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Mirror instability: From quasi-linear diffusion to coherent

structures

P. Hellinger,1 E. A. Kuznetsov,2 T. Passot,3 P. L. Sulem3 and P. M. Trávńıček1

A model for the nonlinear dynamics of mirror modes near the
instability threshold is presented. By matching the quasi-linear
theory for the space-averaged distribution function with areduc-
tive perturbative description of the mirror modes, the model repro-
duces the early-time flattening of the distribution function and the
development of magnetic humps from an initial noise, in agreement
with Vlasov-Maxwell numerical simulations. It suggests a possible
mechanism at the origin of the mirror structures observed inplane-
tary magnetosheaths and in the solar wind.

1. Introduction

Pressure-balanced magnetic structures in the form of magnetic
enhancements (humps/peaks) and depressions (holes/dips)with a
small change in the magnetic field direction that are observed in
the solar wind [Winterhalter et al., 1995] and in planetary magne-
tosheaths [Joy et al., 2006] are often associated with the nonlinear
evolution of the mirror instability [Vedenov and Sagdeev, 1958].
The understanding of the nonlinear processes involved in the satu-
ration of this instability remains nevertheless incomplete. In spite
of its aperiodic character, a quasi-linear (QL) theory was first de-
veloped byShapiro and Shevchenko [1964] under the assumption
that for each unstable wave vectork, the growth rateγk is much
smaller thank‖v‖th, wherev‖th is the ion parallel thermal velocity
andk‖ is the parallel component ofk (for the sake of simplicity,
electrons are assumed to be cold). This approach which is usu-
ally assuming a random phase approximation and induces a diffu-
sion in the velocity space, cannot describe regimes involving co-
herent structures. Phenomenological models, based on the cooling
of trapped particles in magnetic troughs [Kivelson and Southwood,
1996;Pantellini, 1998], were constructed to explain the existence
of deep magnetic holes, but hardly predict magnetic humps. In
order to address the onset of coherent structures as the nonlinear
development of the mirror instability, an asymptotic analysis near
threshold, based on a reductive perturbative expansion of Vlasov-
Maxwell (VM) equations was recently proposed [Kuznetsov et al.,
2007a;Califano et al., 2008]. The resulting equation can be viewed
as an extension of the dispersion relation of the mirror modes in-
cluding the dominant nonlinear coupling whose effect is to rein-
force the mirror instability, thus leading to a finite-time singularity
associated with a subcritical bifurcation [Kuznetsov et al., 2007b].
The form of this equation is generic, up to the coefficients which
depend on the equilibrium distribution function. The sign of the
nonlinear coupling coefficient prescribes in particular the geome-
try (magnetic holes or peaks) of the emerging structures. For a
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bi-Maxwellian distribution function, this coefficient is positive and
the model predicts the formation of magnetic holes, while direct
numerical simulations with the same initial conditions indicate the
formation of magnetic humps. The formation of these structures
is in fact preceded by a transient regime during which the distri-
bution function displays a significant flattening, reminiscent of a
quasi-linear evolution. The aim of the present paper is to suggest
a possible matching of the two descriptions, aimed at qualitatively
reproducing the numerical observations.

2. Quasi-linear description

2.1. The quasi-linear model

The QL approximation assumes a wide spectrum of non-
coherent random-phase modes (or a sufficient overlapping ofreso-
nances). The modes are supposed to have low amplitudes together
with slowly varying frequency (and growth/damping rate), so that
they can be treated at the linear level. At the second order, they re-
act on the distribution function, which leads to a slow diffusion for
the velocity distribution function averaged over the spacevariables
and the gyroangle:
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where the normalized magnetic fluctuationsbk = δBz(k)/B0
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Heren is the background density of the protons,m their mass, and
pB = B2

0/8π denotes the background magnetic pressure. Further-
more, near threshold, one has the positive coefficients [Hellinger,
2007] (Ω denoting the proton gyrofrequency),
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2.2. The numerical algorithm

We restrict ourselves to the case where the problem is one-
dimensional in the space variable. The angleθkB betweenk

and the ambient magnetic field is fixed to the value correspond-
ing to the most unstable direction, leading tok‖ = k cos θkB,
k⊥ = k sin θkB . The distribution function is conveniently writ-
ten as a sum of the initial bi-Maxwellian contribution
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and the variationδf .
For the numerical simulation of the QL system, the distribu-

tion function δf is defined on a two-dimensional gridδfi,j =
δf [(i − 1/2)∆v‖, (j − 1/2)∆v⊥] with i = 0, . . . , N‖ + 1 and
j = 0, . . . , N⊥ + 1; only a quarter of the distribution func-
tion is considered, due to the assumed symmetriesδf(v‖, v⊥) =
δf(±v‖,±v⊥). This is reflected in the inner boundary condi-
tions δf0,j = δf1,j and δfi,0 = δfi,1. For the outer boundary
conditions, we assume zero derivatives,δfN‖+1,j = δfN‖,j and
δfi,N⊥+1 = δfi,N⊥ . The wavenumber variablek is discretized as
km = m∆k, m = 1, . . . , Nk.

For solving the diffusion equation (1), the partially implicit
duFort-Frankel method is used, with space-centered derivatives in
the velocity space. This is a three level method requiringδf at
timesn∆t and(n − 1)∆t (where∆t is the time step). The first
time step is done using a forward time centered scheme. The mag-
netic modesbk are advanced in a similar manner.

The calculation of various coefficients is performed by adding
the initial bi-Maxwellian valuesβ⊥ = mnv2

th⊥/pB , β‖ =
mnv2

th‖/pB, βΓ = β2
⊥/β‖, ṽ = vth‖/βΓ and r̃ = vth⊥(βΓ −

β⊥)1/2/Ω to the contributions originating fromδf . The integra-
tion overv‖ andv⊥ is replaced by the summation overi (from 1
to N‖) andj (from 1 to N⊥). To calculatẽv, we fit the quantity
R∞
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coefficienta1 is then used to evaluate the contribution fromδf to
ṽ.

In the following simulations, we use initial conditions such that
β‖ = 1 and β⊥ = 1.65, which givesΓ = 0.0725, thus en-
suring that the system is close to threshold. We chooseθkB =
83.3◦, because this angle corresponds to the maximum growth rate
max(γ) = 1.03 · 10−4Ω, reached fork = 0.118Ω/vA . The
numerical parameters are∆k = 9.2 · 10−4Ω/vA, Nk = 256,
∆v‖ = 4.9 · 10−4vA, N‖ = 1024, ∆v⊥ = 4.9 · 10−3vA,
N⊥ = 1024, ∆t = 0.2/Ω.

2.3. Quasi-linear evolution

Figure 1 shows the evolution of different quantities from the
QL simulation. From left to right, the fluctuating magnetic energy
WB =

P

k |bk|2, the distance from thresholdΓ and the maximum
growth ratemax(γ) are displayed as functions of time. Initially,
the wave energy increases exponentially, then the QL diffusion re-
ducesΓ and consequentlymax(γ), making the system to approach
marginal stability. During this evolution,̃v slightly increases (by
about 0.1 %) whereas̃r decreases (by about 2 %) andχ remains
essentially constant (its relative decay is of order10−8).

The QL diffusion strongly affects the resonant region. Figure 2
displays the proton distribution function at the end of the simula-
tion (t = 1.4 ·105/Ω): top panel provides a grayscale plot ofv⊥δf
as a function ofv‖ andv⊥. We note a strong similarity with Figure
4 of Califano et al. [2008] which displays the same quantity ob-
tained by direct numerical integration of VM equations, supporting
the relevance of a QL description of the early stage of nonlinear
mirror mode evolution.

The shape of the level lines of the distribution function in Fig-
ure 2 is easily interpreted by noting that forv⊥ of order unity and

v‖ small but out of the resonance, the parallel diffusionD‖‖ term
is dominant in Equation (1). A simple analysis shows that at a
fixed time the solution of the diffusion equation only depends on
the self-similar coordinatev‖/v⊥ whereas, in the region of small
v‖ the self-similar variable isv‖/v2

⊥.
Bottom panel of Figure 2 plots the profile ofδf/f (0) as a func-

tion of v‖ for v⊥ = 2vA in the conditions of the top panel. In order
to interpret this graph, a simple model can be considered forthe
longitudinal diffusion. Concentrating on the most unstable mode,
we neglect the wave-vector summation and define a rescaled time
by dτ = |bk|2dt. Furthermore, sincev⊥ ∼ O(1), k‖ ∼ ǫ and
γk ∼ ǫ2 (hereǫ = Γ/χ ≪ 1), we may restrict ourselves to the
model equation
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supplemented by the initial conditionf (0) = exp(−v2/v2
th) (up to

an irrelevant multiplicative constant). The variation of the distribu-
tion functionδf = f − f (0) then obeys
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Assumingv ≪ vth, we have for the source termS, defined as the
r.h.s. of Equation (9),

S ≈ 2
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S has a minimum at0, S(0) = −2/v2
th and two maxima for

v = ±
√

3ǫ, equal to1/4v2
th. Its profile is qualitatively similar

to that ofδf in Figure 2 (bottom panel). ThusS is of order unity
in the small-velocity range we are interested in, while its typical
scale (in thev variable) is of orderǫ. As a consequenceδf will
also have the same typical scale inv. Furthermore, after a typical
diffusion timeτ ∼ ǫ2, we haveδf ∼ ǫ2. Coming back to the phys-
ical time, we writet = τ/|bk|2 ∼ ǫ2/|bk|2. Estimating the level
of saturation of the magnetic fluctuations by balancing the diffu-
sion timeǫ2/

P

k
|bk|2 and the inverse growth time1/ǫ2, gives at

the saturation time
P

k
|bk|2 ∼ ǫ4, in agreement with the numer-

ics whereǫ = 10−2 (as estimated fromγk = 10−4) and where
P

k
|bk|2 ∼ 10−8 at the saturation timet ∼ 5 · 104.

3. Onset of coherent structures

To address the regime of structure formation, the reductiveper-
turbative expansion near threshold developed inKuznetsov et al.
[2007a]; Califano et al. [2008], may be easily extended to any
(frozen) smooth equilibrium distribution functionf(v2

‖, v⊥) (pro-
vided ṽ > 0, r̃2 > 0, and χ > 0). It leads to an equation
for the (normalized) parallel perturbation of the magneticfield,
b = δBz(r, t)/B0, of the form
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The linear part of this equation reproduces the linear growth rate,
whereas the nonlinear term involves a coefficientΛ given by

Λ = βΛ − 2βΓ +
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where for a bi-Maxwellian distribution we haveβΛ = 3/2β3

⊥/β2
‖ .

These results are obtained by neglecting the contribution of reso-
nant particles whose effect is subdominant in the case of a smooth
distribution function with no sharp variations. Similar results
were obtained using the drift-kinetic approach byPokhotelov et al.
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Figure 1. Results of the QL simulation: (top) fluctuating magnetic energy WB =
P

k |bk|2, (middle) distance from thresholdΓ, (bottom)
maximum growth ratemax(γ) as functions of time.
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Figure 2. Results of the QL simulation att = 1.4 · 105/Ω: (top) Gray scale plot ofv⊥δf as a function ofv‖ andv⊥. Black corresponds
to negative values and white to positive ones; (bottom) Profile of δf/f (0) as a function ofv‖ atv⊥ = 2vA.

[2008]. We note here that most of the criticism of this paper with
respect toKuznetsov et al. [2007a] is due to a misunderstanding
about the used variables.

In order to take into account the QL regime observed at early
time in VM simulations, we are led to modify the non-linear
asymptotic equation (11), by assuming that the coefficientsare not
frozen to their initial values but are evaluated from the instanta-
neous distribution function given by the QL diffusion equation. The
computation of the coefficientΛ needs however to be revisited be-
cause, as previously mentioned, the QL evolution predicts that in
the time of order1/ǫ2 needed for the nonlinearity to become rele-
vant, the perturbation of the distribution function satisfiesδf ∼ ǫ2.
Since the typical variation takes place on a parallel velocity range
of orderǫ, it follows that∂2f/(∂v2

‖)
2 ∼ 1/ǫ2 nearv‖ = 0, lead-

ing to βΛ ∼ 1/ǫ because the effective integration range on thev‖

is of orderǫ. The contribution of the resonant particles can thus no

longer be neglected in the evaluation of the nonlinear coupling. The

magnitude of all the other coefficients remain in contrast correctly

estimated.

In order to retain the contribution of the resonant particles to

βΛ, we return to the pressure balance equation as given inCalifano

et al. [2008], and retain the full contribution toβΛ that is no longer

a number but becomes the operator
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Neglecting the time derivative indeed reproducesβΛ. From the
Plemenj formula, it follows that

B = βΛ +

r
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whose initial bi-Maxwellian value isvth‖/βΛ. This finally leads to
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ṽ

1 + 2 ṽ
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The presence of a denominator in the right-hand side of equation
(16) reminds one of the phenomenological correction to equation
(11) suggested byPokhotelov et al. [2008] to model the flatten-
ing of the distribution function. A main difference originates from
the dynamical evolution of the coefficients involved in our descrip-
tion.
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Figure 3. Results of the simulation of equation (16): solid lines showthe time evolution of(from left to right, from top to bottom)
WB =

P

k |bk|2, Γ, maximum ofγk, maximum of the magnetic fluctuationsb(x), Λ andv−1
Λ . For comparison, dashed lines show the

evolution in the QL model. The dotted line in the left-bottompanel refers to the evolution of the maximum of−b(x), as predicted by
equation (16).

Let us investigate the predictions of our model that re-
tains the diffusion equation of the QL theory for the distribu-
tion function, but prescribes the nonlinear equation (16) for
the evolution of the magnetic fluctuations. Figure 3 shows
the time variation of different quantities as obtained by the
numerical integration of this model (solid line), using the
same initial conditions as for the QL simulation. From left
to right and top to bottom, it displays the time evolution of
the energy of the parallel magnetic fluctuationsWB , the dis-
tance to thresholdΓ, the growth rateγk of the most unstable
mode, the maximum of the magnetic fluctuationsb(x), to-

gether with the coefficientsΛ andv−1

Λ
, as functions of time.

The dotted line in the left-bottom panel corresponds to the
time variation of the maximum of−b(x). For comparison,
the dashed curves show the evolution in the QL model (see
Figure 1).

We observe that for a while, the dynamics is essentially
described by the QL model, but a departure is observed when
the QL evolution tends to saturate the magnetic field fluctu-
ations. In this model, the magnetic energy continues to grow
and the maximum of b(x) displays a sharp increase suggest-
ing a finite-time blowup, consistent with a subcritical bifur-
cation [Kuznetsov et al., 2007b]. The computation should
thus be interrupted due to the lack of resolution. The arrestof
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the singularity would require additional effects, not retained
in the present model, such as nonlinear finite Larmor radius
corrections [Kuznetsov et al., 2007a]. Figure 4 shows the
profile of the magnetic fluctuationsb at t = 6.3 ·104, shortly
before the numerical explosion. We observe that the present
model predicts the formation of magnetic humps, in agree-
ment with the VM numerical simulations. The reason is that
the early QL evolution leads to a change of sign ofΛ which,
being initially positive, becomes strongly negative. A simi-
lar evolution is observed in VM direct simulation [Califano
et al., 2008, section 4.1] (which starts further from threshold,
Γ = 0.6) whereΛ evolves from6 to about−30. In the con-
text of the QL evolution that predicts a1/ǫ scaling forΛ it is
not surprising that the model gives an even larger magnitude
of Λ. Nevertheless, further corrective terms with regulariz-
ing effects could possibly act near threshold, beyond the de-
nominator in the right-hand side of equation (16) which also
involve a relatively large coefficient. Particle trapping could
for example partially inhibit QL effects [Pantellini et al.,
1995], without changing the global features of the dynam-
ics.

0 1000 2000 3000 4000
-0.0002

0.0000

0.0002

0.0004

0.0006

0.0008

xΩ/vA

b

Figure 4. Results of the simulation of equation (16):b as a
function ofx at t = 6.3 · 104

4. Conclusion

Quasi-linear evolution of the mirror instability was in-
vestigated by direct integration of the corresponding diffu-
sion equation. The resulting flattening of the distribution
function is in good agreement with the early time results of
Vlasov-Maxwell simulations. A dynamical model was then
presented that reproduces the formation of mirror structures
observed at later times. It provides a possible mechanism
for the formation of magnetic humps in a mirror unstable

plasma, as revealed by satellite measurements. A main char-
acteristic of the present model is the role of kinetic effects
that lead to small-amplitude but very sharp variations of the
parallel-velocity distribution function of the resonant parti-
cles, which eventually prescribes the geometry of the emerg-
ing structures.
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