
 
 
PHYSIOLOGICAL RESEARCH • ISSN 1802-9973 (online) - an open access article under the CC BY license 

 

 2024 by the authors. Published by the Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic  
Fax +420 241 062 164, e-mail: physres@fgu.cas.cz, www.biomed.cas.cz/physiolres  
 

Physiol. Res. 2024;73 (Suppl. 1) https://doi.org/10.33549/physiolres.935265 

 
REVIEW 

 
Epitranscriptomic Regulations in the Heart 
 
Daniel BENAK1,2, Frantisek KOLAR1, Marketa HLAVACKOVA1 
 
1Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of 
Sciences, Prague, Czech Republic, 2Department of Physiology, Faculty of Science, Charles 
University, Prague, Czech Republic 
 

Received October 25, 2023 

Accepted March 6, 2024 

Published online April 18, 2024 

 

 
Summary 

RNA modifications affect key stages of the RNA life cycle, including 

splicing, export, decay, and translation. Epitranscriptomic 

regulations therefore significantly influence cellular physiology and 

pathophysiology. Here, we selected some of the most abundant 

modifications and reviewed their roles in the heart and in 

cardiovascular diseases: N6-methyladenosine (m6A), N6,2‘-O-

dimethyladenosine (m6Am), N1-methyladenosine (m1A), 

pseudouridine (Ψ), 5-methylcytidine (m5C), and inosine (I). 

Dysregulation of epitranscriptomic machinery affecting these 

modifications vastly changes the cardiac phenotype and is linked 

with many cardiovascular diseases such as myocardial infarction, 

cardiomyopathies, or heart failure. Thus, a deeper understanding 

of these epitranscriptomic changes and their regulatory 

mechanisms can enhance our knowledge of the molecular 

underpinnings of prevalent cardiac diseases, potentially paving the 

way for novel therapeutic strategies. 
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Introduction 
 

The original central dogma of molecular biology 

states that DNA is transcribed into RNA, which is 

subsequently translated into proteins [1]. However, the 

whole process is under the control of epigenetic 

mechanisms. Epigenetic mechanisms involve chemical 

modifications to the DNA itself, to the proteins that 

package DNA into chromatin (histones), or to the RNA 

molecules transcribed from the DNA (Fig. 1). Importantly, 

the epigenome is responsive to various environmental 

factors (diet, stress, exposure to toxins, etc.) and can 

produce heritable phenotypic changes without altering the 

DNA sequence [2,3].  

RNA modifications are specifically known as the 

epitranscriptome. The research field of epitranscriptomics 

is rapidly developing. Currently, over 170 chemical RNA 

modifications are known (common RNA modifications 

overviewed in Fig. 2) [4]. The largest number of 

modifications with the widest chemical diversity is present 

in tRNA; however, various modifications also occur in 

other RNA types, including mRNA [5]. These 

modifications may be either irreversible or reversible [6]. 

Epitranscriptomic regulators can be described according to 

their function as writers (addition of the epitranscriptomic 

mark), erasers (removal of the epitranscriptomic mark), 

and readers (binding to the modified nucleotide). Dynamic 

regulation of epitranscriptomic modifications can affect 

key stages of the RNA life cycle, including splicing, 

export, decay, and translation [7,8]. 

Remodeling of the cardiac epitranscriptome has 

been described in several physiological as well as 

pathological states. This review summarizes the current 

knowledge and gaps about RNA modifications in cardiac 

biology and cardiovascular diseases (CVDs). A better 

understanding of epitranscriptomic regulations in the 

healthy and diseased heart opens the door for clinically 

relevant discoveries in the future. 
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Fig. 1. Basic overview of epigenetic modifications 

 

 

 
Fig. 2. Common RNA modifications 
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Common RNA modifications and their role in 
cardiac physiology 
 

N6-methyladenosine 

N6-methyladenosine (m6A) is the most numerous 

modification in eukaryotic mRNA; however, it also occurs 

in other RNA types [9-12]. Multicomponent 

methyltransferase complex (MTC) is responsible for the 

deposition of the methyl group to adenosine, forming m6A. 

The two main regulatory subunits of the MTC are 

methyltransferase-like 3 (METTL3) and 

methyltransferase-like 14 (METTL14). The catalytic 

function of the MTC is carried by METTL3 while 

METTL14 facilitates RNA binding [13,14]. The removal 

of the methyl group is mediated by two main 

demethylases. AlkB homolog 5 (ALKBH5) is the primary 

m6A eraser [15]. Fat mass and obesity-associated protein 

(FTO) is not an m6A-specific demethylase, however, m6A 

is the preferable target of FTO in the nucleus [16-18]. 

There are many described m6A readers. The most 

characterized include YTH domain-containing family 

proteins 1-3 (YTHDF1-3) and YTH domain-containing 

proteins 1-2 (YTHDC1-2). While readers YTHDF1-3 

mediate primarily mRNA degradation, YTHDC1 regulates 

mRNA splicing and YTHDC2 promotes translation 

[19-25]. 

The heart is affected by m6A already during its 

ontogenetic development as m6A machinery regulates 

cardiomyocyte growth, proliferation, and differentiation 

[26-29]. Children born with a loss-of-function mutation in 

the FTO gene (m6A demethylase) exhibited heart defects 

(ventricular septal defect, atrioventricular defect, patent 

ductus arteriosus), hypertrophic cardiomyopathy and died 

before 3 years of age [30]. Moreover, various gene variants 

of m6A regulators were linked with CVDs, including 

myocardial infarction, acute coronary syndrome, increased 

risk of rejection in heart transplant patients, and sudden 

cardiac death [31-37]. It has been reported that m6A also 

controls cardiac hypertrophy [38-40]. Dorn et al. [41] 

suggested that enhanced m6A RNA methylation results in 

compensated cardiac hypertrophy, whereas diminished 

m6A drives eccentric cardiomyocyte remodeling and 

dysfunction. Changes in m6A methylation and 

dysregulation of m6A machinery can contribute to the 

progression of heart failure [42-47]. Altered cardiac m6A 

patterns were detected also in diabetic cardiomyopathy 

with distinct dysregulation of m6A machinery in the two 

types of diabetes [48-50]. The heterogeneous role of m6A 

modification in CVDs has been reviewed in several recent 

publications [51-60]. 

Altered m6A levels in different CVDs might also 

serve as useful biomarkers. For instance, it has been 

described that patients with coronary artery disease (CAD) 

had significantly lower urine m6A levels compared to 

healthy individuals [61]. 

Since cardiac m6A machinery is dysregulated 

under many pathophysiological conditions, targeting m6A 

modifiers can also induce cardioprotection. Several studies 

showed that demethylases FTO and ALKBH5 can protect 

cardiomyocytes against detrimental effects, such as 

treatment with cardiotoxic compounds or 

hypoxia/reoxygenation injury [43,62-69]. On the contrary, 

loss of METTL3 or METTL14 can alleviate myocardial 

injury and promote heart regeneration [70,71]. Thus, 

improving our knowledge of the m6A regulations in the 

heart may lead to novel cardioprotective strategies using 

specific pharmacological activators or inhibitors targeting 

m6A modifiers. 

 

N6,2‘-O-dimethyladenosine 

N6,2‘-O-dimethyladenosine (m6Am) is formed by 

N6-methylation of 2’-O-methyladenosine (Am). It has 

been described only in mRNA and snRNA [50,72]. This 

modification is present at the first transcribed nucleotide 

and forms the extended cap structure in at least 30-40% of 

all vertebrate mRNA [73,74]. Moreover, m6Am is also 

present at the internal sites of snRNAs [17]. The formation 

of m6Am in the cap is mediated by phosphorylated CTD 

interacting factor 1 (PCIF1), while methyl-

transferase-like 4 (METTL4) is responsible for internal 

m6Am formation [75-78]. The demethylation of m6Am 

takes place mainly in the cytosol where it is mediated by 

FTO, the same eraser that targets m6A in the nucleus 

[17,18,79,80]. There are currently no m6Am readers 

mediating the biological functions of this modification 

described, but it is known that the presence of m6Am in the 

cap structure markedly enhances mRNA stability (in 

mRNA cap) and splicing (in snRNA cap) [79,81].  

The function of m6Am modification in the heart 

is mostly unknown. There are several problems associated 

with m6Am research: 1) many m6A detection methods do 

not distinguish between m6A and m6Am; 2) FTO is not a 

specific eraser because it demethylates also m6A and m1A; 

3) METTL4 can also catalyze 6mA methylation. Thus, the 

potential effect of m6Am on cardiac function could be 

masked as m6A in many studies [72]. Besides the non-

specific demethylase FTO covered in the previous chapter, 

not much is known about the role of m6Am and its 
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regulators in the heart. Publicly available RNA-seq 

datasets generated from human left ventricles of failing 

and non-failing hearts reported some degree of regulation 

of METTL4 (down-regulation) and PCIF1 (up-regulation) 

[72]. Besides that, we recently found that m6Am writers 

were regulated also in cardioprotective interventions. 

METTL4 was decreased in the hearts of rats adapted to 

chronic hypoxia and PCIF1 was increased in the hearts of 

rats subjected to fasting [69,72].  

 

N1-methyladenosine  

N1-methyladenosine (m1A) is found mainly in 

tRNA and rRNA, but less numerously also in mRNA [82-

85]. The writer proteins responsible for m1A methylation 

include tRNA methyltransferase 6 (TRMT6), TRMT61A, 

TRMT61B, TRMT10C or ribosomal RNA-processing 

protein 8 (RRP8; also known as NML) [86-90]. 

Demethylation of m1A is catalyzed by erasers ALKBH1, 

and ALKBH3 [85,91-93]. Moreover, FTO (m6A and 

m6Am eraser) also works as a demethylase of m1A in 

tRNA [17]. The m1A modification affects the structure and 

stability of tRNA and rRNA and its presence in mRNA 

regulates translation [85,86,94-96]. 

So far, no association between m1A and CVDs 

has been found [97]. Analysis of methylated nucleosides 

in urine that revealed altered m6A levels in CAD patients 

did not find any changes in the case of m1A [61]. 

 

Pseudouridine 

Pseudouridine (Ψ), the C5-glycoside isomer of 

uridine (U), is the first discovered and overall the most 

prevalent RNA modification that has been identified in 

almost all known RNA types [98-100]. The conversion of 

U to Ψ is mediated by the diverse pseudouridine synthase 

(PUS) family [101]. So far, 13 members of PUSs have 

been described in eukaryotes [100]. The human homologs 

of PUSs include PUS1, PUS3, PUS7, PUS10, PUSL1, 

PUSL7, TRUB1-2 (TruB pseudouridine synthase 1-2), 

RPUSD1-4 (RNA pseudouridine synthase D1-4), and 

DKC1 (dyskerin pseudouridine synthase 1) [102]. The 

formation of Ψ is irreversible (unlike the aforementioned 

modifications) [103]. The only known Ψ reader is a yeast 

RNA helicase Prp5 interacting with snRNA [104,105]. 

The molecular functions of Ψ include stabilization of RNA 

conformations and destabilization of interactions with 

RNA-binding proteins; the most well-characterized 

function of Ψ in mRNA is the promotion of a stop codon 

read-through [100,106].  

Plasma and urine levels of Ψ were linked to CVDs 

[107]. Patients with heart failure exhibited higher plasma 

concentrations of Ψ than healthy controls and this 

modification was suggested as a suitable biomarker for 

heart failure diagnosis [108-110]. Tetralogy of Fallot, the 

most common cyanotic congenital heart defect, is 

associated with decreased Ψ levels in ventricular 

myocardial tissues, which is under the control of small 

Cajal body-specific RNAs [111,112]. 

 

5-methylcytidine 

5-methylcytidine (m5C) is an abundant RNA 

modification present in a wide variety of RNA types. The 

writers responsible for the installation of m5C in humans 

are NOL1/NOP2/SUN domain proteins 1-7 (NSUN1-7) 

and DNA methyltransferase homolog DNMT2 [113,114]. 

Ten-eleven translocation proteins 1-3 (TET1-3) and 

ALKBH1 are known as m5C erasers. TET-mediated 

oxidation results in a formation of 

5-hydroxymethylcytidine (hm5C), while ALKBH1 is 

responsible for the oxidation of m5C in mitochondrial 

tRNA generating 5-formylcytidine (f5C) [115,116]. The 

readers of m5C include Aly/REF export factor (ALYREF), 

which influences nuclear-cytoplasmic shuttling [117], and 

Y-box-binding protein 1 (YBX1), which preserves the 

stability of its target mRNA by recruiting ELAVL1 [118]. 

This modification is an important regulator of RNA 

export, ribosome assembly, translation, and RNA stability 

[113,119,120]. 

In mammals, m5C modification occurs more 

frequently in the myocardium and skeletal muscle 

compared to other organs. The enrichment of m5C is 

especially present in mitochondrial-related genes, 

suggesting a particularly important function of m5C in the 

high-energy demanding myocardium [121]. Indeed, 

specific inactivation of the methyltransferase NSUN4 in 

the heart caused cardiomyopathy with mitochondrial 

dysfunction [122]. Deficiency of methyltransferase Dnmt2 

gene in mice resulted in cardiac hypertrophy [123]. RNA 

binding protein and known m5C reader YBX1 was also 

identified as a cardiac hypertrophy regulator [124,125]. 

NSUN2 was found to increase Nrf2 expression by 

promoting m5C methylation of its mRNA and enhancing 

its antioxidant stress effect, which attenuates doxorubicin-

induced myocardial damage [126].  

 

RNA editing 

RNA editing includes nucleoside modifications 

such as adenosine deamination to inosine (A-to-I editing) 

or cytosine deamination to uridine (C-to-U editing), as 
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well as insertion and deletion of nucleotides [127,128]. 

Deamination of A to I is irreversible and it is performed by 

enzymes belonging to the adenosine deaminase acting on 

RNA (ADAR) family, which is represented by three 

ADAR orthologs (ADAR1-3) in mammals. ADAR1 and 

ADAR2 are widely expressed, while ADAR3 was detected 

only in the brain [129,130]. C-to-U editing is not as 

common as A-to-I editing [131]. The deamination of C to 

U is performed by a multiple-protein editosome, which 

includes the catalytic subunit apolipoprotein B mRNA 

editing enzyme catalytic subunit 1 (APOBEC1) and an 

RNA-binding protein APOBEC1 complementation factor 

(A1CF) [132]. RNA editing in protein-coding regions of 

mRNAs can result in the expression of functionally altered 

proteins while editing in microRNA (miRNA) precursors 

leads to reduced expression or altered function of mature 

miRNAs [133].  

ADAR1 is an essential enzyme for normal 

embryonic cardiac growth and development [134]. 

Cardiomyocyte-specific deletion of Adar1 in adult mice 

caused severe ventricular remodeling and spontaneous 

cardiac dysfunction associated with a significant rise in 

lethality [135]. ADAR1 was also shown to prevent 

autoinflammatory processes in the heart [136]. A-to-I 

RNA editing has been significantly increased among 

children with cyanotic congenital heart disease compared 

to acyanotic controls [137]. On the contrary, reduction of 

A-to-I editing and decreased levels of ADAR2 have been 

described in the failing human heart [138]. Strong down-

regulation of ADAR2 and up-regulation of ADAR1 

expression was observed in blood samples of patients with 

congenital heart disease. The decrease in ADAR2 levels 

was in line with its down-regulation in ventricular tissues 

of dilated cardiomyopathy patients. Thus, it has been 

suggested that ADAR2 activity might play a critical role 

in preventing cardiovascular disorders [139]. Indeed, Wu 

et al. [140] described that ADAR2 was up-regulated in the 

heart during exercise and that this enzyme protects the 

heart against myocardial infarction as well as doxorubicin-

induced cardiotoxicity, supporting the hypothesis of the 

beneficial effect of ADAR2 on the heart. So far, RNA 

editing therapeutics have not been established for the 

treatment of CVDs, however, it is a prospective 

therapeutic approach that could be implemented in the near 

future [141]. 

 

Conclusion 
 

CVDs remain the leading cause of death 

worldwide. The search for appropriate cardioprotective 

strategies is therefore of crucial importance. The 

significant role of epitranscriptomics in cellular 

physiology and pathophysiology has been already 

accepted by the scientific community in the past few years. 

However, the exact role of complex epitranscriptomic 

regulations in the heart and CVDs is still far from being 

understood. It is becoming clear that RNA modifications 

and their regulators play a vital role in the ontogenetic 

development of the heart. Many CVDs, such as myocardial 

infarction, cardiomyopathies, or heart failure, have been 

also associated with dysregulated epitranscriptomic 

machinery (Fig. 3). Most importantly, targeting the 

enzymes responsible for regulating the RNA modifications 

affected by these diseases proved to be beneficial for the 

heart. Thus, it is only a matter of time before targeting 

epitranscriptomic regulations becomes a part of clinical 

practice.

 

 
 
Fig. 3. Role of RNA modifications in the heart 
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