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Summary 
Redox status plays a multifaceted role in the intricate physiology 
and pathology of pancreatic β-cells, the pivotal regulators of 
glucose homeostasis through insulin secretion. They are highly 
responsive to changes in metabolic cues where reactive oxygen 
species are part of it, all arising from nutritional intake. These 
molecules not only serve as crucial signaling intermediates for 
insulin secretion but also participate in the nuanced 
heterogeneity observed within the β-cell population. A central 
aspect of β-cell redox biology revolves around the localized 
production of hydrogen peroxide and the activity of 
NADPH oxidases which are tightly regulated and serve diverse 
physiological functions. Pancreatic β-cells possess a remarkable 
array of antioxidant defense mechanisms although considered 
relatively modest compared to other cell types, are efficient in 
preserving redox balance within the cellular milieu. This intrinsic 
antioxidant machinery operates in concert with redox-sensitive 
signaling pathways, forming an elaborate redox relay system 
essential for β-cell function and adaptation to changing metabolic 
demands. Perturbations in redox homeostasis can lead to 
oxidative stress exacerbating insulin secretion defect being 
a hallmark of type 2 diabetes. Understanding the interplay 
between redox signaling, oxidative stress, and β-cell dysfunction 
is paramount for developing effective therapeutic strategies 
aimed at preserving β-cell health and function in individuals with 
type 2 diabetes. Thus, unraveling the intricate complexities of  
β-cell redox biology presents exciting avenues for advancing our 
understanding and treatment of metabolic disorders. 
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Introduction to redox milieu in β-cells with 
emphasis on pro-oxidative sources 
 

There is no doubt that redox homeostasis is 
a critical feature of cellular signaling in a variety of cells. 
A transient increase in cellular reactive oxygen species 
(ROS) has been identified as an essential second 
messenger, while permanently increased production leads 
to oxidative stress, which has been linked to many 
diseases, including diabetes [1,2]. Many have shown that 
pancreatic β-cells, as the major glucose sensor in the 
body, are sensitive to perturbations in redox homeostasis 
and that long-term disruption of redox homeostasis leads 
to deterioration of β-cells and thus insulin secretion and 
glucose balance in the body, the prominent feature of 
diabetes (more in [3-7]). 

It has been suggested that glucose-induced 
metabolism in β-cells can produce ROS via many 
pathways [8]. However, due to significant limitations in 
the methods used to detect ROS in situ (in terms of their 
species and cellular localization), the exact site of 
ROS production and oxygen species remained 
undetermined until recently [9,10]. By using redox probes 
targeting organelles that are also more ROS species-
specific, we observed the increased production of ROS, 
particularly hydrogen peroxide (H2O2), under condition 
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of glucose stimulation in the cytoplasm by 
NADPH oxidase, isoform 4, NOX 4 [11] (Fig. 1). 
Interestingly, the production of ROS (especially 
superoxide) in the mitochondrial matrix was decreased 
upon glucose induction due to the decreasing 
NADH/NAD+ ratio in the mitochondrial matrix [12]. This 
does not necessarily refute the role of mitochondria as 
a source of ROS during glucose induction, as the 
complex III of the respiratory chain is able to produce 
superoxide outside the mitochondria and is therefore 
undetectable with probes in the mitochondrial matrix 
(Fig. 1). Increased glucose-stimulated metabolism can 
also lead to increased autooxidation of glyceraldehyde, 
producing H2O2 and ketoaldehydes in diabetes [13]. 
Glycolysis produces dihydroxyacetone, which undergoes 
the reduction to glycerol-3-phosphate and acylation, 
producing diacylglycerol, which activates protein kinase 
C (PKC) [14-17]. PKC can phosphorylate NOX isoforms 
leading to the induction of their activity and thus increase 
in cytosolic ROS production. Metabolism of sorbitol, 
hexosamine, or methylglyoxal derived from glucose 
catabolism can also stimulate ROS production in diabetic 
conditions [8,18]. However, mitochondrial 
ROS production in β-cells has been documented mainly 
under conditions of the increased flux of fatty acids and 
amino acids as substrates, the conditions associated with 
diabetic pathology [11,19-24] (Fig. 1). Superoxide 
produced along the electron transport chain (complex 
I/III) is rapidly converted by superoxide dismutase, 
SOD2 isoform, to H2O2, being able to diffuse out of 
mitochondria [19,24-29] This production has been found 
to be controlled by the uncoupling activity of UCP2 in  
β-cells [30-32]. 

Be that as it may, H2O2 has been identified as 
a critical molecule for signal transduction in pancreatic  
β-cells. Its low concentration (nanomolar) is involved in 
signal transduction by cysteine oxidation of participating 
proteins, known as redox relay [33,34] (Fig. 1), whereas 
increased production in the micromolar concentration 
range causes oxidative stress because β-cells are unable 
to adequately increase antioxidant protection especially in 
long-term horizon [35] (Fig. 2). H2O2 is a small 
electroneutral molecule that can cross lipid membranes 
either alone or through peroxiporins, members of the 
aquaporin family (more in [36]). Its toxicity is tracked by 
the production of hydroxyl radicals (OH.), which are 
generated when it encounters free iron or copper, rather 
than interacting with protective high-affinity thiols [37]. 
Hydroxyl radicals have a high oxidation potential, and 

their small radius and uncharged state provide great 
mobility so that chemical reactions can proceed at high 
rates [37]. Therefore, H2O2 is also a crucial mediator of 
toxicity under conditions of chronic oxidative stress. 

The specific properties of H2O2 in terms of its 
reactivity allow it to specifically target reactive thiols of 
cysteine residues within protein structures. However, 
only some thiols are predetermined to undergo the 
oxidation reaction. This is given by the vicinity of the 
surrounding amino acids (local electrostatic environment) 
and pH. Thus, cysteines in proteins must display low 
pKa, to enhance the thiolate fraction, as a prerequisite for 
fast and efficient oxidation by peroxides, although its 
nucleophilicity (to attack the H2O2 electrophile) and its 
capacity to stabilize both the transition state with the 
reactant, H2O2, and the leaving group (which occurs after 
the rupture of the peroxidic bond) also must be preserved 
[38]. The reactive thiols then react with H2O2 to form 
sulfenic acid (reversible oxidation). The oxidized thiols 
are regenerated by reaction with other thiols groups on  
i) diverse proteins giving rise to the so-called redox relay 
system by which the redox signal is transferred or  
ii) proteins of the antioxidant defense system serving as 
the ROS scavengers [33,39]. 

The specific redox situation prevails in the 
endoplasmic reticulum (ER) of β-cells since ROS are 
involved in oxidation during insulin folding in β-cells 
(Fig. 1). Each proinsulin molecule folded at ER generates 
3 molecules of H2O2 [40]. This is generated during 
protein disulfide isomerase oxidoreductase (PDI) 
reoxidation by ER oxidoreductin 1 (ERO1), which are 
involved in insulin folding. High amounts of H2O2 with 
limited efflux from ER and a low ratio of reduced to 
oxidized glutathione (GSH/GSSG) create a strong 
oxidative milieu in the ER of β-cells [41]. In the case of 
chronic nutrient excess, e.g., obesity, when β-cells struggle 
to maintain glucose homeostasis in the body by 
overproduction of insulin (hyperinsulinemia), ER stress 
develops [42]. This is associated with an imbalance in 
redox status in ER and leads to β-cell exhaustion over time. 

The inappropriate composition of nutrition and 
especially its chronic overload leads not only to an 
increase in blood glucose levels but also to an increase in 
fatty acid levels circulating in the bloodstream, being 
sensed by β-cells. Under conditions of increased 
circulation of fatty acids in the blood, long-chain and 
medium-chain fatty acids can produce H2O2 during their 
β-oxidation in peroxisomes and mitochondria, where 
little catalase is present [41] (Fig. 1). The β-oxidation in 
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Fig. 1. Physiological amplification of insulin secretion by redox signaling in pancreatic β-cells. Glucose, the major trigger of insulin 
secretion, initiates glycolysis while being phosphorylated by glucokinase (GCK). As it proceeds, the metabolites also enter the pentose 
phosphate cycle (PPP), which generates NADPH in the cytosol, the substrate for NADPH oxidase 4 or human isoform 5 (NOX4, hu 
NOX5). Pyruvate, the product of glycolysis, enters the mitochondria to generate ATP and possibly superoxide (●O2-) on Complex III 
directed out of the mitochondria. Glycerol-3-phosphate derived from glycolysis is involved in lipogenesis in β-cells. Stimulation by 
glucose leads to increased activity of NOX4/hu NOX5, generating H2O2, which at nM concentration is involved in redox relay signaling to 
target proteins involving peroxiredoxins (PRX) and thioredoxins (TXN). Redox signaling, H2O2 directly, and together with increased ATP 
lead to inhibition of the KATP channel, causing plasma membrane depolarization, calcium influx, and insulin granule release. Stimulation 
by glucose also increases endoplasmic reticulum (ER) activity, where folding of proinsulin requires a pro-oxidant environment,  
i.e., 3 molecules of H2O2 per 1 proinsulin. The presence of long-chain fatty acids (LC-FA) allows their accumulation in lipid droplets or, 
at low glucose, fatty acid oxidation (FAO) in mitochondria or peroxisomes, potentially generating ROS. Branched chain amino acids 
(BCAA) exhibit insulinotropic effects through α-keto acid metabolism, TCA cycling in mitochondria with the potential for ROS production. 
Pancreatic β-cells show low expression of catalase and glutathione peroxidases but express various forms of thioredoxins (TXN), 
peroxiredoxin (PRX), and superoxide dismutases (SOD) compartmentalized intracellularly. 
 
 
 
peroxisomes produces H2O2 and shortens the length of 
the fatty acid chain before it is passed to mitochondria for 
complete oxidation, another site of ROS production [42]. 
Thus, mitochondria are functionally linked to 
peroxisomes in fatty acid processing. Chronically 
elevated concentrations of free fatty acids termed 
lipotoxicity together with hyperglycemia (often 
associated with diabetes) cause the impairment of insulin 
secretion and β-cell death. Another insulinotropic 
potentiator of β-cell is selected amino acids. The state of 
elevated dietary branched-chain amino acids (BCAAs) 
such as leucine, isoleucine, and valine, plays a critical 

role in stimulating insulin secretion by serving as both 
metabolic fuel and allosteric activator of glutamate 
dehydrogenase [43,44] (Fig. 1). Its acute action 
stimulates insulin secretion via direct inhibition of  
KATP channel currents in β-cells [45], where ROS may be 
part of the signaling action originating from mitochondria 
or NADPH oxidases [23,46]. 

Thus, it is clear that redox status reflects the 
nutritional conditions to which β-cells are subjected. The 
major signaling molecule is H2O2. Its involvement in 
redox signaling is required for efficient insulin secretion 
and function while its long-term increase leads to 
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Fig. 2. Detrimental prooxidative intracellular environment upon chronic nutrient overload in pancreatic β-cells. Chronic hyperglycemia 
activates NADPH oxidase 4, which leads to increased assembly of inflammasome and maturation of IL1β, initiating local inflammation. 
Increased requirement for insulin secretion and enhanced pro-oxidative milieu in cytoplasm establish unfolded protein response (UPR), 
which is accompanied by oxidative stress in endoplasmic reticulum (ER). Increased amount of proinsulin is secreted (blue circles). 
Increased amount of free fatty acids (FFA) in plasma induces ceramide accumulation with the potential to induce apoptosis. FFA also 
signal through the GPR40 receptor to induce the activity of phospholipase C (PLC), protein kinase C (PKC) to regulate NADPH oxidase 2 
(NOX2) to produce ROS and contribute to calcium release from ER for insulin granule release. FFA also enter peroxisomes for FAO, 
generating enhanced ROS because of the low expression of catalase. Prooxidative intracellular environment induces the degradation of 
glutathione outside of the cells to produce components for its synthesis inside the cells. 
 
 
 
development of oxidative stress accompanying the 
development of diabetes. 
 
NOXs are good and evil in the redox 
homeostasis of pancreatic β-cells 
 

There is an increasing number of reports 
showing that NOXs are significantly involved in β-cells 
physiology and pathology. They are essential regulators 
of physiological insulin secretion and promote 
superoxide/H2O2 for efficient signaling of insulin 
secretion. At the same time, they can have deleterious 
effects when chronically overactivated. There is ample 
evidence for the specific expression of isoforms of 
NOX1, NOX2, NOX4, and p22phox and their cytosolic 

regulators in rodent and human β-cells [43,44]. NOX5 is 
expressed only in human β-cells and no homolog was 
found in rats and mice [45]. Regarding its role and 
activity in β-cells, it was revealed that knocking down 
p47phox, the subunit of the originally phagocytic 
NOX2 isoform, significantly reduced glucose-induced 
H2O2 production and insulin secretion (GSIS) [46]. 
However, direct ablation of NOX2 in mice showed no 
impairment of GSIS. Until recently, many studies using 
nonspecific inhibitors also failed to shed light on the 
function of NOXs in β-cells [44,47]. Recently, we found 
that the NOX4 isoform, which is constitutively expressed 
and lacks many regulatory subunits present in other 
isoforms, is metabolically stimulated to activity, resulting 
in H2O2 production that supports GSIS [11] (Fig. 1). This 
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was previously demonstrated with the nonspecific 
NOX4 inhibitor GLX351322 [48]. Its activity depends on 
the amount of NADPH normally derived from glucose 
metabolism in the vicinity of the enzyme. Unfortunately, 
the exact intracellular location in β-cells has not yet been 
defined due to a lack of reliable antibodies. However, 
NOXs are transmembrane proteins that transport 
electrons across biological membranes and reduce 
oxygen to superoxide or directly produce H2O2 (more in 
[49]). Inhibition of NOX4 either by silencing of cultured 
β-cells or its ablation, specifically in mouse pancreatic  
β-cells, significantly increased the probability of KATP 
channel opening, thereby reducing the first phase of GSIS 
in particular [11]. Interestingly, β-cell specific  
Nox4 knockout animals show suppressed insulin 
secretion upon glucose stimulation and constantly secrete 
low levels of insulin, prolonging the time needed to 
establish normoglycemia. This affects the feeding habits 
of these knock-out mice, as they consume less food to 
maintain the physiological glucose concentration [50]. 
NOX4 is thus an important redox molecule in the 
physiology of pancreatic β-cells. Recently, human NOX5 
was also found to be important for proper GSIS [45]. 

However, NOXs may also contribute to β-cell 
dysfunction in chronic hyperglycemia in animals and 
humans with type 2 diabetes (T2D) (Fig. 2). Chronic 
overeating activates NOXs to produce superoxide/H2O2, 
leading to long-term oxidative stress and consequent  
β-cell damage and apoptosis [4,51]. Proinflammatory, 
hyperglycemic, and lipotoxic conditions have been shown 
to activate NOXs [11,52-55]. Gene expression profiling 
of islets from patients with T2D also showed increased 
expression of NOX2/4/5 compared with nondiabetic 
individuals (Geoprofiles GDS3382). Proinflammatory 
cytokines upregulate the expression of 12-lipoxygenase, 
which can activate NOX1 in β-cells, leading to their 
failure [56,57]. Lipotoxicity, particularly from saturated 
free fatty acids, induces NOX2 activity, leading to 
impaired insulin secretion, calcium homeostasis, and 
viability [54]. It has been shown that GPR40, the free 
fatty acid receptor, can also activate NOX2 in β-cells 
[58]. Thus excess palmitate activates NOX2 triggering 
transient receptor potential melastatin 2 (TRPM2) 
channels. This can lead to an increase in mitochondrial 
zinc ions, resulting in a loss of membrane potential and 
mitochondrial fission, affecting energy metabolism and 
thus β-cell viability [53]. Upregulation of NOX5 has been 
shown to worsen insulin secretion under 
hyperglycemic/diabetogenic (palmitate-induced) 

conditions by increasing the depletion of cAMP, a critical 
enhancer component of insulin secretion [45]. We have 
observed that chronic overnutrition induced either by 
high-fat diet in vivo or by hyperglycemia in vitro, causes 
chronic activation of NOX4 and establishes an 
intracellular pro-oxidant status [50]. This leads to the 
assembly and activation of the inflammasome and further 
maturation of the proinflammatory interleukin 1β (IL1β). 
The release of IL1β from β-cells can then activate 
macrophages toward proinflammation, causing local 
inflammation (Fig. 2). Thus, chronic overproduction of 
ROS by NOXs in β-cells leads to their pathology and 
eventual loss of viability. Recent reports have shown that 
islets from Nox2 knockout mice improved islet 
transplantation outcome. Nox2-/- islets showed decreased 
superoxide production, higher GSIS, and enhanced 
antioxidant defense by increased expression of Nrf2, and 
Sod1, improved Ho1 expression causing early 
revascularization. This leads to restoration of 
normoglycemia in diabetic transplanted mice [59]. 

New inhibitors of specific NOX isoforms have 
been developed and are being investigated in the 
treatment of diabetes (more in [60]). Many diabetic 
complications such as diabetic nephropathy, retinopathy, 
neuropathy, and cardiopathy, collectively termed diabetic 
vasculopathy, have been associated with chronic NOX 
activity. NOXs, especially NOX2 and 4, have been 
associated with endothelial dysfunction and are the target 
of the studies. However, the role of NOX overactivation 
and prooxidant signaling in pancreatic β-cells under 
conditions of chronic overeating require the development 
of antioxidants or inhibitors that target β-cells only. Their 
short-term treatment could be useful in restoring β-cell 
signaling and viability during the development of 
diabetes. 
 
Pancreatic β-cells antioxidant defense system: 
Are β-cells so vulnerable towards oxidative 
stress? 
 

Cellular antioxidant defense comprises 
enzymatic machinery and glutathione (GSH), which can 
buffer excessive reactive (oxygen, nitrogen, and sulfur) 
species produced by cellular metabolism. Cellular 
compartments differ in their pH, redox potential, and 
concentrations of reactive metabolites allowing redox 
signaling events or direct usage of these reactive 
compounds for metabolic reactions (e.g. protein folding 
in ER) in a specifically compartmentalized manner 
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[61,62]. Consequently, the antioxidant enzymes are also 
strictly compartmentalized, with specific isoforms of the 
enzymes in these compartments. Also, the content of 
glutathione redox couple i.e., GSH/GSSG 
(reduced/oxidized glutathione) and its redox potential, 
differs throughout the compartments [63,64]. The 
difference is given not only by the diverse 
NADPH concentration and availability, ROS production, 
and expression of antioxidant enzymes but also because 
GSH is only synthesized in cytosol and can be only 
transported through the membranes in its reduced form 
[65]. Notably, the compartment-specific redox state of 
GSH affects not only the direct redox GSH partners but 
also the specialized function given by the respective 
organelle [66]. GSH is synthesized by a two-step 
enzymatic reaction involving γ-glutamylcysteine 
synthetase (γ-GCS) and GSH synthetases (GSHS) in 
sequence. γ-GCS catalyzes the formation of the dipeptide  
γ-glutamylcysteine (γ-Glu-Cys), and GSHS catalyzes the 
binding of glycine to γ-Glu-Cys to form GSH [67]. The 
rate-limiting step of the synthesis is the presence of 
cysteine, which is mainly derived from the trans-
sulfuration pathway of methionine and/or the reduction of 
cystine, which is transported from the extracellular space 
[67]. Except for these traditional pathways, a study done 
by Fu et. al. revealed that 25 % of carbon derived from 
glucose in human islets is directed to GSH synthesis via 
pyruvate carboxylase pathway and probably glutamate 
[68]. The degradation of GSH occurs in extracellular 
space, where it is converted to cysteinylglycine (CysGly) 
and then to Cys at tissue sites rich in the ectoenzymes γ-
glutamyltranspeptidase (γ-GT) and dipeptidases (mainly 
kidney and lung) by the sequential action of these two 
enzymes [69] (Fig. 2). The amino acids can be taken by 
the cells again and used for GSH de novo biosynthesis. 
Interestingly pancreatic β-cells express significantly 
higher amounts of GSH degradation enzymes than those 
of the synthesis pathway, and as a result, rely on 
glutathione transferred from the liver [70]. 

From the historical perspective, β-cells were 
considered to contain low amounts of the main 
antioxidant enzymes [71,72] (Fig. 1). Still, this feature 
has always been compared with the liver and kidney, 
specialized organs for detoxification, which naturally 
contain high amounts of antioxidant enzymes [71]. An 
explanation for the low expression profile is nowadays 
interpreted by the fact that redox signaling, which is 
tightly associated with glucose sensing and its 
metabolism in pancreatic β-cells, is a required coupling 

factor for insulin secretion [11]. 
Superoxide dismutase (SOD) is considered one 

of the most important antioxidant enzymes. The enzyme 
accelerates the otherwise spontaneous dismutation of 
superoxide anion O2- to less reactive H2O2 up to 104 [73]. 
SOD exists in three isoforms, whose activity is optimized 
according to the compartment-specific conditions. Cu/Zn-
SOD1 is expressed in the cytosol, the mitochondrial 
intermembrane space, the peroxisomes, and the nucleus. 
Mn-SOD2 is expressed in the mitochondrial matrix, and 
Cu/Zn-SOD3 is targeted to extracellular space, but its 
expression in β-cells has only been detected on the 
mRNA level [74]. In addition to SODs other H2O2 
degrading enzymes are expressed in β-cells. Interestingly, 
catalase is expressed at a very low level and is even 
considered one of the disallowed genes in β-cells [75]. 
Glutathione peroxidase 1 (GPX1) is expressed in cytosol 
and peroxisomes, GPX7/8 and PRDX4 in ER, and 
PRDX3 exclusively in mitochondria [40]. However, the 
expression profile also depends on species, as GPX1 and 
catalase were shown to have protective effects in human 
pancreatic islets but not in rodents [76]. In recent years 
the opinion of oxidative damage vulnerable β-cells is 
shifting as β-cells were shown to express thioredoxin 
(TXN) and thioredoxin reductase (TXNRD) isoforms, 
glutathione reductases (GSR), glutaredoxins (GRX), and 
peroxiredoxins (PRDX) [34,77-82]. 

Interestingly it has also been shown that cells are 
able to secrete oxidoreductases to extracellular milieu 
[83]. This phenomenon has been first observed for 
immune cells, but secretion of cytoplasmic isoforms of 
TXN1 and TXNRD1 by murine and porcine β-cells has 
been revealed under hypoxic and inflammatory 
conditions [84]. Extracellular TXN1 seems to cause 
autocrine or paracrine regulation of β-cells, overall 
having beneficial effect by improving cell viability and 
blood glucose control, preventing apoptosis, and 
preserving insulin secretion [84,85]. 

The β-cells therefore possess delicate redox 
balance in which a rich antioxidant system is involved. 
This enables effective redox signaling. Nevertheless,  
β-cells do not have such a robust antioxidant system and 
are therefore unable to withstand prolonged oxidative 
stress, leading to a deterioration in their function and 
ultimately contributing to the onset of diabetes. 
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Redox status in other endocrine cells of 
pancreatic islets 
 

β-cells are the most studied and represented cell 
type of the pancreatic islets. However, there are other 
important endocrine cell types that are required for proper 
islet function. These are glucagon-producing α-cells, 
somatostatin-producing δ-cells, ghrelin-producing ε-cells, 
and pancreatic polypeptide-producing PP cells. There is 
little knowledge about these endocrine cells in terms of 
their redox status and signal transduction. However, their 
synchronized paracrine function with the β-cells is 
critical for proper islet activity. Cell lines of individual 
type of endocrine cells are scarce (this does not apply to 
α-cells, for which a cell line already exists), and 
individual cell types are difficult to isolate from islets, 
which probably explains the lack of knowledge [86]. 
Moreover, redox status setting of cell lines might differ 
from primary endocrine cells as the cell lines are adapted 
to cultivation conditions which significantly vary in terms 
of oxygen pressure, glucose levels etc. 

As α-cells are the second best studied cell type 
after β-cells, pertinent information exists about their 
antioxidant capacity. Human α-cells are capable 
producers of antioxidant enzymes such as catalase and 
GPX. Interestingly, human α-cells express more of these 
enzymes than human β-cells. β-cells showed increased 
oxidative damage to DNA and decreased viability when 
exposed to H2O2 and NO donors, whereas α-cells showed 
no change in viability [87]. Expression of antioxidant 
enzymes is clearly associated with enhanced protection of 
α-cells from oxidative stress. In addition, the pancreas of 
T2D patients exhibited increased numbers of apoptotic  
β-cells but not α-cells [88]. However, both endocrine cell 
types showed increased volume density of ER [89]. 
Moreover, the better survival of α-cells in T1D was 
explained by differences in the expression of SOD2 
compared to β-cells, in addition to the specificity of the 
immune response [90]. On the other hand, mouse cell 
cultures of α- and β-cells showed increased expression of 
mitochondrial SOD and catalase in β-cells under 
hyperglycemic conditions. In α-cells, these enzymes are 
decreased [91]. The question here is whether the 
difference in expression of these enzymes is due to 
species or to the different effects and timing of the 
various oxidants. Inhibition of phosphoinositide 3-kinases 
(PI3K) signaling in α-cells does reduce mitochondrial 
SOD expression under hyperglycemic conditions, 
suggesting that this pathway is involved in mitochondrial 

SOD expression [91]. 
Thus, we lack the knowledge about the paracrine 

redox signaling and involvement of redox status within 
individual endocrine cell types in synchronized action of 
insulin and other endocrine hormones secretion by 
pancreatic islet. 
 
Heterogeneity of β-cells and the role of redox 
status 
 

Pancreatic β-cells exhibit considerable 
heterogeneity, contributing to the complexity of islets 
[92]. Distinct subpopulations differ at the molecular, 
morphological, and functional levels [93,94]. Most 
importantly, individual β-cells have diverse sensitivity to 
glucose, which subsequently affects their ability to 
synthesize and secrete insulin [95,96]. Thus, the 
heterogeneity of β-cells and β-cell intercommunication 
within subpopulations is critical for the regulation of 
insulin secretion [94,97]. Changes in β-cell heterogeneity 
as well as altered redox homeostasis have been associated 
with T2D, however, their interconnection is far from 
being understood [98,99]. 

The origins of β-cell heterogeneity research go far 
back in history. Already in the 1940s, it was found that  
β-cell size differs between large and small pancreatic islets 
[100]. Later, regional differences in the nuclear size and 
the position of the nucleoli within the nuclei of various  
β-cells were identified [101]. Also, morphological 
differences in response to glucose stimulation were 
described with regards to β-cell localization. 
Hyperglycemia decreased the volume density of β-cell 
secretory granules and increased the size of the 
endoplasmic reticulum and Golgi apparatus earlier in  
β-cells within the core of the islets compared to the 
peripheral β-cells [102]. The distinct insulin secretory 
patterns broadly divided β-cells into two types – responsive 
and unresponsive [103]. The differences in insulin 
secretory response were also associated with altered gene 
expression of important enzymes, such as glucokinase 
[104]. Recently, it has been described that insulin secretion 
responses were orchestrated by two populations of cells: 
hub cells with pacemaker properties dictating the insulin 
secretion dynamics and follower cells controlled by the 
hubs through calcium waves [105]. The development of 
molecular methods has enabled the identification of many 
markers specific to distinct β-cell populations, including  
E-cadherin (CDH1) [106]; polysialylated-neural cell 
adhesion molecule (PSA-NCAM) [107]; Flattop (FLTP) 
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[108]; CD9 molecule (CD9) [109,110]; ST8 alpha-N-
acetyl-neuraminide alpha-2,8-sialyltransferase1 (ST8SIA1) 
[110]; Dickkopf WNT signaling pathway inhibitor 3 
(DKK3) [111]; solute carrier family 18 member 
(A2SLC18A2/VMAT2) [112]. 

For instance, β-cells can be divided into two 
subpopulations with different glucose responsiveness 
according to the level of surface PSA-NCAM, a prominent 
marker of functional β-cells [107]. Low PSA-NCAM-
labeled β-cell population (βlow-cells) exhibited altered gene 
expression profile (e.g. downregulation of Neurod1, Pdx1, 
Nkx6.1, Pax6, i.e. β-cell identity genes; and upregulation of 
Ldha, Hk1m, i.e. β-cell forbidden genes) which suggested 
that these cells were composed of immature and/or non-
functional cells in contrast to high PSA-NCAM-labeled 
population (βhigh-cells). Moreover, these two populations 
also differed in the expression of antioxidant enzymes. For 
example, Gpx1 was upregulated, while Sod2 and Trx2 
were significantly downregulated in βlow-cells. Besides 
antioxidant enzymes, the expression of nitric oxide 
synthase 1 (Nos1) was also decreased [107]. These results 
indicate extensive dysregulation of the redox state in the 
poorly glucose-responsive β-cells. Importantly, the 
distribution of βhigh and βlow-cells was completely inversed 
in ZDF rats (a genetic model of T2D) as the  
βlow-cells became the predominant population in these 
animals [107]. In ST8SIA1+ β-cells, which are also less 
responsive to glucose compared to ST8SIA1-β-cells,  
Gpx3 was significantly enriched. Representation of these 
cells was found to be abnormally high in T2D islets [110]. 

Although subpopulations of β-cells have been 
shown to differ in redox homeostasis in response to 
altered metabolism, redox regulations independent of  
β-cell heterogeneity have also been reported. Inhibition of 
NOX4 protected human islets from glucolipotoxicity 
regardless of their size, activity, and reactivity to glucose. 
These results suggested that NOX4-induced β-cell death 
occurs in all types of islets and may involve a mechanism 
that acts independently of the insulin-releasing activity of 
the islet [113]. 

Since redox homeostasis is a key factor 
determining β-cell fate, identification of differences in 
redox regulations in distinct populations of β-cells is 
required to unravel the role of β-cell heterogeneity in the 
physiology and pathology of pancreatic islets. Our 
laboratory focuses on this topic. This knowledge could 
potentially lead to novel therapeutic approaches to 
restoring β-cell function and mass. 

Interestingly, α-cells were reported also in 

several distinct subpopulations based on proglucagon-
derived peptides [114]. It was suggested to be reflected 
by the α-cell maturity state. However, no link to the redox 
state was reported. 
 
Conclusions 
 

There is no doubt that redox status is a critical 
determinant of pancreatic β-cell function. Their fragile 
redox homeostasis is a key part of nutrition-induced 
insulin signaling. However, long-term chronic nutritional 
overload leading to metabolic dysregulation impairs 
insulin secretion, induce inflammation, and consequently 
glucose homeostasis in the body. This leads to the 
development of T2D. It is important to decipher the 
mechanisms of balanced homeostasis and its disruption 
leading to oxidative stress and subsequent dysregulation 
of signaling in pancreatic β-cells. It is known that to 
maintain glycemic control and reduce oxidative stress and 
inflammation, restrained caloric intake and physical 
activity show the strongest beneficial effects. Chronic 
physical activity reduces ROS production, increases 
antioxidant potential, and improves insulin sensitivity. 
However, we must also define how to act in the 
prediabetic phase, when the first glucose imbalance 
occurs. To do this, we need to determine the right targets 
and timing for ROS production in pancreatic β-cells. 
NOXs in pancreatic β-cells in prediabetic conditions 
could be one of them for pharmacotherapy. 
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