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The Model



The model

� Non-stationary non-isothermal unsaturated water flow in a

deformable porous medium.

� Isotropic elastic skeleton (index s).

� The porous space filled by water (index w) and a gas phase (index

g) formed by a mixture of water vapour (index v) and ’dry’ air

(index a).

� Possible phase changes between the water and its vapour.

� Negligible inertial effects.

� The assumption of thermal equilibrium (the fluids and the matrix are

locally at the same temperature).

� The assumption of small deformations.

� An extract from [Cou04] + an adaptation of the Eulerian approach

from [LS98].
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Notation

uuu — the displacement vector of the skeleton

ididid + uuu — the deformation of the skeleton

FFF = III +∇∇∇uuu — the deformation gradient

J = det(III +∇∇∇uuu) — the Jacobian of the deformation

n, φ — the Eulerian and Lagrangian porosity: n dVt = φ dV0 is the

current porous space in a current volume dVt or in the corresponding

initial volume dV0 (nJ = φ)

Sf — the degree of saturation relative to fluid f : Sf n dVt = Sf φ dV0 is

the volume occupied by fluid f in current volume dVt or initial volume dV0

Both the vapour and the air occupy the whole part of the porous space

filled by the gas phase:

Sv = Sa = Sg Sw + Sg = 1
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Balance Laws



Solid mass balance

Ds

Dt

∫
Vt

ρs(1− n)dVt = 0

Ds

Dt
=

∂

∂t
+ vvv s · ∇ — the total time derivative with respect to the skeleton

t — the time

vvv s — the skeleton velocity

ρs — the solid mass density

The Eulerian local form:

Ds(ρs(1− n))

Dt
+ ρs(1− n) divvvv s = 0

The Lagrangian alternative:

(1− n)ρsJ = (1− φ0)ρs0

φ0(= n0) — the initial Lagrangian (= initial Eulerian) porosity

ρs0 — the initial skeleton mass density

Tomáš Ligurský Unsaturated Thermoporoelasticity 4/37



Water mass balance

Dw

Dt

∫
Vt

nSwρw dVt = −
∫
Vt

r̊w→v dVt

Dw

Dt
— the total time derivative with respect to the water

ρw — the water mass density

r̊w→v — the rate of water mass changing into vapour per unit of

current volume
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Water continuity equations

The local Eulerian continuity equation (referring to the skeleton motion):

Ds(nSwρw )

Dt
+ nSwρw divvvv s + div(ρwqqqrw ) = −r̊w→v

qqqrw ≡ nSw (vvvw − vvv s) — the water specific discharge relative to the skeleton

(or Darcy velocity or filtration vector)

vvvw — the water velocity

The Lagrangian counterpart:

d(φSwρw )

dt
+ divMMMw = −m̊w→v

MMMw ≡ JFFF−1(ρwqqqrw ) — the Lagrangian relative flow vector of water mass

m̊w→v ≡ Jr̊w→v — the rate of water mass changing into vapour per unit

of initial volume
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Vapour mass balance

Dv

Dt

∫
Vt

nSgρv dVt =

∫
Vt

r̊w→v dVt

Dv

Dt
— the total time derivative with respect to the vapour

ρv — the vapour (partial) mass density

(= the mass of vapour per unit volume of the gas phase)

The local Eulerian form:

Ds(nSgρv )

Dt
+ nSgρv divvvv s + div(ρvqqqrv ) = r̊w→v

qqqrv ≡ nSg (vvv v − vvv s) — the vapour specific discharge relative to the skeleton

vvv v — the vapour velocity

The Lagrangian form:

d(φSgρv )

dt
+ divMMMv = m̊w→v

MMMv ≡ JFFF−1(ρvqqqrv ) — the Lagrangian relative flow vector of vapour mass
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Dry air mass balance

Da

Dt

∫
Vt

nSgρa dVt = 0

Da

Dt
— the total time derivative with respect to the air

ρa — the dry air (partial) mass density

The local Eulerian form:

Ds(nSgρa)

Dt
+ nSgρa divvvv s + div(ρaqqqra) = 0

qqqra ≡ nSg (vvv a − vvv s) — the air specific discharge relative to the skeleton

vvv a — the dry air velocity

The Lagrangian form:

d(φSgρa)

dt
+ divMMMa = 0

MMMa ≡ JFFF−1(ρaqqqra) — the Lagrangian relative flow vector of air mass
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Balance of momentum

Ds

Dt

∫
Vt

(1− n)ρsvvv s dVt +
∑

f =w ,v ,a

Df

Dt

∫
Vt

nSf ρf vvv f dVt

=

∫
Vt

ρfff dVt +

∫
∂Vt

TTT da

ρ ≡ (1− n)ρs +
∑

f =w ,v ,a nSf ρf — the apparent mass density

of the total porous medium

fff — a body force density TTT — a surface force density

The local equation of motion:

divσσσ + ρfff − (1− n)ρsaaas −
∑

f =w ,v ,a

nSf ρf aaaf − r̊w→v (vvv v − vvvw ) = 000

σσσ — the Cauchy stress tensor

aaas ≡
Dsvvv s

Dt
=
∂vvv s

∂t
+ (∇∇∇vvv s)vvv s — the skeleton acceleration

aaaf ≡
Df vvv f

Dt
=
∂vvv f

∂t
+ (∇∇∇vvv f )vvv f — the acceleration of fluid f
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Equilibrium equations

By disregarding the dynamic effects (quasistatic approximation):

divσσσ +

(
(1− n)ρs +

∑
f =w ,v ,a

nSf ρf

)
fff = 000

The Lagrangian counterpart:

div(FFFΠΠΠ) +

(
(1− φ0)ρs0 +

∑
f =w ,v ,a

φSf ρf

)
fff = 000

ΠΠΠ ≡ JFFF−1σσσFFF−> — the Piola-Kirchhoff stress tensor
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Balance of moment of momentum

Ds

Dt

∫
Vt

xxx × (1− n)ρsvvv s dVt +
∑

f =w ,v ,a

Df

Dt

∫
Vt

xxx × nSf ρf vvv f dVt

=

∫
Vt

xxx × ρfff dVt +

∫
∂Vt

xxx ×TTT da

xxx — the position vector

=⇒ the symmetry of the stress tensor σσσ
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Energy balance

Ds

Dt

∫
Vt

(1− n)ρs

(
es +

1

2
vvv s · vvv s

)
dVt

+
∑

f =w ,v ,a

Df

Dt

∫
Vt

nSf ρf

(
ef +

1

2
vvv f · vvv f

)
dVt

=

∫
Vt

(
(1− n)ρsfff · vvv s +

∑
f =w ,v ,a

nSf ρf fff · vvv f

)
dVt

+

∫
∂Vt

(
TTTs · vvv s +

∑
f =w ,v ,a

TTTf · vvv f + Tint · vvv s

)
da−

∫
∂Vt

qqq · nnn da

es — the specific (i.e., per mass unit) internal energy of the skeleton

ef — the specific internal energy of fluid f

TTTs ,TTTf — the surface forces related to the porous solid and fluid f

TTTint — the overall surface tension exerted along the solid-fluid and

the fluid-fluid (water-gas) interfaces

qqq — the heat flux vector nnn — the outward unit normal to Vt
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Entropy condition

Ds

Dt

∫
Vt

(1− n)ρsss dVt +
∑

f =w ,v ,a

Df

Dt

∫
Vt

nSf ρf sf dVt ≥ −
∫
∂Vt

qqq · nnn
T

da

ss — the specific entropy of the skeleton

sf — the fluid specific entropy

T — the absolute temperature
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The (Lagrangian) Clausius-Duhem inequality

Φ ≡ Φs + Φ→ +
∑

f =w ,v ,a

Φf + Φth ≥ 0

Φs ≈ σσσ :
dεεε

dt
+

∑
f =w ,v ,a

pf
d(φSf )

dt
− Ss

dT

dt
− dΨs

dt

εεε ≡ 1

2

(
∇∇∇uuu + (∇∇∇uuu)>

)
— the linear strain tensor

pf — the pressure of fluid f

Ss ,Ψs — the skeleton Lagrangian densities of entropy and free energy

per unit of initial volume

Φ→ = (gw − gv )m̊w→v

gw , gv — the Gibbs potentials of water and vapour

Φf J
−1 = (−∇pf + ρf fff ) · qqqrf

ΦthJ
−1 = − qqq

T
· ∇T

Tomáš Ligurský Unsaturated Thermoporoelasticity 14/37



Dissipation conditions

Owing to the very distinct nature of the dissipations, one can substitute

the unique inequality Φ ≥ 0 by four separate inequalities:

Φs ≥ 0 Φ→ ≥ 0
∑

f =w ,v ,a

Φf ≥ 0 Φth ≥ 0
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Constitutive Equations



Fluids

By differentiating classical fluid state equations one obtains for fluid f :

dρf
ρf

=
dpf
Kf
− βf dT

dsf = −βf
dpf
ρf

+ cpf
dT

T

Kf — the fluid bulk modulus

βf — the fluid volumetric thermal expansion coefficient

cpf — the fluid specific heat capacity at constant pressure

In particular, we assume that the gas phase is an ideal mixture of vapour

and dry air, which behave as ideal gases:

pg = pv + pa — the pressure of the gaseous vapour–air mixture

pf =
RT

Mf
ρf f = v , a

R — the ideal gas constant

Mf — the molar mass of fluid f
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Water–vapour transition

The local thermodynamic equilibrium between the water and its vapour

requires:

Φ→ = (gw − gv )m̊w→v = 0

gw (pw ,T ) = gv (pv ,T ) (1)

When assuming sufficiently slow changes so that the water-vapour

equilibrium is maintained throughout the evolution, and considering the

water density ρw as constant (in comparison with the vapour density ρv ),

one can derive Kelvin’s law by differentiation of (1):

pw − patm =
ρwRT

Mv
ln

pv
pvs(T )

pvs(T ) — the pressure of the saturating vapour at temperature T when

the water pressure pw is equal to the atmospheric pressure patm
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The pressure of the saturating vapour

pvs(T ) = pvs(T0) exp

{
Mv

RT

[
L0

T0
(T − T0)

+ (cpw − cpv )

(
T − T0 − T ln

T

T0

)]}
L0 = T0(sv0 − sw0) — the latent heat of vaporisation at temperature T0

and pw = patm

sv0, sw0 — the specific entropies of the vapour and the water at

temperature T0
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Transport in the gaseous phase

One can decompose the transport qqqrf of a component f = v , a of the

vapour–air gaseous mixture into an advective part qqqrg and a diffusive

part (qqqrf − qqqrg ) by introducing qqqrg as follows:

cv , ca — the molar concentrations of the vapour and the air

c ≡ cv + ca — the total gas molar concentration

xf ≡
cf
c

– the mole fraction of fluid f = v , a

qqqrg ≡ xvqqqrv + xaqqqra — the specific discharge of the gas phase relative

to the skeleton (molar average)
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Darcy’s law

Transport of water and the gas phase as a whole:

qqqrf =
kkkkrf
µf

(−∇pf + ρf fff ), f = w , g

kkk — the intrinsic permeability tensor of the porous medium

krf = krf (Sf ) ∈ [0, 1] — the relative permeability to fluid f

µf — the dynamic viscosity of fluid f
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Fick’s law

Diffusion of the vapour and the air through the gas:

qqqrv − qqqrg = −pg
pv

DDD∇
(
pv
pg

)
qqqra − qqqrg = −pg

pa
DDD∇

(
pa
pg

)
DDD — a diffusion tensor

It is worth to mention that the non-negativeness of the dissipation

associated with the fluid transport
∑

f =w ,v ,a Φf ≥ 0 is satisfied if kkk/µw ,

kkk/µg and DDD are all positive semidefinite. But this does not hold if qqqrg is

chosen as the mass average instead of the molar one!

Tomáš Ligurský Unsaturated Thermoporoelasticity 21/37



Fourier’s law

Heat conduction:

qqq = −κκκ∇T
κκκ — a tensor of thermal conductivities

The non-negativeness of the dissipation associated with heat conduction

Φth ≥ 0 requires κκκ to be positive semidefinite.
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Mechanical dissipation

In thermoporoelasticity, the mechanical dissipation Φs associated with

the skeleton is zero:

Φs = σσσ :
dεεε

dt
+

∑
f =w ,v ,a

pf
d(φSf )

dt
− Ss

dT

dt
− dΨs

dt
= 0

Owing to the additive character of energy, one can decompose the

skeleton free energy Ψs as:

Ψs(εεε, φ,Sw ,T ) = Ψ∗s (εεε, φ,T ) + φU(φ, Sw ,T )

Ψ∗s — the free energy of the porous solid alone per unit of initial volume

φU — the overall interfacial free energy per unit of initial volume

U(φ, Sw ,T ) = φ−1/3Γ(Sw ,T )
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Skeleton state equations

The decomposition of Ψs leads to:

pc = − ∂U

∂Sw

σσσ :
dεεε

dt
− φdπ

dt
− S∗s

dT

dt
− dG∗s

dt
= 0 (2)

π = Swpw + Sgpg −
2

3
U — the equivalent pore pressure

S∗s = Ss + φ
∂U

∂T
— the entropy of the porous solid alone

G∗s ≡ Ψ∗s − πφ

Further, (2) provides the skeleton state equations:

G∗s = G∗s (εεε, π,T ) σσσ =
∂G∗s
∂εεε

φ = −∂G
∗
s

∂π
S∗s = −∂G

∗
s

∂T
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Capillary pressure curve

In view of the equality

pc = − ∂U

∂Sw

there is a relationship between the capillary pressure pc and the

saturation Sw :

pc = pc(φ,Sw ,T )

or

Sw = Sw (φ, pc ,T )

Moreover, the interfacial energy U can be expressed as:

U(φ, Sw ,T ) =

∫ 1

Sw

pc(φ,S,T )dS
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Constitutive equations of the porous solid

By differentiating the skeleton state equations while restricting oneself to

an isotropic material one obtains:

dσσσ =

(
K − 2

3
µ

)
dεvIII + 2µdεεε− αdπIII − βKdTIII

dφ = αdεv +
dπ

N
− βφdT

dS∗s = βKdεv − βφdπ +
C

T
dT

K , µ — the bulk and shear moduli of the porous solid

εv ≡ trεεε = divuuu — the volumetric strain

β — the porous solid volumetric thermal expansion coefficient

α — Biot’s coefficient N — Biot’s modulus

βφ — a volumetric thermal expansion coefficient related to the porosity

C — the porous solid heat capacity at constant strain and pressure
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Matrix density

By introducing the hydrostatic part of the partial stress tensor σσσs related

to the porous solid alone:

σsv ≡
1

3
trσσσs

and considering ρs = ρs(σsv ,T ) in analogy with the state equations for

fluids, one can take (?):

dρs
ρs

= −dσsv
Ks
− βsdT

Ks — the matrix bulk modulus

βs — the matrix volumetric thermal expansion coefficient

This together with the constitutive equation for σσσ yields:

dρs
ρs

=
1

1− n

(α− n

Ks
dπ − (1− α)dεv −

(
βs(1− n)− β(1− α)

)
dT
)
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Fluid enthalpies

According to the classical thermodynamics of fluids:

hf = ef +
pf
ρf

— the specific enthalpy of fluid f

dhf = cpf dT +
1

ρf
(1− βf T )dpf
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Matrix enthalpy and interfacial internal energy

By introducing the decomposition:

es = e∗s + eint

e∗s — the specific internal energy of the solid matrix alone

eint — the specific overall interfacial internal energy

and the specific solid matrix enthalpy by:

h∗s ≡ e∗s −
1

(1− φ0)ρs0
σσσ : εεε− 1

(1− φ0)ρs0
πφ

one can derive from the dissipation condition Φs = 0:

(1− φ0)ρs0dh
∗
s = −εεε : dσσσ − φdπ + βTdσv + (αβ − βφ)Tdπ + CσσσdT

σv ≡
1

3
trσσσ — the hydrostatic part of the stress tensor σσσ

Cσσσ — the skeleton heat capacity at constant stress and pressure

(1− φ0)ρs0deint =
2

3
Udφ− φpcdSw − Td

(
φ
∂U

∂T

)
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Simplifications of the Two-phase

Flow Model



Simplifications

Simplifications that make it possible to eliminate the unknown gas

pressure pg from the previous equations and to reduce the general

unsaturated model introduced before, which treats a complete two-phase

flow.

The simplifications are based on the assumptions, which seem to be

relevant for clays under moderate conditions as clays have a high intrinsic

permeability to gas.
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Simplifying assumptions I

(i) The gas pressure is not much greater than several times atmospheric

pressure whereas the capillary pressure reaches values much greater than

atmospheric pressure. Hence:

|pc | � |pg | |Swpc | � |pg |

(ii) The changes of the gas pressure are so small that (a) they are

negligible with respect to the changes of the capillary pressure, (b) the

Darcean advective transport of the vapour–air mixture considered as a

whole is much smaller than the Fickean molecular diffusion, (c) the

changes of the gas pressure in the Fick law are negligible when compared

with the changes of the vapour pressure:

|dpc | � |dpg | |Swdpc | � |dpg |∥∥∥∥kkkkrgµg
(−∇pg + ρgfff )

∥∥∥∥� ∥∥∥∥−pg
pv

DDD∇
(
pv
pg

)∥∥∥∥
−pg
pv

DDD∇
(
pv
pg

)
≈ − 1

pv
DDD∇pv
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Simplifying assumptions II

(iii) The body force exerted on the gaseous vapour–air mixture can be

neglected with respect to the forces exerted on the skeleton and water:(
(1− n)ρs +

∑
f =w ,v ,a

nSf ρf

)
fff ≈

(
(1− n)ρs + nSwρw

)
fff

(iv) The thermal capacity of the dry air as well as the heat supplied by

its motion can be neglected with respect to the other components of the

porous medium.
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Resulting simplifications

Under the previous assumptions:

pc ≈ −pw dpc ≈ −dpw

Sw = Sw (φ, pw ,T ) dSw =
∂Sw
∂φ

dφ+
∂Sw
∂pw

dpw +
∂Sw
∂T

dT

π ≈ Swpw −
2

3
U

dπ ≈ Swdpw +
1

3
pwdSw −

2

3

(
∂U

∂φ
dφ+

∂U

∂T
dT

)
qqqrv = qqqrg + (qqqrv − qqqrg ) =

kkkkrg
µg

(−∇pg + ρgfff )− pg
pv

DDD∇
(
pv
pg

)
≈ − 1

pv
DDD∇pv
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Constant gas pressure

Alternatively, when the gas phase is approximately at a constant

(hydrostatic atmospheric) pressure, but this value is not much smaller

than the capillary pressure as assumed before, one can take the value of

the gas pressure as the reference (zero) one. Then one also gets:

pc ≈ −pw Swpw + Sgpg ≈ Swpw

However, one has to be aware that the water pressure is diminished by

the value of the gas pressure in this case.
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Field equations

Field equations are then derived by inserting the constitutive equations

into:

� the sum of the water and vapour mass balance equations:

d
(
φSwρw + φ(1− Sw )ρv

)
dt

+ div(MMMw +MMMv ) = 0

or

Ds

(
n(Swρw + (1− Sw )ρv )

)
Dt

+ n
(
Swρw + (1− Sw )ρv

)
divvvv s

+ div(ρwqqqrw + ρvqqqrv ) = 0

� the equilibrium equation

� the energy equation
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