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The Model
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The model

c.
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Ze

e Non-stationary non-isothermal unsaturated water flow in a
deformable porous medium.

e Isotropic elastic skeleton (index s).

e The porous space filled by water (index w) and a gas phase (index
g) formed by a mixture of water vapour (index v) and 'dry" air
(index a).

e Possible phase changes between the water and its vapour.

e Negligible inertial effects.

e The assumption of thermal equilibrium (the fluids and the matrix are
locally at the same temperature).

e The assumption of small deformations.

e An extract from [Cou04] + an adaptation of the Eulerian approach
from [LS98].
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Notation
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u — the displacement vector of the skeleton

id + u — the deformation of the skeleton

F = | + Vu — the deformation gradient

J = det(I + Vu) — the Jacobian of the deformation

n, ¢ — the Eulerian and Lagrangian porosity: ndV; = ¢ dVj is the
current porous space in a current volume dV; or in the corresponding
initial volume dV4 (nJ = ¢)

S¢ — the degree of saturation relative to fluid f: SpndV; = SrpdVy is
the volume occupied by fluid f in current volume dV; or initial volume dVj

Both the vapour and the air occupy the whole part of the porous space
filled by the gas phase:

Sy=5=S5  Su+S;=1
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Solid mass balance

D,

— (1 —n)dV: =0

Dt Jy, ps( n)dV;
D, 0 . o .
Dt = T + vs - V — the total time derivative with respect to the skeleton
t — the time

vs — the skeleton velocity
ps — the solid mass density

The Eulerian local form:

Ds(ps(l - n))
Dt
The Lagrangian alternative:

(L= n)psJ = (1 — ¢o)pso
¢do(= ng) — the initial Lagrangian (= initial Eulerian) porosity
pso — the initial skeleton mass density

+ ps(1 —n)divvs =0

Tomas Ligursky Unsaturated Thermoporoelasticity 4/37



c
De
4

Water mass balance

D,
D [ 5oy dVy = — / Py AV

Dt VA VA
1Dy . N .
Dt the total time derivative with respect to the water

pw — the water mass density
fw—sv — the rate of water mass changing into vapour per unit of

current volume
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Water continuity equations l'lC‘i\I:

The local Eulerian continuity equation (referring to the skeleton motion):

Ds(nSwpw)
Dt
qrw = nSy(vy — vs) — the water specific discharge relative to the skeleton

+ nSypw divvs +div(pw@m) = —Fuoy

(or Darcy velocity or filtration vector)

v,, — the water velocity

The Lagrangian counterpart:

d(¢Swpw)
dt

M, = JFfl(qu,W) — the Lagrangian relative flow vector of water mass

T divM, = — 1y

my,—, = Jfy—, — the rate of water mass changing into vapour per unit

of initial volume
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Vapour mass balance

D, o
Dt/% nsgpvdvt:/vt sy AV,

D—; — the total time derivative with respect to the vapour

py — the vapour (partial) mass density

(= the mass of vapour per unit volume of the gas phase)

The local Eulerian form:
Ds(nsgpv)
Dt

qrn = nSg(v, — vs) — the vapour specific discharge relative to the skeleton

+ nSgp, divvs +div(p.gn) = Fyosy

v, — the vapour velocity

The Lagrangian form:

d(S,py . .
% +divM, = my,_,

M, = JF*(p,q,,) — the Lagrangian relative flow vector of vapour mass
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Dry air mass balance

D,
= /v nSgpadVe =0

D . R : .
D—Et' — the total time derivative with respect to the air

pa — the dry air (partial) mass density

The local Eulerian form:

Ds(nSgpa)
Dt
Gra = nSg(v, — v) — the air specific discharge relative to the skeleton

+ nSgpadivvs + div(pagra) = 0

v, — the dry air velocity

The Lagrangian form:

d99s1) | iy m, = 0
dt ’

M, = JF*(p.q,,) — the Lagrangian relative flow vector of air mass
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Balance of momentum

Cc

Ds

D¢
Dt Vt(lfn)psvsdvﬁ Z Dt/VIHSfpfvdef

f=w,v,a
V; A%

p=(1—n)ps+ Zf:w,v,a nS¢ps — the apparent mass density
of the total porous medium
f — a body force density T — a surface force density
The local equation of motion:
divo + pf - (1 - n)psas - Z nsfpfaf - FW*)V(VV - VW) =0
f=w,v,a

o — the Cauchy stress tensor

D.vy  Ovs
a;, = = + (Vvs)vs — the skeleton acceleration
" Dt ot (Vv
Dfo an . .
ar = = — + (Vv¢)vy — the acceleration of fluid f
Dt ot ( )
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Equilibrium equations
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By disregarding the dynamic effects (quasistatic approximation):

dive + ((1 —n)ps + Z nSfpf>f =0

f=w,v,a

The Lagrangian counterpart:

div(FN) + ((1 — oo+ Y qssfpf)f =0

f=w,v,a

N = JF '6F T — the Piola-Kirchhoff stress tensor
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Balance of moment of momentum
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D D
D;/Vtxx(l—n)psvsdvt—k Z D';/Vtxxnsfpfvfdvt

f=w,v,a

:/xxpdet+/ x x Tda
Ve v,

x — the position vector

— the symmetry of the stress tensor o
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Energy balance

c.

D;
Dt Jy,

D 1
+ Z D;/VtHSfpf<E‘f+2Vf'Vf) dV;

f=w,v,a

= / ((1 —n)psf - vs + Z nS¢psf - w) dV,
Vi

f=w,v,a

+/ (TS'V5+ Z Tf'Vf+T;nt-v5>da—/ g-nda
oV, oV,

f=w,v,a

1
(1= n)ps (es + EVs : Vs) dV;

es — the specific (i.e., per mass unit) internal energy of the skeleton

er — the specific internal energy of fluid f

Ts, Tr — the surface forces related to the porous solid and fluid

Tint — the overall surface tension exerted along the solid-fluid and
the fluid-fluid (water-gas) interfaces

q — the heat flux vector n — the outward unit normal to V;
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Entropy condition Uc‘i\l:
D D¢ q-n
= = sSs AV, Dt Vi> — T
o Vt( n)psss dV; + Z Dr /\/t nS¢prse dVy /{M T da

f=w,v,a
ss — the specific entropy of the skeleton
sy — the fluid specific entropy
T — the absolute temperature
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The (Lagrangian) Clausius-Duhem inequality
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O=0, 4O, + Y D+ Dy >0

f=w,v,a

_ de d(4Sf) dT  dwg
b0t PF—ar ~%ar  ar

f=w,v,a

1
= 5(Vu + (Vu)T) — the linear strain tensor

pr — the pressure of fluid f
Ss, W; — the skeleton Lagrangian densities of entropy and free energy
per unit of initial volume
S, = (gw — & )Mwoy
gw, &, — the Gibbs potentials of water and vapour
)t = (=Vpr + pef) - qrr
byt = —% VT
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Dissipation conditions

Owing to the very distinct nature of the dissipations, one can substitute
the unique inequality ® > 0 by four separate inequalities:

¢, >0 &, >0 > >0 04 >0

f=w,v,a
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Fluids

AN
UGN
By differentiating classical fluid state equations one obtains for fluid f:
d d
epr _ aPf BedT
pf K
dpr dT

dsf = —ff— + Cp,—
pf T
K¢ — the fluid bulk modulus
B¢ — the fluid volumetric thermal expansion coefficient

cp, — the fluid specific heat capacity at constant pressure

In particular, we assume that the gas phase is an ideal mixture of vapour
and dry air, which behave as ideal gases:

Pg = Pv + pa — the pressure of the gaseous vapour—air mixture
f

= — =v,a

pf prf

R — the ideal gas constant

M — the molar mass of fluid f
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Water—vapour transition

The local thermodynamic equilibrium between the water and its vapour
requires:

¢~> - (gw - gv)FnW—W =0
8w(pw, T) = &v(py, T) (1)

When assuming sufficiently slow changes so that the water-vapour
equilibrium is maintained throughout the evolution, and considering the
water density p,, as constant (in comparison with the vapour density p,),
one can derive Kelvin's law by differentiation of (1):

. _ pwRT n Pv
Pw Patm Mv pvs(-,-)

pvs(T) — the pressure of the saturating vapour at temperature T when
the water pressure p,, is equal to the atmospheric pressure paim
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The pressure of the saturating vapour

Lo

palT) = Pl To) exp] | 22T = T)

+ (cp, —cpv)<T— To—Tln 77_;)]}

Lo = To(svo — swo) — the latent heat of vaporisation at temperature Ty

and Pw = Patm
S0, Swo — the specific entropies of the vapour and the water at

temperature Ty
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Transport in the gaseous phase

One can decompose the transport q,r of a component f = v, a of the
vapour-air gaseous mixture into an advective part q,, and a diffusive
part (g, — q,g) by introducing g,z as follows:

¢y, C; — the molar concentrations of the vapour and the air
¢ = ¢, + ¢, — the total gas molar concentration

c . :
Xf = =T _ the mole fraction of fluid f = v,a
c

Grs = Xuqr + Xaqr, — the specific discharge of the gas phase relative

to the skeleton (molar average)
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Darcy’s law

Cc

Transport of water and the gas phase as a whole:

kk,
qr = Tff(_vpf +Pff)7 f= w, &g

k — the intrinsic permeability tensor of the porous medium
ke = ki (Sr) € [0, 1] — the relative permeability to fluid
e — the dynamic viscosity of fluid f
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Fick’s law

Cc

Diffusion of the vapour and the air through the gas:

A —qrg = _pgDv<pV>

Pv Pg
Qra —qQrg = _pgDv(pa)
Pa Pg

D — a diffusion tensor

It is worth to mention that the non-negativeness of the dissipation

associated with the fluid transport >, ®¢ > 0 is satisfied if k/pw,
k/11g and D are all positive semidefinite. But this does not hold if q,4 is

chosen as the mass average instead of the molar one!
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Fourier’s law
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Heat conduction:

q=—-KkVT

Kk — a tensor of thermal conductivities

The non-negativeness of the dissipation associated with heat conduction
®;, > 0 requires K to be positive semidefinite.
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Mechanical dissipation

In thermoporoelasticity, the mechanical dissipation ® associated with
the skeleton is zero:

de A6S) AT _av,
dt Pt sdt dt

f=w,v,a

Owing to the additive character of energy, one can decompose the
skeleton free energy Vs as:

\Us(é", (Z)v 5W7 T) = \IIS*(s, o, T) + ¢U(¢)7 Swa T)
W — the free energy of the porous solid alone per unit of initial volume

¢U — the overall interfacial free energy per unit of initial volume
U(¢, S T) = ¢71/°T(Su, T)
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Skeleton state equations l'lC‘i\I:
The decomposition of W leads to:
__9u
Pc = 85
de LdT  dG;
dr ¢ T E T ar (2)

T = Swpw + Sgpg — %U — the equivalent pore pressure
Sr=5+ (;56—(71_ — the entropy of the porous solid alone
G =V — 7w

Further, (2) provides the skeleton state equations:

OG} = _0G; _0G;
Oe T on n

G =Gl (e,mT) o=
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Capillary pressure curve

Cc

In view of the equality
_ou

Pc = _asw
there is a relationship between the capillary pressure p. and the
saturation S,,:

Pc = pc(¢7 Swh T)

or

SWI= SW(¢7PC7 T)

Moreover, the interfacial energy U can be expressed as:

1
U(o,Sw, T) = / pe(¢, S, T)dS

w
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Constitutive equations of the porous solid l'lC‘i\I:

By differentiating the skeleton state equations while restricting oneself to

an isotropic material one obtains:
2
do= (K- Fla de,l + 2pde — adml — BKATI
d
dé = ade, + WW — BydT

dS; = BKde, — Bydm + %dT

K, it — the bulk and shear moduli of the porous solid

€, = tre = divu — the volumetric strain

[3 — the porous solid volumetric thermal expansion coefficient

« — Biot's coefficient N — Biot’s modulus

Bs — a volumetric thermal expansion coefficient related to the porosity

C — the porous solid heat capacity at constant strain and pressure
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Constitutive Equations

Alternatives for an Eulerian formulation
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Matrix density L'jc‘i\l:

By introducing the hydrostatic part of the partial stress tensor o5 related
to the porous solid alone:

Oy = = tro;

3
and considering ps = ps(os,, T) in analogy with the state equations for
fluids, one can take (?):

dps dos,
— = ——= —(3,dT
Ps Ks 2
Ks — the matrix bulk modulus

Bs — the matrix volumetric thermal expansion coefficient

This together with the constitutive equation for o yields:

% 1 (afn

. = K dr — (1 — a)de, — (ﬁs(l —n)—pB(1 *O‘))dT)
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Fluid enthalpies

According to the classical thermodynamics of fluids:

he = er + P — the specific enthalpy of fluid £
Pf

1
dhy = ¢, dT + (1= Br T)dpy
f
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Matrix enthalpy and interfacial internal energy U

By introducing the decomposition:
e = €, + €int
el — the specific internal energy of the solid matrix alone
eint — the specific overall interfacial internal energy
and the specific solid matrix enthalpy by:

hi =el : o€ L 10)

=e, — (€ — ™
* 7 (1—¢o)pso (1= ¢o)pso
one can derive from the dissipation condition ®; = 0:

(1 — ¢o)psodh? = —€ : do — ¢dm + BTdo, + (a8 — Bg) Tdr + G dT

1 .
o, = 3 tra — the hydrostatic part of the stress tensor o

C, — the skeleton heat capacity at constant stress and pressure

2 ou
(1 - ¢0)p50deint — gUd¢ - ¢pcd5w — Td <¢a7—)
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Simplifications of the Two-phase
Flow Model
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Simplifications

Simplifications that make it possible to eliminate the unknown gas
pressure p, from the previous equations and to reduce the general
unsaturated model introduced before, which treats a complete two-phase
flow.

The simplifications are based on the assumptions, which seem to be
relevant for clays under moderate conditions as clays have a high intrinsic
permeability to gas.
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Simplifying assumptions | 0

(i) The gas pressure is not much greater than several times atmospheric
pressure whereas the capillary pressure reaches values much greater than
atmospheric pressure. Hence:

Ipcl > |pel  |Swpe| > |pgl

(ii) The changes of the gas pressure are so small that (a) they are
negligible with respect to the changes of the capillary pressure, (b) the
Darcean advective transport of the vapour—air mixture considered as a
whole is much smaller than the Fickean molecular diffusion, (c) the
changes of the gas pressure in the Fick law are negligible when compared
with the changes of the vapour pressure:

|dpc| > |dpg|  [Swdpc| > [dpg]

[<[ov (3]

1
_pgDv<pV> ~——DVp,
Pv Pg Pv
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Simplifying assumptions ||

(i) The body force exerted on the gaseous vapour—air mixture can be
neglected with respect to the forces exerted on the skeleton and water:

((1 - n)ps + Z nsfpf>f ~ ((1 - ”)Ps + nSwa)f
f=w,v,a

(iv) The thermal capacity of the dry air as well as the heat supplied by
its motion can be neglected with respect to the other components of the
porous medium.
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Resulting simplifications UGN
Under the previous assumptions:
Pc =~ —Pw ch = —de
OSy S 05
S = Sel@y P T ds, = —*d —dp, + ——dT
(¢, pw, T) 56 99T 5o, dPw BT
2
= Spr - §U
1 ou
dr ~ S, dpy + ngdSW = <¢d¢ dT>
Krg 1
drnv =Qqrg + (qrv - qrg) = (_Vpg + ng) DV ~ —-—DVp,
g pv pg Pv
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Constant gas pressure

c.
(9}
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Alternatively, when the gas phase is approximately at a constant
(hydrostatic atmospheric) pressure, but this value is not much smaller
than the capillary pressure as assumed before, one can take the value of
the gas pressure as the reference (zero) one. Then one also gets:

Pc = —Pw Swpw + Sgpg ~ SwPw

However, one has to be aware that the water pressure is diminished by
the value of the gas pressure in this case.
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Field equations

Field equations are then derived by inserting the constitutive equations
into:

e the sum of the water and vapour mass balance equations:

d(¢swpw + ¢(1 B Sw)pv)
dt

+div(M, + M,) =0
or

Ds (n(Swpw + (1 — Su)py))
Dt

+ n(Swpw + (1 = Su)pv) divvs
+ diV(Perw + Perv) =0

e the equilibrium equation
e the energy equation
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