam, (top right) oblique Alfvén instabilignd
dicular temperatured,,; and 7}, , as functions of time in  (bottom right) parallel proton cyclotron instability fdne prop-
the same format as in Figure 5. For comparison the dot29ation along the beam. The solid lines show the resultsiéor t

. - . - . wo bi-Maxwellian fit of the proton velocity distribution fic-
ted lines dgn_o_te the dO_Uble'ad'abat'C pred'c_t'on'_ Flgure ion whereas the dots display the linear prediction catedla
shows that initially the fit and the moments give similar re-from the actual distribution function.
sults and follow the double adiabatic prediction. As the im-
portant wave ac'uwty appears the gore_protons are W(.aaklyFigure 7 (top left panel) shows that the system is initially
accelerated, cooled in the parallel direction and heatétbin ¢ p1c \vitn respect to the parallel magnetosonic instgbili

perpendicular one. The fitted results then departs Cons'dﬁlﬁt becomes rapidly unstable. The proton velocity distribu
tion function remains nearly bi-Maxwellian and the predic-

2 25 30 05 1 2 25 3

15 15
t/te t/t.
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tion based on the bi-Maxwellian fit is close to that based gortant fort = 0.4¢. which suggests that secondary growth
the full velocity distribution function. The two predictis of the oblique waves is mainly driven by the wave-wave in-
soon substantially differ starting &t~ 0.1¢. where the max- teraction. The initial growth of oblique waves seems to be
imum growth rate based on the velocity distribution funetiorather related to the oblique Alfvén instability with a gés
starts to decrease whereas the prediction based on the-fit dde contribution of the three-wave interaction.
tinues to increase (it reaches the maximyny 0.02w,, at Figure 7 (bottom right panel) shows an interesting phe-
t ~ 0.3t.). This discrepancy is likely owing to the resonanbhomenon. The proton cyclotron instability (for the propaga
wave-particle interaction (see Figure 4, top panels). T8e stion along the beam) is initially weakly unstable, (., ~
tem seems to become nearly stabilized at0.5¢; lateron 3 - 10~%w,,,) owing to the core temperature anisotropy. Be-
the maximum growth rate increases again. In this case itdause of the perpendicular cooling this instability is diyi
rather the parallel fire hose instability as the proton vigjoc stabilized before it can drive an important wave activitiisr
distribution function exhibit rather a temperature amspy instability, however, appears later on, during the staaiion
than a drifting beam population (see Figure 4) although thoé the oblique Alfvén instability. The destabilization tbfe
distinction between the two instabilities is not clear. proton cyclotron instability is therefore likely causedthg
Figure 7 (top right panel) shows that the system is alsesonant heating of the core protons by the Alfvén waves
initially stable with respect to the oblique Alfvén instlity.  driven by the oblique Alfvén instability in agreement with
This instability appears later than the parallel magnatimso quasi-linear predictions (see Figure 1 and the correspond-
one ¢ ~ 0.2t.) when the proton velocity distribution func-ing text). The proton cyclotron instability remains unséab
tion is importantly affected by the wave-particle intefawns long after the oblique instability becomes stabilized.sTiki
(see Figure 4, top panels). In this case the linear predictipossibly because the oblique waves are present in the sim-
based on the fit does not exhibit an unstable solution contradation long after the saturation. Moreover, the proton ve-
to the prediction based on the velocity distribution fuasti locity distribution is further influenced by the parallel gia
which gives the maximum growth rate for the oblique Alfvémetosonic/fire hose instability and the nonlinear waveavav
instability with magnitudes similar to those of the parblleinteractions at later times which may further influence the
magnetosonic instability. The linear prediction based dmear stability of the system.
the velocity distribution function gives the maximum growt  Figure 7 (bottom left panel) shows that the anti-parallel
rate for a mode with a wave vector and an angle compadtfire hose instability is essentially stable during most @& th
ble with the properties of the oblique wave activity obsérvesimulation. This instability seems to appear with small
in the simulations at the same time (see Figures 2 and 8)owth rates near the end of the simulation, possibly as a
The appearance of the oblique waves likely contributes tesult of the expansion and the parallel proton heating due
the stabilization of the magnetosonic instability. AftBet to the proton cyclotron waves and/or due to nonlinear wave-
stabilization of the oblique Alfvén instability @t ~ 0.5t, wave interactions. Finally, we note a relatively large trat
the maximum growth rate of the parallel magnetosonic/fif the calculated maximum growth rates based on the veloc-
hose instability starts to increase. ity distribution function (Figure 7, points) which indiest
The oblique Alfvén instability may explain the firstthat the precision of the calculation of the orden 6f 4w,
growth of the oblique waves which saturates at 0.4z, but
cannot explain the second growth and saturation att, 3.5. Macroscopic view

(see Figure 3). It is possible that some other oblique in- The pean-core separation of the proton velocity distribu-
stability [cf., Daughton and Gary1998] appears then buttion function is almost impossible during the later stages
we have not been able to find it. This does not eXCIUdecﬁ the Simu'ation' For a Comparison Of the Simu|ation re-
possibility of another instability since the parametercgpasyits with observations it is therefore interesting to lak

is very large but it may indicate that these oblique wavge moments of the total proton velocity distribution func-
grow due to nonlinear effects, for example a wave-wave ifipn. Figure 8 (top panels) shows the evolution of the to-
teraction. To test |f thel’e eXiStS a three'WaVe interacm tal/effective (|eft) para”e' and (r|ght) perpendicu'amper_
have calculated the bicohererité , k») [Kim and Powers  atures, T} and T, respectively, as functions of time. For
1979] of the discrete-Fourier-transform&d component of comparison the dotted lines denote the double-adiabatic pr

the magnetic field as diction. The combined actions of the parallel cooling oftbot
- the populations and of the beam deceleration with respect to
’<Bz(k1)Bz(k72)Bz(k71 + k2)>’ the core leads to an important decrease of the total parallel
b(k, k1) = ©) temperature. The perpendicular heating of the two popu-

<‘BZ(k1)BZ(k2)BZ(k1 + k2)‘> lations contributes to a decrease of the total perpendicula

where() denotes time averaging. This bicoherends a tempergture s!ovyer than what is expected from the double
adiabatic prediction.

four-dimensional array which is difficult to analyze; tak- To characterize the skewness of the proton velocity dis-

ing different two-dimensional FUtS of the four_dImenSIbna{ribution function owing to presence of the beam population
space(k1, k2) we have found important phase coherenc?g

oI . : ._Tet us look at the proton heat flux. Figure 8 (bottom pan-
indicating a three-wave interactions between one Ob|lqté %) shows the evolution of the (left) parallel and (righe
mode and two quasi-parallel modes. The bicoherence is im- P grErp
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pendicular components of the proton heat flgx,andq,, the chosen initial condition the expanding system becomes

respectively. The two heat fluxes are normalized to the cagpidly unstable with respect to the parallel magnetosonic

responding parallel and perpendicular saturation heag$luxinstability. This instability saturates rapidly in a qudisiear
manner by scattering/heating in the perpendicular dwacti

3/2 K3/2pi/2p .
n(kpTj) nkg 44l the resonant particles through the anomalous cyclotron res
Gsatl = =772 and gsar1 = ml/2 o ( onance while only weakly decelerating these particles with

respect to the core in agreement with previous standard sim-

respectively.  Initially, the system follows the dOUbIeUlation resultsDaughton et al.1999]. This evolution leads

adiabatic predictions and the ratio between the heat ﬂuxt%Sdestabilization of the competing oblique Alfvén instab

and the corresponding saturation values remain ConSte}ﬂ;‘which is more efficient in reducing the drift velocity be-

The deceleraﬂon of the beam with respect to the core (aeguse the generated waves interact with protons through all
the parallel cooling) leads to a decrease of the paralldl h

value owing to the perpe_ndicular heating but Igter on it d‘?éring/heating of the core protons leads to destabilinatio
creases as the deceleration becomes the dominant effect.[he parallel proton cyclotron instability. Such a simplasi
linear picture is however modified by nonlinear (wave-wave)
100 : : 100 : : interactions which appear around the first saturation of the
oblique Alfvén instability. The relevance of the quasidar
approximation becomes then questionable; this is a general
I ] problem of the weak turbulence in the magnetized collision-
\\ less plasmas [cfAamodt and Drummondl964; Sugaya
e 1991] which needs further theoretical and modeling work.
‘ ‘ e The chain of the different resonant instabilities and nenli
10 ‘ ‘ o ‘ ‘ ear effects leads to large modifications of the proton véloci

TH/TI)
T /Ty

distribution function so that except a short initial pertbe
s 2 distribution function cannot be simply described as a super
iw”\ Sw0p 1 position of two bi-Maxwellian distribution functions anioet

linear analysis must be performed using the local velocity

/\ distribution function (but again the relevance of the linea

o' . s . . s . prediction at the nonlinear stage is questionable).

tte tte On the macroscopic level the instabilities lead to large
Figure 8. Top panels: Total (left) parallel, and (right) perpen- departures from the double adiabatic predictions, the wave
dicular temperatured;; andT’, (normalized to the initial mean 1, icje interactions cause an efficient isotropizatiore®bf
total temperatur@o = (7o + 2710)/3), as functions of time. fective tem i Th _particle int i o
Bottom panels: (left) parallel and (right) perpendiculampo- peratures. {he wave-parlicie Interactions ees
nents of the proton heat f|uqH andg, (normalized to the cor- duce the proton heat flux. The present simulation started
responding saturation heat flux..; andgsac., respectively), — with the parallel heat flux comparable to the saturation one
as functions of time. Dotted lines denote the correspondingand these two heat fluxes remained comparable during whole
double-adiabatic predictions. the simulation.

The simulation model used in this paper does not fully
describe the complex properties of the solar wind. We as-
sumed the strictly radial magnetic field for simplicity; ghi
nominally represents the polar regions but is also compati-

In this paper we have presented results of a 2-D hybride with the inner heliosphere below 1 AU where the mag-
expanding box simulation for the proton beam-core systemetic field is predominantly radial. The chosen characteris
in the fast solar wind with initial proton parameters compaic expansion time is about ten times faster than in the solar
rable with the Helios observations at 0.3 AU. The HEB sinwind, the model does not include the turbulence/wave activ-
ulation exhibits a complicated evolution. The system istmoiy present in the solar wind and minor ions as alpha pa#icle
of the time marginally unstable with respect to (at leasty fo are not considered. The model, however, self-consistently
different instabilities which determine the system eviolut resolves the competition between the expansion and kinetic
counteracting some effects of the expansion and competingtabilities. The presented simulation results sugdest t
with or driving each other. The expansion with the strictlyhe kinetic instabilities are partly responsible for the-pr
radial magnetic field leads to a decrease of the ratio betwden perpendicular heating and parallel cooling in the fast s
the perpendicular and parallel proton temperatures asasellar wind as observed by Heliodarsch and Richter1987;
to an increase of the ratio between the beam-core diffedentiellinger et al, 2011]. This paper also confirms that the
velocity and the local Alfvén velocity. In this way the expa linear prediction for resonant instabilities generallgds to
sion creates a free energy for many differentinstabilitte® be calculated from the full distribution function [cDum

4. Discussion
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et al, 1980]; this property may explain observations wherease of the parallel propagation, the relation, Equaticf) (A
instability analyses based on simplified models of the protoeads

velocity distribution function indicate strong linear gyrih 1262 1 o2 9 5 Iy

rates Marsch and Livj 1987;Hellinger et al, 2006] (to say I L “ps /“_L [l d3

nothing about nonlinear effects). w? 2 (w— kv £ wes)?
(A5)
Appendix A: Linear theory / Wes fs d3 =1
oﬂnh w — kjv) £ wes ’

The linear dispersion relation = w(k) in the magne-
tized collisionless (non relativistic) plasma is given by Similar but more complicated expressions one obtains in the
general case, Equation (A2). For the velocity distribution
detD(k,w) = 0 (A1) function obtained on a fine grid, one can approximate the
integral by a simple summation over the grid; this is the

where the dispersion matrR is given by method used in this paper. We have, however, encountered

B262 4 o2 2 numerical problems for very weak growth rates. After the
D = < 5 ) 1- k:k:—2 (A2) integration/summation over, one gets to evaluate this type
w of integral:
fs Wcs Ofs o0 3
T v
Z / H 61)“ UL v, Tns dg’U / f( ||) dU” ) (AG)
W — k”’l}” — NWes w — k”’l}” — NWes
—0o0
WhereT,,., are Hermitian matrices Close toy = Sw = 0 the resonances pose numerical prob-
, lems. One possibility to remedy this problem is to move the
nk‘—;cs J2 _mk_oicvaJnJ;l %“H J? integration contour below the real line to
Thns = i”“i“v Ind}, v? J/? iy JnJ), co—ie f(v”)
Beey J2 —ivprJa), o33 / k dy (A7)
€L (A3) —oo—ije W — ”’UH — NWes

J, and J!, being the Bessel functions of the fist kind andor a smalle > 0. This procedure requires an analytical
their derlvat|ves respectively, of the integer ordewith the continuation off(v”) which may be approxmated using the
argumentt, v, /w (for the definitions of all symbol used real derivativef (v — ie) = f(vH) - zeaf/avH

here see Appendix C).

At the parallel propagation the dispersion relation sphti
to an electrostatic branch and two electromagnetic branche
with left- and right-handed circular polarization: Assuming the quasi-linear approximation, a superposition
of linear wavesKennel and Engelmani966]

ppendix B: Quasilinear theory

kﬁcQ ” 6 fs — Wes gfs
Clowy T v dor dv=1 (1 _ ik-z—iwt
w? oﬂnh / 2 w— k) £ wes Y £ = ZdE(k},w)e (B1)
. . (A4) (1) ik-x—iwt
The above expressions, Egs. (A1,A4) are valid only for O =" dfulv,k,w)e (B2)
v = Sw > 0 and fory < 0 must be analytically contin- k

ued.

The linear dispersion relation must be generally solved
numerically. In the case when particle velocity distribuati which are solutions of the linear dispersion
functions may be considered as bi-Maxwellian distribusion D(k,w) - 6E(k,w) = 0 (B3)
drifting along the ambient magnetic field the integratioriov
velocities in the dispersion relations may be performed abased on the instantaneous velocity distribution funstign
alytically which leads to expressions involving the plasmahich in turn is assumed to vary owing to the second order
dispersion functionHried and Conte1961] and (at oblique effects averaged over the space, phase and (fast) time,
propagation) modified Bessel functions [Stjx, 1992]. )

For a general distribution function the integration mustbe  9fs s (E(l) Lo x B(l)) Ofs (B4)
performed numerically even in the case of analytical form 0t  mx ov |-

[cf., Wong et al. 1991]. In the case of a velocity distribu-
tion function obtained on a grid from numerical simulatior] he Seécond order effects lead to the diffusion equation

(using the particle-in-cell scheme) or a discrete velodisy afs 9 o, o,

tribution function observed in situDum et al, 1980] the ot 8_1)H ( HHS(% + D1 3%)

solving the dispersion relation is more complicated. s thi

case it is better to remove the derivatives of the distrdouti + iiv (D“ls fs + D s fs ) . (B5)
function via the integratioper partes For instance, in the vy Quy A vy
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where the diffusion coefficient can be given the following Here subscriptd and|| denote the perpendicular and par-
explicit form

Dy

Dyj1s

Dy s

Dy

o0

a1 7
m2 k% [w]? |w — kv — nwes|?

by

k n=-—o0
%[|§Em|2n2J2kﬁwfs
+ 0By [ (3, kifkT vl
+ 6B, [2T2k? |w — nwes|?
+ 200, 0B ynJy J kik L wesv 1
— 20(W — Nwes) 8By OF , I I Ky kT v L

+2(w— nwcs)éEIEZnJgk”kJ_wcs (B6)

o0

-y 2 NWes ol "
o i m2 kf_vL|w|2 |w — ko — NWes |2
%[|5E1|2n2J2k||wgs

+ 8By [*(J;,) 2Ky kT 0t

+ |§EZ|2£/€i’U” (2wr - kHUH — ancs)

+ QZ'(SEszyanJ;lkaL’Ulwcs

— 20(T — NWes ) OB OE , Jp L k% vy

42T — nwes)SELOE .Sk Mcs} (B7)

o0

@k v
m2 kv |wl? [w — kv — nwes|?

>

k n=—oo
§R[|5E1|2n2Jiw§s (2wr —2kjv) — nwcs)
+ |6By [2(J),)? kT v (2w, — 2kyv) — nwes)
- |5EZ|2nJgkivﬁwcs
+ 2i5E15fyanJ{lklewcs (2wr = 2k — nwcs)
— 2i(w — k”’l}”)éEyEZJnJT/lki’U”UJ_
+ 2(0.) - kHUH)éEIEZTLJskL’U”wCS}
k n=—oc
%[|5E1|2n2J§w§s|w — kH’UH |2
+ 0By |2 ()2 k1ol lw — Koy |2
+ |§EZ|2n2Jskivﬁwfs
+ 2i5E1EyanJLkLULwCS|w — k”v” |2
— 2i(w — k”’l}”)6EyEZanJ,:1ki'U”UJ_wcs
+ 2(0.) — kHUH)6EIEZTL2J72ZI€J_’U”W§S} N

(B8)

a1 g}
m2 k3 vt |wl? |w — kv — nwes|?

(B9)

allel directions with respect to the ambient magnetic field
By, By = |By| denotes its the magnitude;denotes a ve-
locity, v = |v| being its magnitude, and, andv, denote
magnitude of the velocity components parallel and perpen-
dicular to By, respectively;t denotes the time. Here sub-
scripts denotes different species: (electronsp: core pro-
tons, andb: beam protons); subscriptdenotes initial val-
ues. Heref; denotes the velocity distribution function,
denotes the number density = [ f d% and mean parallel
velocitiesvs are given ag, = vafs d%/ns. The field-
aligned differential velocity between the beam and core is
denoted asy,, = v, — v,. The parallel and perpendic-
ular temperatures are given &5 = (ms/kpns) [(v) —
vs)? fsd® and Ty, = (ms/2kgn) [v% f d%, respectively.
Here m, denotes the masgg is the Boltzmann constant;
T, = (2TsL + Ty))/3 is the total proton temperature.
For the total proton distribution functiof = f, + f

we define the effective parallel and perpendicular temper-
aturesTH = (mp/an)f(v” — ’L~)H)2fs d% and T =
(mp/2kgn) [v2 fd%, respectively, where: is the total
proton number density = n, + n, andy is the mean
proton velocity,v = vafd?’v/n. The two nonzero com-
ponents of the heat flux tensor for the gyrotropic total pro-
ton distribution functionf are given asy = m, f(vH —
’l~}||)3f d% and qL = (mp/2) f(UH - ’l~}||)’l}f_fd3’l}. Here

By = 2ponskpTy) /B3 is the parallel betaycs = gsBo/ms
andw,s = (nsq?/mseo)/? denote the cyclotron and plasma
frequencies, respectively,, = > w, is the total plasma
frequency. In these expressiogpsdenotes the charge,
andp denote the vacuum electric permittivity and magnetic
permeability, respectively. Hergy denotes the Alfvén ve-
locity va = Bo/(ompn)*/? andc denotes the speed of
light. Here,k denotes the wave vectdk,its magnitudef
andk its parallel and perpendicular components, respec-
tively; 7 denotes the imaginary unit, denotes the complex
frequencyw, = Rw, v = Sw whereR and < denote the
real and imaginary part, respectively, and the overline de-
notes the complex conjugate+ ib = a — ib. HereRy
denotes the initial radial distance ahd= Ry /v, is the
characteristic expansion time.
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