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Setting of the model



Model

� Non-stationary isothermal saturated water flow in a deformable clay.

� The clay is composed of an incompressible solid matrix (index s) and

a porous space completely filled by water (index w).

� The poroelastoplastic modified Cam-Clay model with non-linear

elasticity is used for the solid skeleton.

� Negligible inertial effects.

� Lagrangian formulation.

� The small-strain assumption.

� Compressive-positive pressures, tensile-positive stresses.

� Based on [Cou04].
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Balance Laws



Water mass balance

Under the small-strain assumption:

∂(φρw )

∂t
+ div(ρwqqqrw ) = 0

t — the time ρw — the water mass density

φ — the Lagrangian porosity (with respect to the initial configuration)

qqqrw ≡ n(vvvw − vvv s) — the Darcy velocity

n — the Eulerian porosity (with respect to the deformed configuration)

vvvw — the water velocity vvv s — the skeleton velocity
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Equilibrium equation

Under the small-strain assumption:

divσσσ + ((1− φ0)ρ0
s + φρw )fff = 000

σσσ — the Cauchy stress tensor φ0 — an initial Lagrangian porosity

ρ0
s — the initial matrix mass density fff — a body force density
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Constitutive Relationships



Water density

By considering the water to be compressible:

dρw
ρw

=
dpw
Kw

d — the differential operator with respect to time

pw — the water pressure Kw — the water bulk modulus

Assuming Kw constant (over some range of pressures), one obtains by

integration:

ρw = ρ0
we

(pw−p0
w )/Kw

ρ0
w , p

0
w — initial values of the water density and pressure
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Darcy’s law

Transport of water is described by:

qqqrw =
kkk

µw
(−∇pw + ρwfff )

kkk — the (intrinsic) permeability tensor of the porous medium

µw — the dynamic viscosity of water
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Porosity

The solid grains forming the matrix generally undergo negligible volume

changes and the matrix can be assumed to be incompressible. This means

that the matrix volume remains unchanged during the deformation:

(1− n)dVt = (1− n0)dV0

n0 — the initial Eulerian porosity

dV0 — an arbitrary infinitesimal volume in the initial configuration

dVt — the corresponding infinitesimal volume in the deformed configuration

Use of transport formulae gives in the framework of small strains:

φ = φ0 + εv

εv ≡ trεεε — the volumetric strain

εεε ≡ 1

2

(
∇∇∇uuu + (∇∇∇uuu)>

)
— the linear strain tensor

uuu — the displacement vector of the skeleton
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Plastic strain

Poroplasticity is the ability of porous materials to undergo permanent

strains. In the context of small strains, the strain tensor εεε can be

decomposed into a reversible part (elastic, superscript el) and an

irreversible one (plastic, superscript p) as follows:

εεε = εεεel + εεεp
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Deviatoric stress and strain

Our constitutive stress:

σσσ′ ≡ σσσ + pwIII — Terzaghi’s effective stress

We introduce the decompositions:

σσσ′ = sss − p′III

p′ ≡ −1

3
trσσσ′ — the effective pressure sss — the deviatoric stress tensor

εεε = εεεd +
1

3
εvIII

εεεd — the deviatoric strain tensor
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Tomáš Ligurský A Poroelastoplastic Model for Saturated Clays 9/26



Triaxial stress conditions

When the porous material is subjected to an axial pressure −σ1 in one

direction and a uniform pressure −σ2 = −σ3 in the orthogonal directions,

and the material is isotropic, it suffices to consider:

q ≡ −(σ1 − σ3) — the deviatoric stress

εq ≡ −
2

3
(ε1 − ε3) — the deviatoric strain

ε1, ε3 (= ε2) — principal strains

and we shall take

εv := −εv
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Non-linear poroelasticity

The following elastic behaviour of clays has been experimentally found:

dεelv = κ∗
dp′

p′
dεelq =

dq

3µ

κ∗ :=
κ

1 + e0
e0 =

φ0

1− φ0
— an initial void ratio

κ — an elastic stiffness parameter µ — the shear modulus(
K (p′) :=

p′

κ∗
— the tangent bulk modulus

)

By integration:

εelv = κ∗ ln
p′

p′0
εelq =

q − q0

3µ

p′0, q0 — initial values of p′0 and q

and by inversion:

p′ = p′0 exp

(
εelv
κ∗

)
q = 3µεelq + q0
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Loading function

f (p′, q, pco) =

(
p′ − pco

2

)2

+
q2

M2
−
(
pco
2

)2

pco — the effective consolidation pressure

M — a material parameter

p′

q

0 pcopco/2

Mpco/2

Figure 1: Yield surface f = 0.
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Flow rule

dεpv = dλ
∂f

∂p′
= 2dλ

(
p′ − pco

2

)
dεpq = dλ

∂f

∂q
= 2dλ

q

M2

where the plastic multiplier dλ satisfies the complementarity conditions:

dλ ≥ 0 f ≤ 0 dλ · f = 0

p′

q

0 pcopco/2

Mpco/2

dil
ati

on
contraction

Figure 2: Yield surface.
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Hardening

The incremental law:
dpco
pco

=
1

λ∗ − κ∗
dεpv λ∗ :=

λ

1 + e0
κ < λ — a parameter

By integration:

pco = p0
co exp

(
εpv

λ∗ − κ∗

)
p0
co — a reference effective consolidation pressure

p′

q

0 pcopco/2

Mpco/2

dil
ati

on

sof
ten

ing

contractionhardening

Figure 3: Yield surface.
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Input values

Parameters

Water bulk modulus Kw

Permeability (tensor) kkk

Dynamic viscosity of water µw

Elastic stiffness parameter κ

Shear modulus µ

Shear strength M

Plastic stiffness parameter λ

Initial (reference) values

Water pressure p0
w

Water density ρ0
w

Porosity (or void ratio) φ0 (e0)

Matrix density ρ0
s

Consolidation pressure p0
co

(Displacement uuu0 = 000)
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Thermodynamical Consistency



Dissipation condition

In the context of small isothermal strains, the non-negativeness of the

dissipation associated with the skeleton saturated by water can be

written as the following Clausius–Duhem inequality:

σσσ : dεεε+ pwdφ− dΨs ≥ 0

Ψs — the Helmholtz free energy of the skeleton

By the incompressibility condition dφ = dεv :

σσσ′ : dεεε− dΨs ≥ 0

and for an isotropic material under triaxial stress conditions:

p′dεv + qdεq − dΨs ≥ 0
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Energy decomposition

Owing to the additive character of energy, the energy Ψs can be split into

two parts:

(i) the elastic energy F stored in the skeleton during reversible

mechanical processes;

(ii) the locked energy Z that is stored in the skeleton when irreversible

(mechanical) processes take place:

Ψs = F (εelv , ε
el
q ) + Z (χ)

χ — a hardening state variable
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Thermodynamical relations I

Inserting the energy decomposition into the dissipation condition, one

gets:(
p′ − ∂F

∂εelv

)
dεelv +

(
q − ∂F

∂εelq

)
dεelq + p′dεpv + qdεpq + ζdχ ≥ 0

ζ ≡ −dZ

dχ
— the hardening force

From here:

p′ =
∂F

∂εelv
q =

∂F

∂εelq

p′dεpv + qdεpq + ζdχ ≥ 0
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Thermodynamical relations II

Alternatively, by introducing the energy G by the following Legendre

transformation:

G (p′, q) = p′εelv + qεelq − F (εelv , ε
el
q )

one obtains the state equations:

εelv =
∂G

∂p′
εelq =

∂G

∂q
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Thermodynamical consistency of the poroelasticity

The energy potential G:

G (p′, q) = κ∗p′
(

ln
p′

p′0
− 1

)
+

(q − q0)2

6µ

The energy potential F:

F (εelv , ε
el
q ) = κ∗p′0 exp

(
εelv
κ∗

)
+

3

2
µ
(
εelq

)2
+ εelq q0
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Thermodynamical consistency of the poroplasticity

We identify:

χ = εpv — the hardening variable ζ = −pco — the hardening force

and we require:

pco =
dZ

dεpv

This is satisfied by taking:

Z (εpv ) = (λ∗ − κ∗)p0
co exp

(
εpv

λ∗ − κ∗

)
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The dissipation condition

It suffices to verify:

p′dεpv + qdεpq − pcodε
p
v ≥ 0

or by inserting the flow rule:

dλ

[
2p′

(
p′ − pco

2

)
+ 2

q2

M2
− 2pco

(
p′ − pco

2

)]
≥ 0

In virtue of the complementarity conditions either dλ = 0 or (dλ > 0 and

f = 0). In the latter case, one arrives at:

2p′
(
p′ − pco

2

)
+ 2

q2

M2
− 2pco

(
p′ − pco

2

)
= pco(pco − p′)

Therefore one can conclude that the dissipated energy is non-negative

over the whole range of admissible effective pressures p′ (p′ ≤ pco).
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Extension to general stress states

One can express the deviatoric strain εq and the deviatoric stress q from

triaxial stress conditions as functions of the deviatoric tensors εεεd and sss:

ε2
q =

2

3
εεεd : εεεd εqq = εεεd : sss q2 =

3

2
sss : sss

This leads to:

F (εelv , εεε
el
d ) = κ∗p′0 exp

(
εelv
κ∗

)
+ µεεεeld : εεεeld + εεεeld : sss0

f (p′, sss, pco) =

(
p′ − pco

2

)2

+
2

3M2
sss : sss −

(
pco
2

)2

and

sss =
∂F

∂εεεeld
= 2µεεεeld + sss0

dεεεpd = dλ
∂f

∂sss
=

dλ

3M2
sss
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Field equations



Continuity equation

One obtains:

∂(φρw )

∂t
= ρw

∂φ

∂t
+ φ

∂ρw
∂t

= ρw
∂εv
∂t

+
φρw
Kw

∂pw
∂t

div(ρwqqqrw ) = div

(
ρw

kkk

µw
(−∇pw + ρwfff )

)
and the water mass balance equation provides:

ρw
∂εv
∂t

+
φρw
Kw

∂pw
∂t

= − div

(
ρw

kkk

µw
(−∇pw + ρwfff )

)
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Equilibrium equation

By taking:

σσσ = σσσ′ − pwIII = sss − p′III − pwIII

and invoking the stress–strain relationship, one obtains:

− ∂p
′

∂εelv
∇εelv + 2µdivεεεeld −∇pw +

(
(1− φ0)ρ0

s + φρw
)
fff = 000
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