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Quasi-linear acceleration and heating rates are derived for drifting bi-Maxwellian distribution functions in a
general nonrelativistic case for arbitrary wave vectors, propagation angles, and growth/damping rates. The
heating rates in a proton-electron plasma due to ion-cyclotron/kinetic Alfvén and mirror waves for a wide
range of wavelengths, directions of propagation and growth or damping rates are explicitly computed.

PACS numbers: ?

I. INTRODUCTION

Heating properties of low-amplitude electromagnetic
waves can be estimated by considering the linear expres-
sions of the particle current js and of the electric field
E, and calculating the product js ·E (for symbol defini-
tions see Appendix).1 This approach is compatible with
the quasi-linear approximation which may, to some ex-
tent, describe the nonlinear properties of small-amplitude
electromagnetic waves in collisionless plasmas. This ap-
proximation assumes a superposition of incoherent linear
modes which at the second order (in the wave ampli-
tude) affect the background averaged particle distribu-
tion functions.2–4

Calculation of quasi-linear predictions is generally del-
icate. Some information of the quasi-linear expecta-
tions for instabilities may be obtained by applying the
quasi-linear diffusion operator on the initial particle ve-
locity distribution function.5,6 To make the calculation
tractable, one may consider a prescribed velocity distri-
bution function (typically, a bi-Maxwellian). Such an
approach has been used to investigate the heating prop-
erties of unstable modes in special cases (unmagnetized
plasmas, parallel or strongly oblique propagation with re-
spect to the ambient magnetic field, a long-wavelength or
low-frequency limit, . . . ).7–10 For damped waves these re-
sults have been analytically continued by taking the limit
γ → 0+.11,12 However, this limit is only applicable for
weakly damped modes (γ ≪ ωr). Moreover, the momen-
tum and energy exchanges between particles and waves
cease13 and the quasi-linear diffusion is then likely re-
duced. General expression for parallel and perpendicular
heating rates in the case of (non-drifting) bi-Maxwellian
has been derived by Ref. 14 but implemented only for
unstable modes. In this paper, we apply the quasi-
linear diffusion operator on a drifting bi-Maxwellian ve-
locity distribution function and calculate the moments,
the acceleration and the heating rates for electromagnetic
waves in a general nonrelativistic case for arbitrary wave
vectors, propagation angles, and growth/damping rates.
The paper is organized as follows: Section II summa-

rizes the quasi-linear approximation. In Section III we
derive the acceleration and heating rates in the case of
bi-Maxwellian distribution functions. In Section IV we
investigate, as examples, the heating properties of both
stable and unstable Alfvén ion cyclotron/kinetic and mir-
ror waves. Obtained results are summarized in Section V.

II. QUASI-LINEAR THEORY

The quasi-linear theory assumes a superposition of
noninteracting random-phase linear waves with wave vec-
tors k and (complex) frequencies ω, together with a fluc-
tuating electric field δE, which fulfill the linear conditions

detD(k, ω) = 0 and D(k, ω) · δE(k, ω) = 0, (1)

where the dispersion tensor D is expressed in terms of
the average particle velocity distribution function fs as
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The second order effect of the wave modes on the par-
ticle distribution functions leads to the diffusion equation
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where the diffusion tensor D may be given in the follow-
ing explicit form4,6
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with I, J = ‖,⊥. In the frame where k = (k⊥, 0, k‖) the
vectors a‖sn and a‖sn are given by
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The above expressions are only valid for unstable
modes with γ > 0; for γ ≤ 0 they must be analytically
continued.13

III. ACCELERATION AND HEATING RATES

For drifting bi-Maxwellian velocity distribution func-
tions
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the dispersion matrix D is given by15
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Here, Λn = Λn(λ
2
s ) are the exponentially scaled modified

Bessel functions of the first kind (Λ′
n being its derivative)

and Z = Z(ζsn) is the plasma dispersion function.
For the initial change of the parallel particle momen-

tum starting from the bi-Maxwellian velocity distribution
function,
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Hereafter we drop the sum over the modes, as we are
interested in the contribution of a given mode to the
quasi-linear transport coefficients. Note that the analytic
continuation is hidden in the plasma dispersion function.
Similarly for the particle parallel kinetic energy Es‖ =

msns

∫

fsv
2
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3v/2, we get the heating rate (per mode)
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whereas for the particle perpendicular kinetic energy
Es⊥ = msns

∫

fsv
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3v/2 the heating rate (per mode) is
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One can easily verify (using (1)) that these expressions
conserve the total parallel momentum and the energy as
in the original problem.13

The resulting total heating rates, ∂Es/∂t = ∂Es‖/∂t+
∂Es⊥/∂t are equivalent to those obtained from the linear
js · E approach.1 Setting the drift velocities zero, one
finds the heating rates of Ref. 14 and, in the limit γ → 0,
one recovers the previous results of Ref. 12, as well as
when concentrating to the parallel limit (k⊥ → 0) for
which one gets9
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where δEn = δEx + inδEy.

IV. HEATING BY ION-CYCLOTRON AND MIRROR

WAVES

A. Ion-cyclotron waves – isotropic protons

Let us consider Alfvén ion cyclotron/kinetic waves in a
plasma consisting of isotropic (i.e. Maxwellian) protons
and electrons, with ωpe/ωce = 100, βp = βe = 0.5. In
this case, the ion-cyclotron waves (left-handed at quasi-
parallel propagation angles) are stable. Their dispersion
relation is shown in Fig. 1 which displays as color scale
plots the real frequency (top panel) and the damping rate
(bottom panel) as functions of the wave vector k and the
angle of propagation θkB .
Using (12) and (13), we get the proton heating/cooling

rates for the bi-Maxwellian velocity distribution function.
These rates (per mode) are shown in Fig. 2 which displays
∂Ep‖/∂t (top panel), ∂Ep⊥/∂t (middle panel) and ∂Ep/∂t
(bottom panel) as functions of the wave vector k and
the angle of propagation θkB , as color scale plots. The
heating rates are given in units of Eemωcp, where Eem =
ǫ0|δE|2/2 + |δB|2/(2µ0) is the electromagnetic energy of
the given mode.
We see that, in quasiparallel directions, the ion-

cyclotron waves heat the protons in the perpendicu-
lar direction (an observation consistent with previous
results12) and cool them in the parallel one for sufficiently
short wavelengths (through the cyclotron resonance). At
oblique angles, longer wavelength waves heat the protons
in the parallel direction and cool them in the perpendic-
ular one (in this case through the Landau resonance16).
In total, the damped ion cyclotron waves heat protons.
We similarly get the electron heating rates (per mode).

Figure 3 shows ∂Ee‖/∂t (top), ∂Ee⊥/∂t (middle) and
∂Ee/∂t (bottom) as functions of the wave vector k and
the angle of propagation θkB as color scale plots. It is
seen that the ion cyclotron waves interact weakly with
the electrons (for the given range of wave vectors). They
cool them in the perpendicular direction and mainly heat
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FIG. 1. Dispersion of ion-cyclotron waves (stable case): Color
scale plots of (top) the real frequency and (bottom) the
growth/damping rate as functions of the wave vector k and
the angle of propagation θkB . The corresponding color scales
are shown at right (red shades indicate positive values, and
blue shades hold for negative ones). The dotted lines indicate
the zero level. Plasma parameters are given in the text.

them in the parallel direction (except at oblique angles
and short wavelengths). In total, electrons are cooled at
quasiparallel angles and heated at more oblique angles.
One can use the energy conservation by the heating

processes as a measure of the accuracy of the quasi-linear
calculations (and of the result of the linear solver). The
heating rates in Figs. 2 and 3 indeed conserve the energy
with a precision of 10−7Eemωcp.

B. Ion-cyclotron waves – anisotropic protons

For comparison let us consider a regime where bi-
Maxwellian anisotropic protons destabilize the ion-
cyclotron waves,9,17 assuming isotropic electrons with
ωpe/ωce = 100, βp‖ = βe = 0.5, and Ap = 1.85. Their
dispersion is shown in Fig. 4 which displays the real fre-
quency (top panel) and the growth/damping rate (bot-
tom) as functions of the wave vector k and the angle of
propagation θkB as color scale plots. We observe that the
ion cyclotron waves are indeed destabilized around the
parallel propagation, the most unstable mode being at
parallel propagation with kmax ∼ 0.5ωpp/c and a growth
rate γmax ∼ 10−2ωcp. Compared to the isotropic case,
the real frequencies are higher and damping rates lower
in the presence of temperature anisotropy.
The proton heating rates (per mode) ∂Ep‖/∂t (top),

∂Ep⊥/∂t (middle) and ∂Ep/∂t (bottom) are shown in
Fig. 5. In the unstable regime, the ion cyclotron waves
heat the protons in the parallel direction and cool in
the perpendicular direction; the instability reduces the

3
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FIG. 2. Proton heating rates for stable ion-cyclotron Alfvén
waves: Color scale plots of the parallel (top), perpendicular
(middle) and total (bottom) heating rates as functions of the
wave vector k and the angle of propagation θkB. The corre-
sponding color scales are shown at right (red shades indicate
positive values, and blue shades negative ones). The dotted
lines indicate the zero level. Plasma parameters are given in
the text.

proton temperature anisotropy, as expected. The region
where the protons are cooled in the parallel direction
and heated in the perpendicular one extends to oblique
angles where a similar behavior is seen in the isotropic
case. However, for some parameters, parallel cooling is
observed at oblique propagation. At quasi-parallel angles
and shorter wavelengths, the damped ion cyclotron waves
heat the protons in the perpendicular direction and cool
them in the parallel one. In total, protons are cooled
in the unstable region as expected, but also weakly at
oblique propagation, while heating occurs at small wave
length in a large range of angles.

The electron heating rates (per mode) ∂Ee‖/∂t (top),
∂Ee⊥/∂t (middle) and ∂Ee/∂t (bottom) are displayed in
Fig. 6. It turns out that the electron parallel and perpen-
dicular heating rates in the anisotropic case are similar to
those in the isotropic regime, except in the unstable re-
gion where the heating rates change signs. Consequently,
the total heating rate is also somewhat modified com-
pared to the isotropic case. In the anisotropic case the
conservation properties are somewhat deteriorated but
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FIG. 3. Same as Fig. 2 for the parallel (top), perpendicular
(middle) and total (bottom) electron heating rates for ion-
cyclotron Alfvén waves (stable case).

still acceptable, the heating rates in Figs. 5 and 6 pre-
serving energy with a precision of 10−5Eemωcp.

C. Mirror modes

Finally, let us consider the non-propagating mirror
modes18,19 which may be destabilized by the anisotropic
protons through the Landau resonance. Again, we as-
sume isotropic electrons and bi-Maxwellian anisotropic
protons with ωpe/ωce = 100, βp‖ = βe = 1, and Ap = 2.
The mirror dispersion is shown in Fig. 7 which displays
the growth/damping rate (bottom) as a function of the
wave vector k and the angle of propagation θkB as color
scale plots. The real frequency of the mirror mode is
zero. As expected, the mirror waves are destabilized at
strongly oblique angles, the most unstable mode being at
θkB ≃ 63.9o, with kmax ∼ 0.35ωpp/c and a growth rate
γmax ∼ 8 · 10−3ωcp.
The proton heating rates (per mode) due to the mirror

mode ∂Ep‖/∂t (top), ∂Ep⊥/∂t (middle) and ∂Ep/∂t (bot-
tom) are shown in Fig. 8. The unstable mirror modes
heat the protons in the parallel direction and cool them
in the perpendicular direction; the instability reduces the
proton temperature anisotropy, as expected, similarly to
the case of unstable Alfvén ion-cyclotron waves. The

4
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FIG. 4. Dispersion of ion cyclotron waves (unstable
case): Color scale plots of the real frequency (top) and
growth/damping rate (bottom) as functions of the wave vec-
tor k and the angle of propagation θkB. Plasma parameters
are given in the text.

stable/damped mirror modes have the opposite heating
properties: they cool the protons in the parallel direction
and heat them in the perpendicular direction. In total,
protons are cooled in the unstable region and heated in
the stable region as expected.
The electron heating rates (per mode) due to the mir-

ror mode ∂Ee‖/∂t (top), ∂Ee⊥/∂t (middle) and ∂Ee/∂t
(bottom) are displayed in Fig. 9. The electron heat-
ing rates in the parallel and perpendicular directions are
qualitatively similar to those of protons. The unstable
(stable) mirror modes heat (cool) the electrons in the
parallel direction and cool (heat) them in the perpendic-
ular direction. However, in total, electrons are heated
in the unstable region and cooled in the stable region.
In the mirror case the conservation properties are very
good: the heating rates in Figs. 8 and 9 preserve energy
with an accuracy of 10−7Eemωcp.

V. DISCUSSION

We computed in this paper the quasi-linear accel-
eration and heating rates for particle (drifting) bi-
Maxwellian velocity distribution functions in a general
nonrelativistic case for arbitrary wave vectors, propa-
gation angles, and growth/damping rates, thus extend-
ing previous results9,12,14. The resulting moment rela-
tions form a closed, energy and momentum conserving
system that may be used as a fluid closure to kinetic
instabilities,10,14 although the latter are often sensitive
to the shape of the velocity distribution function20 and
the assumption that particle velocity distribution func-
tions remain bi-Maxwellian may, in some instances, lead
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FIG. 5. Same as Fig. 2 for the proton heating rates for ion-
cyclotron waves in the unstable regime.

to unphysical results.
The derived expressions (10), (12) and (13) are use-

ful for estimating the acceleration and heating rates of
small-amplitude damped waves as well as for analyzing
the properties of kinetic instabilities5 and of the corre-
sponding anomalous transport coefficients.21 They can
also be used to estimate magnetohydrodynamic turbu-
lent heating rates,22 if the quasi-linear approximation is
applicable.
We also presented a full numerical implementation

of the theory by considering the heating properties
of ion-cyclotron/kinetic Alfvén and mirror waves for a
wide range of wavelengths, direction of propagation and
growth or damping rates, in proton-electron plasma (us-
ing the conservation properties to check the numerical
linear and quasi-linear results). The predicted quasi-
linear heating is typically anisotropic and often corre-
sponds to a heating in the parallel direction and a cool-
ing in the perpendicular one, or vice versa, with, as in
the case of ion-cyclotron waves, heating of one particle
species and cooling of the other one. This effect could
provide an interpretation of the proton parallel cooling
and perpendicular heating observed in the solar wind.23

The results presented here are derived on the basis of
the quasi-linear theory for random-phase weak-amplitude
waves, and the predicted heating or cooling concerns the
leading order perturbation of a bi-Maxwellian equilib-

5
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FIG. 6. Same as Fig. 3 for the electron heating rates in the
case of ion-cyclotron waves (unstable regime).
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FIG. 7. Dispersion of mirror waves: Color scale plot of the
growth/damping rate as functions of the wave vector k and
the angle of propagation θkB .

rium state. It makes no reference to the influence of
the resulting distortions of the particle distribution func-
tions on a long time-scale evolution. In particular, as
the wave amplitude increases, quasi-linear effects may
compete with other processes possibly acting in the op-
posite direction. In particular, when the wave frequen-
cies are much smaller than the proton gyrofrequency,
plasma heating can originate from the non-resonant ac-
tion of low-frequency Alfvén waves.24–26 In this regime,
the stochastic heating resulting from particle accelera-
tion due to electric field fluctuations at the scale of the
ion Larmor radius breaks the conservation of the mag-
netic moment and leads to perpendicular heating.27,28
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FIG. 8. Proton heating rates for mirror modes in the unstable
regime: Color scale plots of the parallel (top), perpendicular
(middle) and total (bottom) heating rates as functions of the
wave vector k and the angle of propagation θkB . The corre-
sponding color scales are shown at right (red shades indicate
positive values, and blue shades negative ones).

This effect was however studied by considering particles
propagating in the electromagnetic field associated with
prescribed waves, neglecting any feedback of the particles
on the waves.

APPENDIX: GLOSSARY

We use the following notations: t holds for the time,
the subscript s refers to the different particle species (e:
electrons, p: protons), i is the imaginary unit, ℜ and ℑ
indicate the real and imaginary part, respectively. Over-
line indicates the complex conjugate, a+ ib = a− ib for
real a and b. Furthermore, ω is the complex frequency,
with ωr = ℜω and γ = ℑω.
We denote byE andB the electric and magnetic fields,

while B0 is the ambient magnetic field and B0 = |B0|
its magnitude. Here fs = fs(v‖, v⊥) is the normalized
velocity distribution function, with v‖ and v⊥ referring
to the velocity components parallel and perpendicular to
B0, respectively. Here δE and δB are the linear electric
and magnetic field components of a given linear mode.
The wave vector k has components k‖ and k⊥, parallel
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FIG. 9. Same as Fig. 8 for the parallel (top), perpendicular
(middle) and total (bottom) electron heating rates due to
mirror modes.

and perpendicular with respect to B0.
The cyclotron and plasma frequencies are denoted by

ωcs = qsB0/ms and ωps = (nsq
2
s /msǫ0)

1/2 respectively.
In these expressions ms, qs, and ns hold for the mass,
the charge, and the number density, and ǫ0 and µ0 re-
fer to the vacuum electric and magnetic permeability.
Furthermore, ps‖ = msns

∫

v‖fs d
3v stands for the parti-

cle parallel linear momentum, Es‖ = msns

∫

fsv
2
‖d

3v/2,

Es⊥ = msns

∫

fsv
2
‖d

3v/2 and Es = Es‖ + Es⊥ for the par-

allel, perpendicular and total particle kinetic energies.
Moreover, Eem = ǫ0|δE|2/2+ |δB|2/(2µ0) is the fluctuat-
ing electromagnetic energy of a given mode.

ACKNOWLEDGMENTS

The research leading to these results has received fund-
ing from the European Commission’s Seventh Frame-

work Programme (FP7) under the grant agreement
SHOCK (project number 284515, project-shock.eu).
This work was also supported by grants P209/12/2023
and P209/12/2041 of the Czech Science Foundation and
by projects RVO:67985815 and RVO:68378289.

1T. H. Stix, Waves in plasmas (AIP, New York, 1992).
2A. A. Vedenov, E. P. Velikhov, and R. Z. Sagdeev, Nucl. Fusion
1, 82 (1961).

3W. E. Drummond and D. Pines, Nucl. Fusion, Suppl. 3, 1049
(1962).

4C. F. Kennel and F. Engelmann, Phys. Fluids 9, 2377 (1966).
5S. P. Gary and R. L. Tokar, J. Geophys. Res. 90, 65 (1985).
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