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General quasi-linear diffusion coefficients for nonrelativistic collisionless plasmas are derived for
unstable modes and analytically continued to damped modes. Properties of the resulting diffusion
are investigated and discussed.

I. INTRODUCTION

Kinetic linear dispersion in collisionless plasmas for
damped waves naturally involves an analytic continua-
tion of the dispersion relation from the unstable region.1

On the nonlinear level an evolution of kinetic waves may
be described to some extend in a quasi-linear approach.
This approximation assumes a superposition of incoher-
ent linear modes which at the second order (in wave am-
plitude) affect the background averaged particle distribu-
tion functions.2,3 For unstable waves this approximation
gives rise to a quasi-linear diffusion; for particles in the
electrostatic case one gets (for symbol definition see Ap-
pendix A)

∂f

∂t
=

∂

∂v
D
∂f

∂v
(1)

where the diffusion coefficient D depends on the wave
spectrum through Landau resonances with the different
modes as

∝
γ

(ωr − kv)2 + γ2
(2)

with a resonance broadening due to the finite growth
rate. The derivation is of (2) is simple but the question of
its validity is difficult; such a diffusion can be an intrinsic
property of systems with sufficient overlapping of one-
mode resonances/trapped region.4

The Landau resonances in the limit |γ| ≪ |ωr| become

∝ πδ(ωr − kv) (3)

and the resonance broadening disappears. In this limit
one gets the expression for the damping/growth rate
as γ ∝ ∂f/∂v|v=ωr/k and this approach makes a self-
consistent system with energy and linear momentum
conservation.5,6

In a general case, for instance for nonpropagating7

or reactive8 instabilities the resonance broadening must
be taken into account. In this case for damped modes
relation (2) gives negative diffusion coefficients and in
the limit γ → 0− one gets a negative value of (3),
∝ −πδ(ωr − kv), so that there is a discontinuity of the
diffusion coefficients at γ = 0. To overcome these prob-
lemit is sometimes argued that causality9 requires to take

the absolute value of (2) as

∝
|γ|

(ωr − kv)2 + γ2
. (4)

This form has for |γ| ≪ |ωr| the same limit (3) for the two
cases γ < 0 and γ > 0 but does not generally conserve
the energy (see below). In this paper we show that the
quasi-linear diffusion coefficients need to be analytically
continued to negative growth rates from the unstable re-
gion similarly to the procedure for the linear dispersion
relation. We start with the derivation of the quasi-linear
diffusion coefficients in the simple electrostatic case and
generalize these results to the electromagnetic case.10 In
both cases we check the conservation properties of the
resulting quasi-linear diffusion.
The paper is organized as follows: Section II describes

the quasi-linear approximation in the electrostatic case.
The electrostatic results are generalized to the general
electromagnetic case in section III. Obtained results are
discussed in section IV.

II. ELECTROSTATIC CASE

A. Unstable case

Let us start with a simple electrostatic case and un-
stable waves. In this case the dispersion relation for a
mode with a wave vector k and a (complex) frequency
ω = ωr(k) + iγ(k) where γ > 0 is given implicitly as

D(k, ω) = 1−
∑

s

ω2
ps

k

∞
∫

−∞

∂fs
∂v

kv − ω
dv = 0. (5)

For symbol definition see Appendix A Assuming the
quasi-linear approximation, an superposition of incoher-
ent linear waves and slowly varying particle velocity dis-
tribution functions fs

E1 =
∑

modes

δE(k, ω)eikx−iωt (6)

fs1 = i
qs
ms

∑

modes

δE(k, ω)
eikx−iωt

kv − ω

∂fs
∂v

(7)
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satisfying the linear dispersion relation (5) for fs. The
linear terms E1 and fs1 are assumed to be real and, con-
sequently, ω(−k) = −ω(k) and δE(−k,−ω) = δE(k, ω);

note that D(−k,−ω) = D(k, ω).
Taking the second order contribution to the changes of

the averaged fs = fs(v‖, v⊥) as

∂fs
∂t

= −
qs
ms

〈

E1
∂fs1
∂v

〉

(8)

where 〈〉 denotes space and (fast) time averaging leads to
the diffusion equation for the particle distribution func-
tions

∂fs
∂t

=
∂

∂v
Ds

∂

∂v
fs (9)

with

Ds =
q2s
m2

s

∑

modes

|δE(k, ω)|2ℑ
1

kv − ω
(10)

Using the dispersion relation (5) it is easy to show that
the total particle momentum is conserved

∂

∂t

∑

s

nsms

∞
∫

−∞

vfsdv = 0 (11)

From (5) also follows that the total (particle and elec-
tric) energy is conserved with energy exchanges between
particles and waves:

∂

∂t

∑

s

nsms

∞
∫

−∞

v2

2
fsdv = −ǫ0

∑

modes

γ|δE(k, ω)|2. (12)

Note that in the limit γ → 0+ the diffusion coefficient
becomes

lim
γ→0+

Ds =
q2s
m2

s

∑

modes

|δE(k, ω)|2πδ(ω − kv) (13)

and in this limit the total particle kinetic energy and the
electrostatic wave energy are conserved

lim
γ→0

∂

∂t

∑

s

nsms

∞
∫

−∞

v2

2
fsdv = 0 (14)

lim
γ→0

∂

∂t

∑

modes

ǫ0|δE(k, ω)|2

2
= 0 (15)

and there is no energy exchange between particles and
waves.

B. Stable case

In the stable case γ < 0 the electrostatic dispersion
relation may be written in the following form

D = 1−
∑

s

ω2
ps

k

∞
∫

−∞

[

1

kv − ω
+ 2πid(kv − ω)

]

∂fs
∂v

dv = 0.

(16)

where d is the complex extension of the Dirac δ function
(see Appendix B). Repeating the quasi-linear procedure
with the same form of fs1, Eq. (7) leads to the same quasi-
linear diffusion coefficients (10); in this case, however, the
diffusion coefficients are negative and the residue terms
in the dispersion relation (16) lead to a nonconservation
of the linear momentum and energy which makes such a
choice unphysical. Similarly taking the absolute value9

Ds =
q2s
m2

s

∑

modes

|δE(k, ω)|2
∣

∣

∣

∣

ℑ
1

kv − ω

∣

∣

∣

∣

(17)

the quasi-linear diffusion does not conserve the linear mo-
mentum and energy. Instead, the linear term fs1 has to
be chosen as an analytical continuation

fs1 = i
qs
ms

∑

modes

δE(k, ω)eikx−iωt (18)

×
∂fs
∂v

[

1

kv − ω
+ 2πid(kv − ω)

]

.

Here fs1 is assumed to be real real, and, consequently,
ω(−k) = −ω(k) and δE(−k,−ω) = δE(k, ω); note that

D(−k,−ω) = D(k, ω) as in the unstable case.
Taking the second order contribution (8) one gets the

diffusion coefficient

Ds =
q2s
m2

s

∑

modes

|δE(k, ω)|2ℑ

[

1

kv − ω
+ 2πid(kv − ω)

]

(19)
where the new term contains the complex extension of
the Dirac delta function which directly corresponds to
the residue in the dispersion relation (16). Using the
diffusion coefficient (19) one recovers the conservation of
the linear momentum (11) and the energy (12).
The diffusion coefficients are positive for γ > 0 as well

as in the limit γ → 0. The analytically continued co-
efficients must therefore be positive at least for weak
damping rates. The analytically continued diffusion co-
efficients are difficult to understand from the physical
point of view. For weak damping rates one can estimate
the complex Dirac delta part of the diffusion coefficients
using the Taylor expansion of the distribution function
as

∂

∂v
ℜd(kv − ω)

∂fs
∂v

≈
∂

∂v
δ(kv − ωr)

(

∂fs
∂v

−
1

2

γ2

k2
∂3fs
∂v3

)

(20)

and we have to the second order in γ

∂fs
∂t

=
∂

∂v
D̃s

∂fs
∂v

+
∂

∂v
Hs

∂3fs
∂v3

(21)

where

D̃s =
q2s
m2

s

∑

modes

|δE(k, ω)|2ℑ

[

1

kv − ω
+ 2πiδ(kv − ωr)

]

(22)

Hs = −
q2s
m2

s

∑

modes

|δE(k, ω)|2
γ2

k2
πδ(kv − ωr). (23)
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This result indicates that the quasi-linear diffusion for
modes with nonnegligible amplitudes and damping rates
involves higher order derivatives of the velocity distribu-
tion function, i.e., hyper-diffusion in the velocity space.
The presented quasi-linear results are continuous when

passing from γ > 0 to γ < 0. Taking now the limit
γ → 0− one recovers the diffusion coefficient (13). A
general formulation for the dispersion relation and the
diffusion coefficient can be written defining an analytic
continuation of 1/x in the distributive sense as

C
1

x
=







1
x + 2πid(x) ℑx > 0
P 1

x + πiδ(x) ℑx = 0
1
x ℑx < 0

(24)

where P denotes principal value (compare with
Sokhotski-Plemelj formula). In this way the linear dis-
persion relation simply reads

1−
∑

s

ω2
ps

k

∞
∫

−∞

C
1

kv − ω

∂fs
∂v

dv = 0 (25)

and the diffusion coefficient is given by

Ds =
q2s
m2

s

∑

modes

|δE(k, ω)|2ℑ

(

C
1

kv − ω

)

. (26)

III. ELECTROMAGNETIC CASE

The electrostatic results can be generalized to a the
general electromagnetic case with the dispersion relation
detD = 0 where the dispersion tensor D is

D =
(

k2c2 − ω2 + ω2
p

)

1− kkc2 +
∑

s

ω2
ps

∞
∑

n=−∞

(27)

×

∫

R3

C
1

k‖v‖ − ω + nωcs

(

k‖
∂fs
∂v‖

+ n
ωcs

v⊥

∂fs
∂v⊥

)

Tns d
3v

and the tensor Tns may be given as

Tns =







n2ω2

cs

k2

⊥

J2
n − inωcs

k⊥

v⊥JnJ
′
n

nωcs

k⊥

v‖J
2
n

inωcs

k⊥

v⊥JnJ
′
n v2⊥(J

′
n)

2 iv‖v⊥JnJ
′
n

nωcs

k⊥

v‖J
2
n −iv‖v⊥JnJ

′
n v2‖J

2
n







(28)
in the frame where k = (k⊥, 0, k‖) and where Jn and J ′

n

have λs = k⊥v⊥/ωcs as the argument.
The quasi-linear approximation assumes a superposi-

tion of linear modes

E1 =
∑

modes

δE(k, ω)eik·x−iωt (29)

B1 =
∑

modes

δB(k, ω)eik·x−iωt (30)

where δB(k, ω) = k × δE(k, ω)/ω and

fs1 =
iqs
ms

∑

modes

∞
∑

n,l=−∞

C
1

k‖v‖ + lωcs − ω
(31)

× δE ·

(

a‖ls
∂fs
∂v‖

+ a⊥ls
∂fs
∂v⊥

)

Jne
ik·x−iωt+i(l−n)ϕ

where the two vectors a‖ls and a‖ls may be given in the
frame where k = (k⊥, 0, k‖) as

a‖ls =

(

lωcsk‖

ωk⊥
Jl,−iJ ′

l

k‖v⊥

ω
,

[

1−
lωcs

ω

]

Jl

)

a⊥ls =

([

1−
k‖v‖

ω

]

lωcs

k⊥v⊥
Jl,−i

[

1−
k‖v‖

ω

]

J ′
l ,
lωcsv‖

ωv⊥
Jl

)

The different modes are assumed to satisfy the linear
dispersion relation

detD(k, ω) = 0 and D(k, ω) · δE(k, ω) = 0 (32)

The linear terms E1, B1, and fs1 are assumed to be
real and, consequently, ω(−k) = −ω(k), δE(−k,−ω) =

δE(k, ω), and δB(−k,−ω) = δB(k, ω).
Taking the second order contribution to the changes of

the averaged fs = fs(v‖, v⊥) as

∂fs
∂t

= −
qs
ms

〈

(E1 + v ×B1) ·
∂fs1
∂v

〉

(33)

where 〈〉 denotes space and (fast) time averagin leads to
the diffusion equation for the particle distribution func-
tions

∂fs
∂t

=
∂

∂v‖

(

D‖‖s
∂fs
∂v‖

+D‖⊥s
∂fs
∂v⊥

)

(34)

+
1

v⊥

∂

∂v⊥
v⊥

(

D⊥‖s
∂fs
∂v‖

+D⊥⊥s
∂fs
∂v⊥

)

.

The diffusion coefficients may be given in the following
explicit form10,11

DIJs =
q2s
m2

s

∑

modes

ℑ

∞
∑

n=−∞

(δE · aIns)(aJns · δE) (35)

× C
1

k‖v‖ + nωcs − ω

where I, J = ‖,⊥. For weak damping rates one gets
hyper-diffusion terms analogically to the electrostatic
case (21).
Using the dispersion relation (27) it is easy to show

that the total parallel momentum and energy are con-
served

∑

s

∂ps‖

∂t
= −2ǫ0

∑

modes

γℜ
k‖|δE|2 − k · δEδE‖

ω
= −

∂pem‖

∂t

(36)
∑

s

∂Es
∂t

= −
∑

modes

γ

(

ǫ0|δE|2 +
1

µ0
|δB|2

)

= −
∂Eem
∂t

.

(37)
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In the limit γ → 0 there is again no exchange of par-
allel linear momentum and energy between particles and
waves as in the electrostatic case.

IV. DISCUSSION

In this paper we investigated quasi-linear properties of
the proper kinetic modes in collisionless nonrelativistic
plasma; the evolution of transient modes12 due to the
initial condition is beyond the scope of the paper. We
show that the general quasi-linear diffusion coefficients
(with a resonance broadening due to the finite growth
rate which are easily derived for unstable modes) need
to be analytically continued to negative growth rates in
a manner similar to the Landau procedure. We derived
the general quasi-linear diffusion coefficients starting in
the simple electrostatic case and generalized these results
to nonrelativistic magnetized plasma. The derived quasi-
linear diffusion conserves the energy and the linear mo-
mentum and the exchanges of energy and momentum be-
tween fields and particles cease as the growth/damping
rates approach zero. The analytic continuation of the
diffusion coefficients brings the problem of the physical
interpretation similar to the case of the original linear
result.1 Our results indicate that the quasi-linear diffu-
sion of damped waves includes some hyper-diffusion in
the velocity space (i.e., terms proportional to higer order
derivatives of the particle velocity distribution function).
The limiting forms of the quasi-linear diffusion coeffi-

cients as γ → 0 are convenient for theoretical and numer-
ical purposes. However, in this limit the energy and mo-
mentum exchanges between waves and particles approach
to zero and consequently the particle diffusion is likely
reduced. This is consistent with the reduction of the res-
onance broadenning due to the finite damping/growth
rate. Conservation laws naturally constrain the particle
diffusion and must be taken into account when analysing
particle heating and acceleration by electromagnetic fluc-
tuations.

Appendix A: Glossary

Here t denotes the time, and the subscript s denotes
different species. Here i denotes the imaginary unit, ℜ
and ℑ denote the real and imaginary part, respectively,
and the overline denotes the complex conjugate, a+ ib =
a − ib for real a and b. Here ω denotes the complex
frequency, ωr = ℜω, γ = ℑω.
In the electrostatic case x denotes the only spatial vari-

able, fs denotes the ambient (averaged) normalized ve-
locity distribution function, fs = fs(v) where v is the
only velocity component; E1 denotes the first-order, lin-
ear electric field fluctuations, δE denote the linear fluc-
tuations of a given mode and fs1 denotes the first-order,
linear fluctuations of the velocity distribution function.
Here k denotes the only component of the wave vector.

In the electromagnetic case x denotes the position,
E and B denote the electric and magnetic fields, re-
spectively, B0 denotes the ambient magnetic field and
B0 = |B0| denotes its magnitude. Here fs = fs(v‖, v⊥)
denotes the ambient (averaged) normalized velocity dis-
tribution function where v‖ and v⊥ denote magnitude
of the velocity components parallel and perpendicular
to B0, respectively. Here E1 and B1 denote the first-
order, linear fluctuations of the electric and magnetic
fields, respectively, and δE and δB denote the linear elec-
tric and magnetic fields of a given linear mode. Here
fs1 = fs1(v‖, v⊥, ϕ) the first-order, linear fluctuations of
the velocity distribution function where ϕ denotes the gy-
rophase. Here k denotes the wave vector, and k‖ and k⊥
denotes its parallel and perpendicular components with
respect to B0, respectively.

Here ωcs = qsB0/ms and ωps = (nsq
2
s /msǫ0)

1/2 denote
the cyclotron and plasma frequencies, respectively. In
these expressions ms, qs, and ns denote the mass, the
charge, and the number density, respectively, and ǫ0 and
µ0 denote the vacuum electric permittivity and magnetic
permeability, respectively.

In the electromagnetic case ps‖ stands for the par-

ticle parallel linear momentum ps‖ = msns

∫

R3 v‖fs d
3v

and Es denotes the particle kinetic energy Es =
msns

∫

R3(v
2/2)fs d

3v while pem‖ stands for the (averaged)
linear momentum of the electromagnetic field pem‖ =
ǫ0〈E ×B〉 ·B0/B0 and Eem denotes the (averaged) elec-
tromagnetic energy Eem = 〈ǫ0|E|2+ |B|2/µ0〉/2 where 〈〉
denote averaging.

Appendix B: Complex Dirac δ function

Complex extension of the Dirac δ function for a suffi-
ciently smooth (analytic) real function f is defined as

b
∫

a

d(x − c)f(x)dx =

{

f(c) if a ≤ ℜc ≤ b
0 else.

(B1)

for real a, b, x ∈ R and general complex c ∈ C. This
definition requires that there exists a (unique) analytic
continuation of f to c.

The complex extension d has the following properties
for analytical real functions

d(c) = d(c) (B2)

which follows from the Taylor expansion around cr = ℜc
in ci = ℑc

f(c) =
∞
∑

n=0

f (n)(cr)(ici)n

n!
= f(c) (B3)

where f (n) = dnf/dxn.
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