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Comment on the drift mirror instability
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Drift mirror instability is investigated in a slightly inhomogeneous plasma in a low-frequency,
long-wavelength limit of the Vlasov-Maxwell equation. It is shown that previously derived threshold
conditions for the drift mirror instability in the case of one cold species are incorrect and that it is
hard to get analytically a simple threshold condition for the drift mirror instability in this case. It
is argued that the same is true for the drift mirror instability in general.

Mirror instability1,2 is one of the exceptional kinetic
instabilities for which it is possible to obtain an an-
alytical threshold condition, at least for some plasma
parameters.3 This instability was studied by Hasegawa4

in a slightly inhomogeneous plasma,5,6 assuming a pres-
ence of one cold species. In this inhomogeneous case
the instability was named a drift mirror instability.
Hasegawa4 showed that the threshold condition of the
drift mirror instability is identical to the threshold con-
dition in the homogeneous case and that the real fre-
quency of unstable modes is non zero (compared to zero
in the homogeneous case). These results were revisited
by Pokhotelov et al.7 who showed that some important
terms were omitted in the original work of Ref. 4. These
terms importantly modify the real frequency of unstable
modes. Pokhotelov et al.7 also discussed possible mod-
ifications of the threshold condition due to the inhomo-
geneity in some cases. These results were extended to
the case of hot plasma by Pokhotelov et al.8,9

In this communication we show that the previously de-
rived threshold conditions for the drift mirror instability
in the case of one cold species4,7 are incorrect and that
it is hard to get analytically a simple threshold condition
for the drift mirror instability in this case. We argue that
the same is true for the drift mirror instability in general.

Let us consider a plasma with one ion population, say
protons, and cold electrons. We take the ambient mag-
netic field B0 as decreasing in the y-direction

B0(y) = B0(1 − κy)ez. (1)

Then, we chose the unperturbed proton distribution
function fp(y) to be

fp(y) = f0

[
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where ωcp = eB0/mp is the proton cyclotron frequency
(e: proton charge, mp: proton mass) and f0 is a normal-
ized bi-Maxwellian distribution function
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vp⊥ and vp‖ being the perpendicular and parallel ther-
mal velocites, respectively. Initially we assume a pressure
equilibrium (and no external current) which leads to7

κ̃ = −κ
2

β⊥
. (4)

Here we use the following definitions: β⊥ and β‖ are
the total perpendicular and parallel betas, which, in the
preset case, are equal to the proton perpendicular and
parallel betas

β⊥,‖ = βp⊥,‖ = 2µ0npkBTp⊥,‖/B2
0 , (5)

respectively; here µ0 is the vacuum magnetic permeabil-
ity, kB is Boltzmann constant, np is the proton density
(at y = 0), and finally Tp⊥,‖ = mpv

2
p⊥,‖/kB.

We assume a perturbation in the form of planar wave,
ei(k⊥x+k‖z−ωt) at the local value of y = 0; k⊥ and k‖
are assumed to be positive. In the low frequency, long
wavelenth limit

|ω|
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≪ 1,
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k‖vp‖

ωcp
≪ 1, (6)

and for wavelengths much smaller then the gradient scale

κ ≪ k⊥ and κ ≪ k‖ (7)

the dispersion of the drift mirror mode (for one cold pop-
ulation) may be factorized to

k2 − ω2

c2
ǫyy = 0. (8)

The ǫyy component of the dielectric tensor may given
in the form
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where Jn is the Bessel function of the order n with
the argument k⊥v⊥/ωcp and J ′

n is its derivative, ωpp =



2

(npe
2/mpǫ0)

1/2 is the proton plasma frequency and ǫ0 is
the vacuum electric permittivity.

In the limit (7) one gets drift mirror waves with non-
zero real frequency7
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and a growth/damping rate, including finite Larmor ra-
dius corrections (rLp = vp⊥/ωcp being the proton Larmor
radius)
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where

Π = 1 +
β⊥ − β‖

2
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During the derivation of (10,11) we have assumed
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These results may be easily generalized to a multi-species
plasma.

Expression (11) for the growth rate is identical to that
in a homogeneous plasma, a fact which may lead to the

conclusion that the homogeneous threshold condition

Γ = βp⊥

(

Tp⊥
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)

− 1 = 0 (14)

remains valid also in the inhomogeneous case. However,
when Γ goes to zero, the wave vectors k‖ and k⊥ go to
zero as well which, at some point, violates condition (7).
When condition (7) is not satisfied, the drift mirror mode
becomes strongly coupled to the shear Alfvén mode and
factorization (8) is no longer valid. Consequently, the
condition (14) is not the threshold condition for the drift
mirror instability in the case of one cold species and the
threshold conditions derived in Refs. 4,7 are not correct.
Further investigation of the drift mirror instability when
(7) is not satisfied seems to require a numerical treatment
which is beyond the scope of this communication.

In a hot, homogeneous plasma the behaviour of the
mirror instability near threshold requires (most of) the
whole dispersion matrix.3,10 This property remains valid
for the drift mirror instability. We conclude that in gen-
eral there is no simple threshold condition for the drift
mirror instability and a numerical solution for the full
kinetic dispersion is in order. We also expect that some
other results on the drift mirror instability, e.g. Refs. 8,9,
need to be revisited.
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