Epitranscriptomic Regulations in the Heart

Daniel BENAK^{1,2}, Frantisek KOLAR¹, Marketa HLAVACKOVA¹

¹Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic, ²Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic

Received October 25, 2023 Accepted March 6, 2024 Published online April 18, 2024

Summary

RNA modifications affect key stages of the RNA life cycle, including splicing, export, decay, and translation. Epitranscriptomic regulations therefore significantly influence cellular physiology and pathophysiology. Here, we selected some of the most abundant modifications and reviewed their roles in the heart and in cardiovascular diseases: N6-methyladenosine (m6A), N6,2'-Odimethyladenosine (m⁶Am), N¹-methyladenosine (m¹A), pseudouridine (Ψ), 5-methylcytidine (m⁵C), and inosine (I). Dysregulation of epitranscriptomic machinery affecting these modifications vastly changes the cardiac phenotype and is linked with many cardiovascular diseases such as myocardial infarction, cardiomyopathies, or heart failure. Thus, a deeper understanding of these epitranscriptomic changes and their regulatory mechanisms can enhance our knowledge of the molecular underpinnings of prevalent cardiac diseases, potentially paving the way for novel therapeutic strategies.

Keywords

 $\label{eq:epsilon} \mbox{Epitranscriptomics} \bullet \mbox{RNA modifications} \bullet \mbox{Epigenetics} \bullet \mbox{m}^6 \mbox{A} \bullet \mbox{RNA} \\ \bullet \mbox{Heart}$

Corresponding author

Benak Daniel, Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic. E-mail: <u>daniel.benak@fgu.cas.cz</u>

Introduction

The original central dogma of molecular biology states that DNA is transcribed into RNA, which is subsequently translated into proteins [1]. However, the whole process is under the control of epigenetic mechanisms. Epigenetic mechanisms involve chemical modifications to the DNA itself, to the proteins that package DNA into chromatin (histones), or to the RNA molecules transcribed from the DNA (Fig. 1). Importantly, the epigenome is responsive to various environmental factors (diet, stress, exposure to toxins, etc.) and can produce heritable phenotypic changes without altering the DNA sequence [2,3].

RNA modifications are specifically known as the epitranscriptome. The research field of epitranscriptomics is rapidly developing. Currently, over 170 chemical RNA modifications are known (common RNA modifications overviewed in Fig. 2) [4]. The largest number of modifications with the widest chemical diversity is present in tRNA; however, various modifications also occur in other RNA types, including mRNA [5]. These modifications may be either irreversible or reversible [6]. Epitranscriptomic regulators can be described according to their function as writers (addition of the epitranscriptomic mark), erasers (removal of the epitranscriptomic mark), and readers (binding to the modified nucleotide). Dynamic regulation of epitranscriptomic modifications can affect key stages of the RNA life cycle, including splicing, export, decay, and translation [7,8].

Remodeling of the cardiac epitranscriptome has been described in several physiological as well as pathological states. This review summarizes the current knowledge and gaps about RNA modifications in cardiac biology and cardiovascular diseases (CVDs). A better understanding of epitranscriptomic regulations in the healthy and diseased heart opens the door for clinically relevant discoveries in the future.

PHYSIOLOGICAL RESEARCH • ISSN 1802-9973 (online) - an open access article under the CC BY license © 2024 by the authors. Published by the Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic Fax +420 241 062 164, e-mail: physres@fgu.cas.cz, www.biomed.cas.cz/physiolres

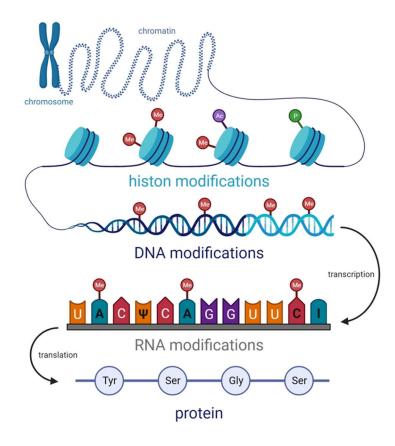


Fig. 1. Basic overview of epigenetic modifications

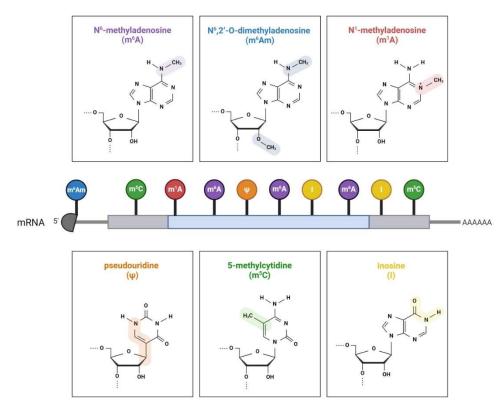


Fig. 2. Common RNA modifications

Common RNA modifications and their role in cardiac physiology

N^6 -methyladenosine

N⁶-methyladenosine (m⁶A) is the most numerous modification in eukaryotic mRNA; however, it also occurs other RNA types [9-12]. Multicomponent in methyltransferase complex (MTC) is responsible for the deposition of the methyl group to adenosine, forming m⁶A. The two main regulatory subunits of the MTC are methyltransferase-like 3 (METTL3) and methyltransferase-like 14 (METTL14). The catalytic function of the MTC is carried by METTL3 while METTL14 facilitates RNA binding [13,14]. The removal of the methyl group is mediated by two main demethylases. AlkB homolog 5 (ALKBH5) is the primary m⁶A eraser [15]. Fat mass and obesity-associated protein (FTO) is not an m⁶A-specific demethylase, however, m⁶A is the preferable target of FTO in the nucleus [16-18]. There are many described m⁶A readers. The most characterized include YTH domain-containing family proteins 1-3 (YTHDF1-3) and YTH domain-containing proteins 1-2 (YTHDC1-2). While readers YTHDF1-3 mediate primarily mRNA degradation, YTHDC1 regulates mRNA splicing and YTHDC2 promotes translation [19-25].

The heart is affected by m⁶A already during its ontogenetic development as m⁶A machinery regulates cardiomyocyte growth, proliferation, and differentiation [26-29]. Children born with a loss-of-function mutation in the FTO gene (m⁶A demethylase) exhibited heart defects (ventricular septal defect, atrioventricular defect, patent ductus arteriosus), hypertrophic cardiomyopathy and died before 3 years of age [30]. Moreover, various gene variants of m⁶A regulators were linked with CVDs, including myocardial infarction, acute coronary syndrome, increased risk of rejection in heart transplant patients, and sudden cardiac death [31-37]. It has been reported that m⁶A also controls cardiac hypertrophy [38-40]. Dorn et al. [41] suggested that enhanced m⁶A RNA methylation results in compensated cardiac hypertrophy, whereas diminished m⁶A drives eccentric cardiomyocyte remodeling and Changes in m⁶A methylation dysfunction. and dysregulation of m⁶A machinery can contribute to the progression of heart failure [42-47]. Altered cardiac m⁶A patterns were detected also in diabetic cardiomyopathy with distinct dysregulation of m⁶A machinery in the two types of diabetes [48-50]. The heterogeneous role of m⁶A modification in CVDs has been reviewed in several recent publications [51-60].

Altered m⁶A levels in different CVDs might also serve as useful biomarkers. For instance, it has been described that patients with coronary artery disease (CAD) had significantly lower urine m⁶A levels compared to healthy individuals [61].

Since cardiac m⁶A machinery is dysregulated under many pathophysiological conditions, targeting m⁶A modifiers can also induce cardioprotection. Several studies showed that demethylases FTO and ALKBH5 can protect cardiomyocytes against detrimental effects, such as treatment with cardiotoxic compounds or hypoxia/reoxygenation injury [43,62-69]. On the contrary, loss of METTL3 or METTL14 can alleviate myocardial injury and promote heart regeneration [70,71]. Thus, improving our knowledge of the m⁶A regulations in the heart may lead to novel cardioprotective strategies using specific pharmacological activators or inhibitors targeting m⁶A modifiers.

N^{6} , 2'-O-dimethyladenosine

N⁶,2'-O-dimethyladenosine (m⁶Am) is formed by N⁶-methylation of 2'-O-methyladenosine (Am). It has been described only in mRNA and snRNA [50,72]. This modification is present at the first transcribed nucleotide and forms the extended cap structure in at least 30-40% of all vertebrate mRNA [73,74]. Moreover, m⁶Am is also present at the internal sites of snRNAs [17]. The formation of m⁶Am in the cap is mediated by phosphorylated CTD interacting factor 1 (PCIF1), while methyltransferase-like 4 (METTL4) is responsible for internal m⁶Am formation [75-78]. The demethylation of m⁶Am takes place mainly in the cytosol where it is mediated by FTO, the same eraser that targets m⁶A in the nucleus [17,18,79,80]. There are currently no m⁶Am readers mediating the biological functions of this modification described, but it is known that the presence of m⁶Am in the cap structure markedly enhances mRNA stability (in mRNA cap) and splicing (in snRNA cap) [79,81].

The function of m⁶Am modification in the heart is mostly unknown. There are several problems associated with m⁶Am research: 1) many m⁶A detection methods do not distinguish between m⁶A and m⁶Am; 2) FTO is not a specific eraser because it demethylates also m⁶A and m¹A; 3) METTL4 can also catalyze 6mA methylation. Thus, the potential effect of m⁶Am on cardiac function could be masked as m⁶A in many studies [72]. Besides the nonspecific demethylase FTO covered in the previous chapter, not much is known about the role of m⁶Am and its regulators in the heart. Publicly available RNA-seq datasets generated from human left ventricles of failing and non-failing hearts reported some degree of regulation of *METTL4* (down-regulation) and *PCIF1* (up-regulation) [72]. Besides that, we recently found that m⁶Am writers were regulated also in cardioprotective interventions. METTL4 was decreased in the hearts of rats adapted to chronic hypoxia and PCIF1 was increased in the hearts of rats subjected to fasting [69,72].

N¹-methyladenosine

N¹-methyladenosine (m¹A) is found mainly in tRNA and rRNA, but less numerously also in mRNA [82-85]. The writer proteins responsible for m¹A methylation include tRNA methyltransferase 6 (TRMT6), TRMT61A, TRMT61B, TRMT10C or ribosomal RNA-processing protein 8 (RRP8; also known as NML) [86-90]. Demethylation of m¹A is catalyzed by erasers ALKBH1, and ALKBH3 [85,91-93]. Moreover, FTO (m⁶A and m⁶Am eraser) also works as a demethylase of m¹A in tRNA [17]. The m¹A modification affects the structure and stability of tRNA and rRNA and its presence in mRNA regulates translation [85,86,94-96].

So far, no association between m¹A and CVDs has been found [97]. Analysis of methylated nucleosides in urine that revealed altered m⁶A levels in CAD patients did not find any changes in the case of m¹A [61].

Pseudouridine

Pseudouridine (Ψ), the C5-glycoside isomer of uridine (U), is the first discovered and overall the most prevalent RNA modification that has been identified in almost all known RNA types [98-100]. The conversion of U to Ψ is mediated by the diverse pseudouridine synthase (PUS) family [101]. So far, 13 members of PUSs have been described in eukaryotes [100]. The human homologs of PUSs include PUS1, PUS3, PUS7, PUS10, PUSL1, PUSL7, TRUB1-2 (TruB pseudouridine synthase 1-2), RPUSD1-4 (RNA pseudouridine synthase D1-4), and DKC1 (dyskerin pseudouridine synthase 1) [102]. The formation of Ψ is irreversible (unlike the aforementioned modifications) [103]. The only known Ψ reader is a yeast RNA helicase Prp5 interacting with snRNA [104,105]. The molecular functions of Ψ include stabilization of RNA conformations and destabilization of interactions with RNA-binding proteins; the most well-characterized function of Ψ in mRNA is the promotion of a stop codon read-through [100,106].

Plasma and urine levels of Ψ were linked to CVDs

[107]. Patients with heart failure exhibited higher plasma concentrations of Ψ than healthy controls and this modification was suggested as a suitable biomarker for heart failure diagnosis [108-110]. Tetralogy of Fallot, the most common cyanotic congenital heart defect, is associated with decreased Ψ levels in ventricular myocardial tissues, which is under the control of small Cajal body-specific RNAs [111,112].

5-methylcytidine

5-methylcytidine (m⁵C) is an abundant RNA modification present in a wide variety of RNA types. The writers responsible for the installation of m⁵C in humans are NOL1/NOP2/SUN domain proteins 1-7 (NSUN1-7) and DNA methyltransferase homolog DNMT2 [113,114]. Ten-eleven translocation proteins 1-3 (TET1-3) and ALKBH1 are known as m⁵C erasers. TET-mediated oxidation results in а formation of 5-hydroxymethylcytidine (hm⁵C), while ALKBH1 is responsible for the oxidation of m5C in mitochondrial tRNA generating 5-formylcytidine (f⁵C) [115,116]. The readers of m⁵C include Aly/REF export factor (ALYREF), which influences nuclear-cytoplasmic shuttling [117], and Y-box-binding protein 1 (YBX1), which preserves the stability of its target mRNA by recruiting ELAVL1 [118]. This modification is an important regulator of RNA export, ribosome assembly, translation, and RNA stability [113,119,120].

In mammals, m⁵C modification occurs more frequently in the myocardium and skeletal muscle compared to other organs. The enrichment of m5C is especially present in mitochondrial-related genes, suggesting a particularly important function of m⁵C in the high-energy demanding myocardium [121]. Indeed, specific inactivation of the methyltransferase NSUN4 in the heart caused cardiomyopathy with mitochondrial dysfunction [122]. Deficiency of methyltransferase Dnmt2 gene in mice resulted in cardiac hypertrophy [123]. RNA binding protein and known m5C reader YBX1 was also identified as a cardiac hypertrophy regulator [124,125]. NSUN2 was found to increase Nrf2 expression by promoting m⁵C methylation of its mRNA and enhancing its antioxidant stress effect, which attenuates doxorubicininduced myocardial damage [126].

RNA editing

RNA editing includes nucleoside modifications such as adenosine deamination to inosine (A-to-I editing) or cytosine deamination to uridine (C-to-U editing), as well as insertion and deletion of nucleotides [127,128]. Deamination of A to I is irreversible and it is performed by enzymes belonging to the adenosine deaminase acting on RNA (ADAR) family, which is represented by three ADAR orthologs (ADAR1-3) in mammals. ADAR1 and ADAR2 are widely expressed, while ADAR3 was detected only in the brain [129,130]. C-to-U editing is not as common as A-to-I editing [131]. The deamination of C to U is performed by a multiple-protein editosome, which includes the catalytic subunit apolipoprotein B mRNA editing enzyme catalytic subunit 1 (APOBEC1) and an RNA-binding protein APOBEC1 complementation factor (A1CF) [132]. RNA editing in protein-coding regions of mRNAs can result in the expression of functionally altered proteins while editing in microRNA (miRNA) precursors leads to reduced expression or altered function of mature miRNAs [133].

ADAR1 is an essential enzyme for normal embryonic cardiac growth and development [134]. Cardiomyocyte-specific deletion of Adar1 in adult mice caused severe ventricular remodeling and spontaneous cardiac dysfunction associated with a significant rise in lethality [135]. ADAR1 was also shown to prevent autoinflammatory processes in the heart [136]. A-to-I RNA editing has been significantly increased among children with cyanotic congenital heart disease compared to acyanotic controls [137]. On the contrary, reduction of A-to-I editing and decreased levels of ADAR2 have been described in the failing human heart [138]. Strong downregulation of ADAR2 and up-regulation of ADAR1 expression was observed in blood samples of patients with congenital heart disease. The decrease in ADAR2 levels was in line with its down-regulation in ventricular tissues of dilated cardiomyopathy patients. Thus, it has been

suggested that ADAR2 activity might play a critical role in preventing cardiovascular disorders [139]. Indeed, Wu et al. [140] described that ADAR2 was up-regulated in the heart during exercise and that this enzyme protects the heart against myocardial infarction as well as doxorubicininduced cardiotoxicity, supporting the hypothesis of the beneficial effect of ADAR2 on the heart. So far, RNA editing therapeutics have not been established for the treatment of CVDs, however, it is a prospective therapeutic approach that could be implemented in the near future [141].

Conclusion

CVDs remain the leading cause of death worldwide. The search for appropriate cardioprotective strategies is therefore of crucial importance. The significant role of epitranscriptomics in cellular physiology and pathophysiology has been already accepted by the scientific community in the past few years. However, the exact role of complex epitranscriptomic regulations in the heart and CVDs is still far from being understood. It is becoming clear that RNA modifications and their regulators play a vital role in the ontogenetic development of the heart. Many CVDs, such as myocardial infarction, cardiomyopathies, or heart failure, have been also associated with dysregulated epitranscriptomic machinery (Fig. 3). Most importantly, targeting the enzymes responsible for regulating the RNA modifications affected by these diseases proved to be beneficial for the heart. Thus, it is only a matter of time before targeting epitranscriptomic regulations becomes a part of clinical practice.

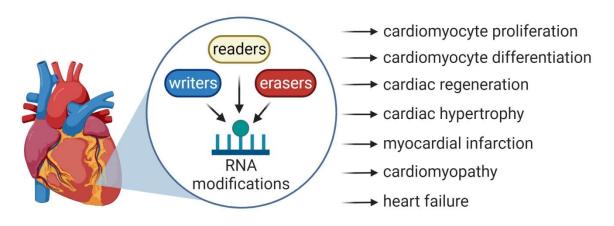


Fig. 3. Role of RNA modifications in the heart

B.D. drafted the article, K.F. and H.M. provided substantive revisions.

Conflict of Interest

There is no conflict of interest.

Acknowledgements

This work was supported by the Czech Science Foundation

References

1. Crick FH. On protein synthesis. Symp Soc Exp Biol 1958;12:138-163.

- Devaux Y, Robinson EL. Preface. In: Devaux Y, Robinson EL, editors. Epigenetics in Cardiovascular Disease: Academic Press; 2021. p. XXI-XXVI. <u>https://doi.org/10.1016/B978-0-12-822258-4.00018-3</u>
- Zhang L, Lu Q, Chang C. Epigenetics in Health and Disease. In: Chang C, Lu Q, editors. Epigenetics in Allergy and Autoimmunity. Singapore: Springer Singapore; 2020. p. 3-55. <u>https://doi.org/10.1007/978-981-15-3449-2_1</u>
- Boccaletto P, Machnicka MA, Purta E, Piatkowski P, Baginski B, Wirecki TK, de Crécy-Lagard V, Ross R, Limbach PA, Kotter A, Helm M, Bujnicki JM. MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res 2018;46:D303-d307. <u>https://doi.org/10.1093/nar/gkx1030</u>
- Roundtree IA, Evans ME, Pan T, He C. Dynamic RNA Modifications in Gene Expression Regulation. Cell 2017;169:1187-1200. <u>https://doi.org/10.1016/j.cell.2017.05.045</u>
- Dieterich C, Völkers M. Chapter 6 RNA modifications in cardiovascular disease-An experimental and computational perspective. In: Devaux Y, Robinson EL, editors. Epigenetics in Cardiovascular Disease: Academic Press; 2021. p. 113-125. <u>https://doi.org/10.1016/B978-0-12-822258-4.00003-1</u>
- Lee Y, Choe J, Park OH, Kim YK. Molecular Mechanisms Driving mRNA Degradation by m(6)A Modification. Trends Genet 2020;36:177-188. <u>https://doi.org/10.1016/j.tig.2019.12.007</u>
- Boo SH, Kim YK. The emerging role of RNA modifications in the regulation of mRNA stability. Exp Mol Med 2020;52:400-408. <u>https://doi.org/10.1038/s12276-020-0407-z</u>
- 9. Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci U S A 1974;71:3971-3975. <u>https://doi.org/10.1073/pnas.71.10.3971</u>
- Dominissini D, Moshitch-Moshkovitz S, Salmon-Divon M, Amariglio N, Rechavi G. Transcriptome-wide mapping of N(6)-methyladenosine by m(6)A-seq based on immunocapturing and massively parallel sequencing. Nat Protoc 2013;8:176-189. <u>https://doi.org/10.1038/nprot.2012.148</u>
- 11. Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons. Cell 2012;149:1635-1646. https://doi.org/10.1016/j.cell.2012.05.003
- Oerum S, Meynier V, Catala M, Tisné C. A comprehensive review of m6A/m6Am RNA methyltransferase structures. Nucleic Acids Res 2021;49:7239-7255. <u>https://doi.org/10.1093/nar/gkab378</u>
- Wang P, Doxtader KA, Nam Y. Structural Basis for Cooperative Function of Mettl3 and Mettl14 Methyltransferases. Mol Cell 2016;63:306-317. <u>https://doi.org/10.1016/j.molcel.2016.05.041</u>
- Wang X, Feng J, Xue Y, Guan Z, Zhang D, Liu Z, Gong Z, Wang Q, Huang J, Tang C, Zou T, Yin P. Structural basis of N(6)-adenosine methylation by the METTL3-METTL14 complex. Nature 2016;534:575-578. <u>https://doi.org/10.1038/nature18298</u>
- 15. Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, Vågbø CB, Shi Y, Wang WL, Song SH, Lu Z, Bosmans RP, Dai Q, Hao YJ, Yang X, Zhao WM, Tong WM, Wang XJ, Bogdan F, Furu K, Fu Y, Jia G, Zhao X, Liu J, Krokan HE, Klungland A, Yang YG, He C. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 2013;49:18-29. <u>https://doi.org/10.1016/j.molcel.2012.10.015</u>

under Grant (24-10497S) to H.M.; the Charles University Grant Agency under Grant (GA UK 668220) to B.D.; and the project National Institute for Research of Metabolic and Cardiovascular Diseases (Programme EXCELES, ID Project No. LX22NPO5104) to K.F. - Funded by the European Union – Next Generation EU. Figures were created with BioRender.com.

- Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, Yi C, Lindahl T, Pan T, Yang YG, He C. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 2011;7:885-887. https://doi.org/10.1038/nchembio.687
- Wei J, Liu F, Lu Z, Fei Q, Ai Y, He PC, Shi H, Cui X, Su R, Klungland A, Jia G, Chen J, He C. Differential m(6)A, m(6)A(m), and m(1)A Demethylation Mediated by FTO in the Cell Nucleus and Cytoplasm. Mol Cell 2018;71:973-985.e975. <u>https://doi.org/10.1016/j.molcel.2018.08.011</u>
- Relier S, Ripoll J, Guillorit H, Amalric A, Achour C, Boissière F, Vialaret J, Attina A, Debart F, Choquet A, Macari F, Marchand V, Motorin Y, Samalin E, Vasseur JJ, Pannequin J, Aguilo F, Lopez-Crapez E, Hirtz C, Rivals E, Bastide A, David A. FTO-mediated cytoplasmic m(6)A(m) demethylation adjusts stem-like properties in colorectal cancer cell. Nat Commun 2021;12:1716. <u>https://doi.org/10.1038/s41467-021-21758-4</u>
- Zaccara S, Jaffrey SR. A Unified Model for the Function of YTHDF Proteins in Regulating m(6)A-Modified mRNA. Cell 2020;181:1582-1595.e1518. <u>https://doi.org/10.1016/j.cell.2020.05.012</u>
- Lasman L, Krupalnik V, Viukov S, Mor N, Aguilera-Castrejon A, Schneir D, Bayerl J, Mizrahi O, Peles S, Tawil S, Sathe S, Nachshon A, Shani T, Zerbib M, Kilimnik I, Aigner S, Shankar A, Mueller JR, Schwartz S, Stern-Ginossar N, Yeo GW, Geula S, Novershtern N, Hanna JH. Context-dependent functional compensation between Ythdf m(6)A reader proteins. Genes Dev 2020;34:1373-1391. <u>https://doi.org/10.1101/gad.340695.120</u>
- Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, Fu Y, Parisien M, Dai Q, Jia G, Ren B, Pan T, He C. N6methyladenosine-dependent regulation of messenger RNA stability. Nature 2014;505:117-120. <u>https://doi.org/10.1038/nature12730</u>
- Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, Weng X, Chen K, Shi H, He C. N(6)-methyladenosine Modulates Messenger RNA Translation Efficiency. Cell 2015;161:1388-1399. <u>https://doi.org/10.1016/j.cell.2015.05.014</u>
- Xiao W, Adhikari S, Dahal U, Chen YS, Hao YJ, Sun BF, Sun HY, Li A, Ping XL, Lai WY, Wang X, Ma HL, Huang CM, Yang Y, Huang N, Jiang GB, Wang HL, Zhou Q, Wang XJ, Zhao YL, Yang YG. Nuclear m(6)A Reader YTHDC1 Regulates mRNA Splicing. Mol Cell 2016;61:507-519. <u>https://doi.org/10.1016/j.molcel.2016.01.012</u>, <u>https://doi.org/10.1016/j.molcel.2016.03.004</u>
- Hsu PJ, Zhu Y, Ma H, Guo Y, Shi X, Liu Y, Qi M, Lu Z, Shi H, Wang J, Cheng Y, Luo G, Dai Q, Liu M, Guo X, Sha J, Shen B, He C. Ythdc2 is an N(6)-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Res 2017;27:1115-1127. <u>https://doi.org/10.1038/cr.2017.99</u>
- Shi H, Wang X, Lu Z, Zhao BS, Ma H, Hsu PJ, Liu C, He C. YTHDF3 facilitates translation and decay of N(6)methyladenosine-modified RNA. Cell Res 2017;27:315-328. <u>https://doi.org/10.1038/cr.2017.15</u>
- Liu XH, Liu Z, Ren ZH, Chen HX, Zhang Y, Zhang Z, Cao N, Luo GZ. Co-effects of m6A and chromatin accessibility dynamics in the regulation of cardiomyocyte differentiation. Epigenetics Chromatin 2023;16:32. <u>https://doi.org/10.1186/s13072-023-00506-6</u>
- 27. Han Z, Wang X, Xu Z, Cao Y, Gong R, Yu Y, Yu Y, Guo X, Liu S, Yu M, Ma W, Zhao Y, Xu J, Li X, Li S, Xu Y, Song R, Xu B, Yang F, Bamba D, Sukhareva N, Lei H, Gao M, Zhang W, Zagidullin N, Zhang Y, Yang B, Pan Z, Cai B. ALKBH5 regulates cardiomyocyte proliferation and heart regeneration by demethylating the mRNA of YTHDF1. Theranostics 2021;11:3000-3016. <u>https://doi.org/10.7150/thno.47354</u>
- Yang C, Zhao K, Zhang J, Wu X, Sun W, Kong X, Shi J. Comprehensive Analysis of the Transcriptome-Wide m6A Methylome of Heart via MeRIP After Birth: Day 0 vs. Day 7. Front Cardiovasc Med 2021;8:633631. <u>https://doi.org/10.3389/fcvm.2021.633631</u>
- Semenovykh D, Benak D, Holzerova K, Cerna B, Telensky P, Vavrikova T, Kolar F, Neckar J, Hlavackova M. Myocardial m6A regulators in postnatal development: effect of sex. Physiol Res 2022;71:877-882. https://doi.org/10.33549/physiolres.934970
- Boissel S, Reish O, Proulx K, Kawagoe-Takaki H, Sedgwick B, Yeo GS, Meyre D, Golzio C, Molinari F, Kadhom N, Etchevers HC, Saudek V, Farooqi IS, Froguel P, Lindahl T, O'Rahilly S, Munnich A, Colleaux L. Loss-of-function mutation in the dioxygenase-encoding FTO gene causes severe growth retardation and multiple malformations. Am J Hum Genet 2009;85:106-111. <u>https://doi.org/10.1016/j.ajhg.2009.06.002</u>
- Liu C, Mou S, Pan C. The FTO gene rs9939609 polymorphism predicts risk of cardiovascular disease: a systematic review and meta-analysis. PLoS One 2013;8:e71901. <u>https://doi.org/10.1371/journal.pone.0071901</u>

- 32. Doney AS, Dannfald J, Kimber CH, Donnelly LA, Pearson E, Morris AD, Palmer CN. The FTO gene is associated with an atherogenic lipid profile and myocardial infarction in patients with type 2 diabetes: a Genetics of Diabetes Audit and Research Study in Tayside Scotland (Go-DARTS) study. Circ Cardiovasc Genet 2009;2:255-259. https://doi.org/10.1161/CIRCGENETICS.108.822320
- 33. Hubacek JA, Vrablik M, Dlouha D, Stanek V, Gebauerova M, Adamkova V, Ceska R, Dostálová G, Linhart A, Vitek L, Pitha J. Gene variants at FTO, 9p21, and 2q36.3 are age-independently associated with myocardial infarction in Czech men. Clin Chim Acta 2016;454:119-123. <u>https://doi.org/10.1016/j.cca.2016.01.005</u>
- 34. Hubacek JA, Stanek V, Gebauerová M, Pilipcincová A, Dlouhá D, Poledne R, Aschermann M, Skalická H, Matousková J, Kruger A, Penicka M, Hrabáková H, Veselka J, Hájek P, Lánská V, Adámková V, Pitha J. A FTO variant and risk of acute coronary syndrome. Clin Chim Acta 2010;411:1069-1072. https://doi.org/10.1016/j.cca.2010.03.037
- 35. Hubacek JA, Vymetalova J, Lanska V, Dlouha D. The fat mass and obesity related gene polymorphism influences the risk of rejection in heart transplant patients. Clin Transplant 2018;32:e13443. <u>https://doi.org/10.1111/ctr.13443</u>
- 36. Zhen X, Zhao W, Wang J, Li L, He Y, Zhang J, Li C, Zhang S, Huang J, Luo B, Gao Y. Genetic variations within METTL16 and susceptibility to sudden cardiac death in chinese populations with coronary artery disease. Am J Cardiol 2023;202:90-99. <u>https://doi.org/10.1016/j.amjcard.2023.06.062</u>
- Wakil SM, Ram R, Muiya NP, Mehta M, Andres E, Mazhar N, Baz B, Hagos S, Alshahid M, Meyer BF, Morahan G, Dzimiri N. A genome-wide association study reveals susceptibility loci for myocardial infarction/coronary artery disease in Saudi Arabs. Atherosclerosis 2016;245:62-70. <u>https://doi.org/10.1016/j.atherosclerosis.2015.11.019</u>
- Zhang R, Qu Y, Ji Z, Hao C, Su Y, Yao Y, Zuo W, Chen X, Yang M, Ma G. METTL3 mediates Ang-II-induced cardiac hypertrophy through accelerating pri-miR-221/222 maturation in an m6A-dependent manner. Cell Mol Biol Lett 2022;27:55. <u>https://doi.org/10.1186/s11658-022-00349-1</u>
- Carnevali L, Graiani G, Rossi S, Al Banchaabouchi M, Macchi E, Quaini F, Rosenthal N, Sgoifo A. Signs of cardiac autonomic imbalance and proarrhythmic remodeling in FTO deficient mice. PLoS One 2014;9:e95499. <u>https://doi.org/10.1371/journal.pone.0095499</u>
- Gan XT, Zhao G, Huang CX, Rowe AC, Purdham DM, Karmazyn M. Identification of fat mass and obesity associated (FTO) protein expression in cardiomyocytes: regulation by leptin and its contribution to leptin-induced hypertrophy. PLoS One 2013;8:e74235. <u>https://doi.org/10.1371/journal.pone.0074235</u>
- Dorn LE, Lasman L, Chen J, Xu X, Hund TJ, Medvedovic M, Hanna JH, van Berlo JH, Accornero F. The N(6)methyladenosine mRNA methylase METTL3 controls cardiac homeostasis and hypertrophy. Circulation 2019;139:533-545. <u>https://doi.org/10.1161/CIRCULATIONAHA.118.036146</u>
- 42. Kmietczyk V, Riechert E, Kalinski L, Boileau E, Malovrh E, Malone B, Gorska A, Hofmann C, Varma E, Jürgensen L, Kamuf-Schenk V, Altmüller J, Tappu R, Busch M, Most P, Katus HA, Dieterich C, Völkers M. m(6)A-mRNA methylation regulates cardiac gene expression and cellular growth. Life Sci Alliance 2019;2:e201800233. https://doi.org/10.26508/lsa.201800233
- 43. Mathiyalagan P, Adamiak M, Mayourian J, Sassi Y, Liang Y, Agarwal N, Jha D, Zhang S, Kohlbrenner E, Chepurko E, Chen J, Trivieri MG, Singh R, Bouchareb R, Fish K, Ishikawa K, Lebeche D, Hajjar RJ, Sahoo S. FTO-dependent N(6)-methyladenosine regulates cardiac function during remodeling and repair. Circulation 2019;139:518-532. https://doi.org/10.1161/CIRCULATIONAHA.118.033794
- 44. Berulava T, Buchholz E, Elerdashvili V, Pena T, Islam MR, Lbik D, Mohamed BA, Renner A, von Lewinski D, Sacherer M, Bohnsack KE, Bohnsack MT, Jain G, Capece V, Cleve N, Burkhardt S, Hasenfuss G, Fischer A, Toischer K. Changes in m6A RNA methylation contribute to heart failure progression by modulating translation. Eur J Heart Fail 2020;22:54-66. <u>https://doi.org/10.1002/ejhf.1672</u>
- 45. Zhang B, Xu Y, Cui X, Jiang H, Luo W, Weng X, Wang Y, Zhao Y, Sun A, Ge J. Alteration of m6A RNA methylation in heart failure with preserved ejection fraction. Front Cardiovasc Med 2021;8:647806. <u>https://doi.org/10.3389/fcvm.2021.647806</u>
- 46. Zhang B, Jiang H, Wu J, Cai Y, Dong Z, Zhao Y, Hu Q, Hu K, Sun A, Ge J. m6A demethylase FTO attenuates cardiac dysfunction by regulating glucose uptake and glycolysis in mice with pressure overload-induced heart failure. Signal Transduct Target Ther 2021;6:377. <u>https://doi.org/10.1038/s41392-021-00699-w</u>

- Komal S, Gohar A, Althobaiti S, Ahmad Khan I, Cui LG, Zhang LR, Han SN, Shakeel M. ALKBH5 inhibitors as a
 potential treatment strategy in heart failure-inferences from gene expression profiling. Front Cardiovasc Med
 2023;10:1194311. <u>https://doi.org/10.3389/fcvm.2023.1194311</u>
- Ju W, Liu K, Ouyang S, Liu Z, He F, Wu J. Changes in N6-methyladenosine modification modulate diabetic cardiomyopathy by reducing myocardial fibrosis and myocyte hypertrophy. Front Cell Dev Biol 2021;9:702579. <u>https://doi.org/10.3389/fcell.2021.702579</u>
- Shao Y, Li M, Yu Q, Gong M, Wang Y, Yang X, Liu L, Liu D, Tan Z, Zhang Y, Qu Y, Li H, Wang Y, Jiao L, Zhang Y. CircRNA CDR1as promotes cardiomyocyte apoptosis through activating hippo signaling pathway in diabetic cardiomyopathy. Eur J Pharmacol 2022;922:174915. <u>https://doi.org/10.1016/j.ejphar.2022.174915</u>
- 50. Benak D, Benakova S, Plecita-Hlavata L, Hlavackova M. The role of m6A and m6Am RNA modifications in the pathogenesis of diabetes mellitus. Front Endocrinol (Lausanne) 2023;14:1223583. https://doi.org/10.3389/fendo.2023.1223583
- 51. Zhang B, Jiang H, Dong Z, Sun A, Ge J. The critical roles of m6A modification in metabolic abnormality and cardiovascular diseases. Genes Dis 2021;8:746-758. <u>https://doi.org/10.1016/j.gendis.2020.07.011</u>
- Longenecker JZ, Gilbert CJ, Golubeva VA, Martens CR, Accornero F. Epitranscriptomics in the Heart: a Focus on m(6)A. Curr Heart Fail Rep 2020;17:205-212. <u>https://doi.org/10.1007/s11897-020-00473-z</u>
- 53. Wu S, Zhang S, Wu X, Zhou X. m(6)A RNA Methylation in Cardiovascular Diseases. Mol Ther 2020;28:2111-2119. <u>https://doi.org/10.1016/j.ymthe.2020.08.010</u>
- Qin Y, Li L, Luo E, Hou J, Yan G, Wang D, Qiao Y, Tang C. Role of m6A RNA methylation in cardiovascular disease (Review). Int J Mol Med 2020;46:1958-1972. <u>https://doi.org/10.3892/ijmm.2020.4746</u>
- 55. Paramasivam A, Vijayashree Priyadharsini J, Raghunandhakumar S. N6-adenosine methylation (m6A): a promising new molecular target in hypertension and cardiovascular diseases. Hypertens Res 2020;43:153-154. https://doi.org/10.1038/s41440-019-0338-z
- 56. Kumari R, Ranjan P, Suleiman ZG, Goswami SK, Li J, Prasad R, Verma SK. mRNA modifications in cardiovascular biology and disease: with a focus on m6A modification. Cardiovasc Res 2022;118:1680-1692. https://doi.org/10.1093/cvr/cvab160
- Leptidis S, Papakonstantinou E, Diakou KI, Pierouli K, Mitsis T, Dragoumani K, Bacopoulou F, Sanoudou D, Chrousos GP, Vlachakis D. Epitranscriptomics of cardiovascular diseases (Review). Int J Mol Med 2022;49. <u>https://doi.org/10.3892/ijmm.2021.5064</u>
- Chen YS, Ouyang XP, Yu XH, Novák P, Zhou L, He PP, Yin K. N6-Adenosine Methylation (m(6)A) RNA Modification: an Emerging Role in Cardiovascular Diseases. J Cardiovasc Transl Res 2021;14:857-872. https://doi.org/10.1007/s12265-021-10108-w
- Zhou W, Wang C, Chang J, Huang Y, Xue Q, Miao C, Wu P. RNA Methylations in Cardiovascular Diseases, Molecular Structure, Biological Functions and Regulatory Roles in Cardiovascular Diseases. Front Pharmacol 2021;12:722728. <u>https://doi.org/10.3389/fphar.2021.722728</u>
- Xu Z, Lv B, Qin Y, Zhang B. Emerging Roles and Mechanism of m6A Methylation in Cardiometabolic Diseases. Cells 2022;11. <u>https://doi.org/10.3390/cells11071101</u>
- Li Y, Yu H, Zhao W, Xu X, Zhou J, Xu M, Gao W, Yuan G. Analysis of urinary methylated nucleosides of patients with coronary artery disease by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 2014;28:2054-2058. <u>https://doi.org/10.1002/rcm.6986</u>, <u>https://doi.org/10.1007/s13361-017-1735-7</u>
- Ma Y, Liu X, Bi Y, Wang T, Chen C, Wang Y, Han D, Cao F. Alteration of N(6)-Methyladenosine mRNA Methylation in a Human Stem Cell-Derived Cardiomyocyte Model of Tyrosine Kinase Inhibitor-Induced Cardiotoxicity. Front Cardiovasc Med 2022;9:849175. <u>https://doi.org/10.3389/fcvm.2022.849175</u>
- 63. Deng W, Jin Q, Li L. Protective mechanism of demethylase fat mass and obesity-associated protein in energy metabolism disorder of hypoxia-reoxygenation-induced cardiomyocytes. Exp Physiol 2021;106:2423-2433. https://doi.org/10.1113/EP089901
- 64. Shen W, Li H, Su H, Chen K, Yan J. FTO overexpression inhibits apoptosis of hypoxia/reoxygenation-treated myocardial cells by regulating m6A modification of Mhrt. Mol Cell Biochem 2021;476:2171-2179. https://doi.org/10.1007/s11010-021-04069-6

- 65. Ke WL, Huang ZW, Peng CL, Ke YP. m(6)A demethylase FTO regulates the apoptosis and inflammation of cardiomyocytes via YAP1 in ischemia-reperfusion injury. Bioengineered 2022;13:5443-5452. https://doi.org/10.1080/21655979.2022.2030572
- 66. Zhang X, Fu Q, Xu L, Yang Y, Zhao W, Zhang Y, Li H, Mi W. Dexmedetomidine Postconditioning Alleviates Hypoxia/Reoxygenation Injury in Senescent Myocardial Cells by Regulating lncRNA H19 and m(6)A Modification. Oxidative Medicine and Cellular Longevity 2020;2020:9250512. <u>https://doi.org/10.1155/2020/9250512</u>
- 67. Cui Y, Wang P, Li M, Wang Y, Tang X, Cui J, Chen Y, Zhang T. Cinnamic acid mitigates left ventricular hypertrophy and heart failure in part through modulating FTO-dependent N(6)-methyladenosine RNA modification in cardiomyocytes. Biomed Pharmacother 2023;165:115168. <u>https://doi.org/10.1016/j.biopha.2023.115168</u>
- Yu P, Wang J, Xu GE, Zhao X, Cui X, Feng J, Sun J, Wang T, Spanos M, Lehmann HI, Li G, Xu J, Wang L, Xiao J. RNA m(6)A-Regulated circ-ZNF609 Suppression Ameliorates Doxorubicin-Induced Cardiotoxicity by Upregulating FTO. JACC Basic Transl Sci 2023;8:677-698. <u>https://doi.org/10.1016/j.jacbts.2022.12.005</u>
- 69. Benak D, Holzerova K, Hrdlicka J, Kolar F, Olsen M, Karelson M, Hlavackova M. Epitranscriptomic regulation in fasting hearts: implications for cardiac health. RNA Biol 2024;21:1-14. https://doi.org/10.1080/15476286.2024.2307732
- 70. Gong R, Wang X, Li H, Liu S, Jiang Z, Zhao Y, Yu Y, Han Z, Yu Y, Dong C, Li S, Xu B, Zhang W, Wang N, Li X, Gao X, Yang F, Bamba D, Ma W, Liu Y, Cai B. Loss of m(6)A methyltransferase METTL3 promotes heart regeneration and repair after myocardial injury. Pharmacol Res 2021;174:105845. https://doi.org/10.1016/j.phrs.2021.105845
- Wu C, Chen Y, Wang Y, Xu C, Cai Y, Zhang R, Peng F, Wang S. The m(6)A methylation enzyme METTL14 regulates myocardial ischemia/reperfusion injury through the Akt/mTOR signaling pathway. Mol Cell Biochem 2023. <u>https://doi.org/10.1007/s11010-023-04808-x</u>
- Benak D, Kolar F, Zhang L, Devaux Y, Hlavackova M. RNA modification m(6)Am: the role in cardiac biology. Epigenetics 2023;18:2218771. <u>https://doi.org/10.1080/15592294.2023.2218771</u>
- 73. Wei C, Gershowitz A, Moss B. N6, O2'-dimethyladenosine a novel methylated ribonucleoside next to the 5' terminal of animal cell and virus mRNAs. Nature 1975;257:251-253. <u>https://doi.org/10.1038/257251a0</u>
- Bokar JA. The biosynthesis and functional roles of methylated nucleosides in eukaryotic mRNA. In: Grosjean H, editor. Fine-Tuning of RNA Functions by Modification and Editing. Berlin, Heidelberg: Springer Berlin Heidelberg; 2005. p. 141-177. <u>https://doi.org/10.1007/b106365</u>
- Akichika S, Hirano S, Shichino Y, Suzuki T, Nishimasu H, Ishitani R, Sugita A, Hirose Y, Iwasaki S, Nureki O, Suzuki T. Cap-specific terminal N (6)-methylation of RNA by an RNA polymerase II-associated methyltransferase. Science 2019;363. <u>https://doi.org/10.1126/science.aav0080</u>
- 76. Sun H, Zhang M, Li K, Bai D, Yi C. Cap-specific, terminal N(6)-methylation by a mammalian m(6)Am methyltransferase. Cell Res 2019;29:80-82. <u>https://doi.org/10.1038/s41422-018-0117-4</u>
- 77. Chen H, Gu L, Orellana EA, Wang Y, Guo J, Liu Q, Wang L, Shen Z, Wu H, Gregory RI, Xing Y, Shi Y. METTL4 is an snRNA m(6)Am methyltransferase that regulates RNA splicing. Cell Res 2020;30:544-547. <u>https://doi.org/10.1038/s41422-019-0270-4</u>
- 78. Goh YT, Koh CWQ, Sim DY, Roca X, Goh WSS. METTL4 catalyzes m6Am methylation in U2 snRNA to regulate pre-mRNA splicing. Nucleic Acids Res 2020;48:9250-9261. <u>https://doi.org/10.1093/nar/gkaa684</u>
- Mauer J, Luo X, Blanjoie A, Jiao X, Grozhik AV, Patil DP, Linder B, Pickering BF, Vasseur JJ, Chen Q, Gross SS, Elemento O, Debart F, Kiledjian M, Jaffrey SR. Reversible methylation of m(6)A(m) in the 5' cap controls mRNA stability. Nature 2017;541:371-375. <u>https://doi.org/10.1038/nature21022</u>
- Mauer J, Jaffrey SR. FTO, m(6) A(m), and the hypothesis of reversible epitranscriptomic mRNA modifications. FEBS Lett 2018;592:2012-2022. <u>https://doi.org/10.1002/1873-3468.13092</u>
- Mauer J, Sindelar M, Despic V, Guez T, Hawley BR, Vasseur JJ, Rentmeister A, Gross SS, Pellizzoni L, Debart F, Goodarzi H, Jaffrey SR. FTO controls reversible m(6)Am RNA methylation during snRNA biogenesis. Nat Chem Biol 2019;15:340-347. <u>https://doi.org/10.1038/s41589-019-0231-8</u>
- 82. Dunn DB. The occurrence of 1-methyladenine in ribonucleic acid. Biochim Biophys Acta 1961;46:198-200. https://doi.org/10.1016/0006-3002(61)90668-0

- Helm M, Giegé R, Florentz C. A Watson-Crick base-pair-disrupting methyl group (m1A9) is sufficient for cloverleaf folding of human mitochondrial tRNALys. Biochemistry 1999;38:13338-13346. <u>https://doi.org/10.1021/bi991061g</u>
- Sharma S, Watzinger P, Kötter P, Entian KD. Identification of a novel methyltransferase, Bmt2, responsible for the N-1-methyl-adenosine base modification of 25S rRNA in Saccharomyces cerevisiae. Nucleic Acids Res 2013;41:5428-5443. <u>https://doi.org/10.1093/nar/gkt195</u>
- 85. Dominissini D, Nachtergaele S, Moshitch-Moshkovitz S, Peer E, Kol N, Ben-Haim MS, Dai Q, Di Segni A, Salmon-Divon M, Clark WC, Zheng G, Pan T, Solomon O, Eyal E, Hershkovitz V, Han D, Doré LC, Amariglio N, Rechavi G, He C. The dynamic N(1)-methyladenosine methylome in eukaryotic messenger RNA. Nature 2016;530:441-446. https://doi.org/10.1038/nature16998
- Safra M, Sas-Chen A, Nir R, Winkler R, Nachshon A, Bar-Yaacov D, Erlacher M, Rossmanith W, Stern-Ginossar N, Schwartz S. The m1A landscape on cytosolic and mitochondrial mRNA at single-base resolution. Nature 2017;551:251-255. <u>https://doi.org/10.1038/nature24456</u>
- Li X, Xiong X, Zhang M, Wang K, Chen Y, Zhou J, Mao Y, Lv J, Yi D, Chen XW, Wang C, Qian SB, Yi C. Base-Resolution Mapping Reveals Distinct m(1)A Methylome in Nuclear- and Mitochondrial-Encoded Transcripts. Mol Cell 2017;68:993-1005.e1009. <u>https://doi.org/10.1016/j.molcel.2017.10.019</u>
- Chujo T, Suzuki T. Trmt61B is a methyltransferase responsible for 1-methyladenosine at position 58 of human mitochondrial tRNAs. Rna 2012;18:2269-2276. <u>https://doi.org/10.1261/rna.035600.112</u>
- Bar-Yaacov D, Frumkin I, Yashiro Y, Chujo T, Ishigami Y, Chemla Y, Blumberg A, Schlesinger O, Bieri P, Greber B, Ban N, Zarivach R, Alfonta L, Pilpel Y, Suzuki T, Mishmar D. Mitochondrial 16S rRNA Is Methylated by tRNA Methyltransferase TRMT61B in All Vertebrates. PLoS Biol 2016;14:e1002557. <u>https://doi.org/10.1371/journal.pbio.1002557</u>
- Waku T, Nakajima Y, Yokoyama W, Nomura N, Kako K, Kobayashi A, Shimizu T, Fukamizu A. NML-mediated rRNA base methylation links ribosomal subunit formation to cell proliferation in a p53-dependent manner. J Cell Sci 2016;129:2382-2393. <u>https://doi.org/10.1242/jcs.183723</u>
- Liu F, Clark W, Luo G, Wang X, Fu Y, Wei J, Wang X, Hao Z, Dai Q, Zheng G, Ma H, Han D, Evans M, Klungland A, Pan T, He C. ALKBH1-mediated tRNA demethylation regulates translation. Cell 2016;167:816-828.e816. https://doi.org/10.1016/j.cell.2016.09.038
- Li X, Xiong X, Wang K, Wang L, Shu X, Ma S, Yi C. Transcriptome-wide mapping reveals reversible and dynamic N(1)-methyladenosine methylome. Nat Chem Biol 2016;12:311-316. <u>https://doi.org/10.1038/nchembio.2040</u>
- 93. Chen Z, Qi M, Shen B, Luo G, Wu Y, Li J, Lu Z, Zheng Z, Dai Q, Wang H. Transfer RNA demethylase ALKBH3 promotes cancer progression via induction of tRNA-derived small RNAs. Nucleic Acids Res 2019;47:2533-2545. <u>https://doi.org/10.1093/nar/gky1250</u>
- Oerum S, Dégut C, Barraud P, Tisné C. m1A Post-Transcriptional Modification in tRNAs. Biomolecules 2017;7. https://doi.org/10.3390/biom7010020
- Shima H, Igarashi K. N 1-methyladenosine (m1A) RNA modification: the key to ribosome control. J Biochem 2020;167:535-539. <u>https://doi.org/10.1093/jb/mvaa026</u>
- Zhao BS, Roundtree IA, He C. Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol 2017;18:31-42. <u>https://doi.org/10.1038/nrm.2016.132</u>
- Wu Y, Zhan S, Xu Y, Gao X. RNA modifications in cardiovascular diseases, the potential therapeutic targets. Life Sci 2021;278:119565. <u>https://doi.org/10.1016/j.lfs.2021.119565</u>
- Cohn WE. Some results of the applications of ion-exchange chromatography to nucleic acid chemistry. J Cell Physiol Suppl 1951;38:21-40. <u>https://doi.org/10.1002/jcp.1030380405</u>
- 99. Xue C, Chu Q, Zheng Q, Jiang S, Bao Z, Su Y, Lu J, Li L. Role of main RNA modifications in cancer: N(6)methyladenosine, 5-methylcytosine, and pseudouridine. Signal Transduct Target Ther 2022;7:142. <u>https://doi.org/10.1038/s41392-022-01003-0</u>
- 100. Sun H, Li K, Liu C, Yi C. Regulation and functions of non-m(6)A mRNA modifications. Nat Rev Mol Cell Biol 2023. <u>https://doi.org/10.1038/s41580-023-00622-x</u>
- 101. Rintala-Dempsey AC, Kothe U. Eukaryotic stand-alone pseudouridine synthases RNA modifying enzymes and
emerging regulators of gene expression? RNA Biol 2017;14:1185-1196.
https://doi.org/10.1080/15476286.2016.1276150

- 102. Li X, Ma S, Yi C. Pseudouridine: the fifth RNA nucleotide with renewed interests. Curr Opin Chem Biol 2016;33:108-116. https://doi.org/10.1016/j.cbpa.2016.06.014
- 103. Zhao BS, He C. Pseudouridine in a new era of RNA modifications. Cell Res 2015;25:153-154. https://doi.org/10.1038/cr.2014.143
- 104. Wu G, Adachi H, Ge J, Stephenson D, Query CC, Yu YT. Pseudouridines in U2 snRNA stimulate the ATPase activity of Prp5 during spliceosome assembly. Embo j 2016;35:654-667. <u>https://doi.org/10.15252/embj.201593113</u>
- 105. Levi O, Arava YS. Pseudouridine-mediated translation control of mRNA by methionine aminoacyl tRNA synthetase. Nucleic Acids Res 2021;49:432-443. <u>https://doi.org/10.1093/nar/gkaa1178</u>
- 106. Borchardt EK, Martinez NM, Gilbert WV. Regulation and Function of RNA Pseudouridylation in Human Cells. Annu Rev Genet 2020;54:309-336. <u>https://doi.org/10.1146/annurev-genet-112618-043830</u>
- 107. Jalan A, Jayasree PJ, Karemore P, Narayan KP, Khandelia P. Decoding the 'Fifth' Nucleotide: Impact of RNA Pseudouridylation on Gene Expression and Human Disease. Mol Biotechnol 2023. <u>https://doi.org/10.1007/s12033-023-00792-1</u>
- 108. Razavi AC, Bazzano LA, He J, Li S, Fernandez C, Whelton SP, Krousel-Wood M, Nierenberg JL, Shi M, Li C, Mi X, Kinchen J, Kelly TN. Pseudouridine and N-formylmethionine associate with left ventricular mass index: Metabolome-wide association analysis of cardiac remodeling. J Mol Cell Cardiol 2020;140:22-29. <u>https://doi.org/10.1016/j.yjmcc.2020.02.005</u>
- 109. Alexander D, Lombardi R, Rodriguez G, Mitchell MM, Marian AJ. Metabolomic distinction and insights into the pathogenesis of human primary dilated cardiomyopathy. Eur J Clin Invest 2011;41:527-538. <u>https://doi.org/10.1111/j.1365-2362.2010.02441.x</u>
- 110. Dunn WB, Broadhurst DI, Deepak SM, Buch MH, McDowell G, Spasic I, Ellis DI, Brooks N, Kell DB, Neyses L. Serum metabolomics reveals many novel metabolic markers of heart failure, including pseudouridine and 2oxoglutarate. Metabolomics 2007;3:413-426. <u>https://doi.org/10.1007/s11306-007-0063-5</u>
- 111. Nagasawa CK, Kibiryeva N, Marshall J, O'Brien JE, Bittel DC. scaRNA1 levels alter pseudouridylation in spliceosomal RNA U2 affecting alternative mRNA splicing and embryonic development. Pediatric Cardiology 2020;41:341-349. <u>https://doi.org/10.1007/s00246-019-02263-4</u>
- 112. Patil P, Kibiryeva N, Uechi T, Marshall J, O'Brien JE, Jr., Artman M, Kenmochi N, Bittel DC. scaRNAs regulate splicing and vertebrate heart development. Biochim Biophys Acta 2015;1852:1619-1629. https://doi.org/10.1016/j.bbadis.2015.04.016
- Bohnsack KE, Höbartner C, Bohnsack MT. Eukaryotic 5-methylcytosine (m⁵C) RNA methyltransferases: mechanisms, cellular functions, and links to disease. Genes (Basel) 2019;10. <u>https://doi.org/10.3390/genes10020102</u>
- 114. Wang YY, Tian Y, Li YZ, Liu YF, Zhao YY, Chen LH, Zhang C. The role of m5C methyltransferases in cardiovascular diseases. Front Cardiovasc Med 2023;10:1225014. <u>https://doi.org/10.3389/fcvm.2023.1225014</u>
- 115. Haag S, Sloan KE, Ranjan N, Warda AS, Kretschmer J, Blessing C, Hübner B, Seikowski J, Dennerlein S, Rehling P, Rodnina MV, Höbartner C, Bohnsack MT. NSUN3 and ABH1 modify the wobble position of mt-tRNAMet to expand codon recognition in mitochondrial translation. Embo j 2016;35:2104-2119. https://doi.org/10.15252/embj.201694885
- 116. Fu L, Guerrero CR, Zhong N, Amato NJ, Liu Y, Liu S, Cai Q, Ji D, Jin SG, Niedernhofer LJ, Pfeifer GP, Xu GL, Wang Y. Tet-mediated formation of 5-hydroxymethylcytosine in RNA. J Am Chem Soc 2014;136:11582-11585. <u>https://doi.org/10.1021/ja505305z</u>
- 117. Yang X, Yang Y, Sun BF, Chen YS, Xu JW, Lai WY, Li A, Wang X, Bhattarai DP, Xiao W, Sun HY, Zhu Q, Ma HL, Adhikari S, Sun M, Hao YJ, Zhang B, Huang CM, Huang N, Jiang GB, Zhao YL, Wang HL, Sun YP, Yang YG. 5-methylcytosine promotes mRNA export NSUN2 as the methyltransferase and ALYREF as an m(5)C reader. Cell Res 2017;27:606-625. <u>https://doi.org/10.1038/cr.2017.55</u>
- 118. Chen X, Li A, Sun BF, Yang Y, Han YN, Yuan X, Chen RX, Wei WS, Liu Y, Gao CC, Chen YS, Zhang M, Ma XD, Liu ZW, Luo JH, Lyu C, Wang HL, Ma J, Zhao YL, Zhou FJ, Huang Y, Xie D, Yang YG. 5-methylcytosine promotes pathogenesis of bladder cancer through stabilizing mRNAs. Nat Cell Biol 2019;21:978-990. https://doi.org/10.1038/s41556-019-0361-y
- 119. Squires JE, Preiss T. Function and detection of 5-methylcytosine in eukaryotic RNA. Epigenomics 2010;2:709-715. <u>https://doi.org/10.2217/epi.10.47</u>

- 120. Chen YS, Yang WL, Zhao YL, Yang YG. Dynamic transcriptomic m(5) C and its regulatory role in RNA processing. Wiley Interdiscip Rev RNA 2021;12:e1639. <u>https://doi.org/10.1002/wrna.1639</u>
- 121. Huang T, Chen W, Liu J, Gu N, Zhang R. Genome-wide identification of mRNA 5-methylcytosine in mammals. Nature Structural & Molecular Biology 2019;26:380-388. <u>https://doi.org/10.1038/s41594-019-0218-x</u>
- 122. Metodiev MD, Spåhr H, Loguercio Polosa P, Meharg C, Becker C, Altmueller J, Habermann B, Larsson NG, Ruzzenente B. NSUN4 is a dual function mitochondrial protein required for both methylation of 12S rRNA and coordination of mitoribosomal assembly. PLoS Genet 2014;10:e1004110. <u>https://doi.org/10.1371/journal.pgen.1004110</u>
- 123. Ghanbarian H, Wagner N, Polo B, Baudouy D, Kiani J, Michiels JF, Cuzin F, Rassoulzadegan M, Wagner KD. Dnmt2/Trdmt1 as mediator of RNA polymerase II transcriptional activity in cardiac growth. PLoS One 2016;11:e0156953. https://doi.org/10.1371/journal.pone.0156953
- 124. Varma E, Burghaus J, Schwarzl T, Sekaran T, Gupta P, Górska AA, Hofmann C, Stroh C, Jürgensen L, Kamuf-Schenk V, Li X, Medert R, Leuschner F, Kmietczyk V, Freichel M, Katus HA, Hentze MW, Frey N, Völkers M. Translational control of Ybx1 expression regulates cardiac function in response to pressure overload in vivo. Basic Res Cardiol 2023;118:25. <u>https://doi.org/10.1007/s00395-023-00996-1</u>
- 125. Yang R, Li L, Hou Y, Li Y, Zhang J, Yang N, Zhang Y, Ji W, Yu T, Lv L, Liang H, Li X, Li T, Shan H. Long noncoding RNA KCND1 protects hearts from hypertrophy by targeting YBX1. Cell Death Dis 2023;14:344. <u>https://doi.org/10.1038/s41419-023-05852-7</u>
- 126. Wang Y, Zan Y, Huang Y, Peng X, Ma S, Ren J, Li X, Wei L, Wang X, Yuan Y, Tang J, Zhan Z, Wang Z, Ding Y. NSUN2 alleviates doxorubicin-induced myocardial injury through Nrf2-mediated antioxidant stress. Cell Death Discov 2023;9:43. <u>https://doi.org/10.1038/s41420-022-01294-w</u>
- 127. Brennicke A, Marchfelder A, Binder S. RNA editing. FEMS Microbiol Rev 1999;23:297-316. https://doi.org/10.1111/j.1574-6976.1999.tb00401.x
- 128. Gott JM, Emeson RB. Functions and mechanisms of RNA editing. Annu Rev Genet 2000;34:499-531. https://doi.org/10.1146/annurev.genet.34.1.499
- 129. Ganem NS, Lamm AT. A-to-I RNA editing thinking beyond the single nucleotide. RNA Biol 2017;14:1690-1694. https://doi.org/10.1080/15476286.2017.1364830
- Dominissini D, Moshitch-Moshkovitz S, Amariglio N, Rechavi G. Adenosine-to-inosine RNA editing meets cancer. Carcinogenesis 2011;32:1569-1577. <u>https://doi.org/10.1093/carcin/bgr124</u>
- Bhakta S, Tsukahara T. C-to-U RNA Editing: A Site Directed RNA Editing Tool for Restoration of Genetic Code. Genes (Basel) 2022;13. <u>https://doi.org/10.3390/genes13091636</u>
- 132. Sowden MP, Ballatori N, Jensen KL, Reed LH, Smith HC. The editosome for cytidine to uridine mRNA editing has a native complexity of 27S: identification of intracellular domains containing active and inactive editing factors. J Cell Sci 2002;115:1027-1039. <u>https://doi.org/10.1242/jcs.115.5.1027</u>
- 133. Nishikura K. A-to-I editing of coding and non-coding RNAs by ADARs. Nat Rev Mol Cell Biol 2016;17:83-96. <u>https://doi.org/10.1038/nrm.2015.4</u>
- 134. Moore JBt, Sadri G, Fischer AG, Weirick T, Militello G, Wysoczynski M, Gumpert AM, Braun T, Uchida S. The A-to-I RNA editing enzyme adar1 is essential for normal embryonic cardiac growth and development. Circ Res 2020;127:550-552. <u>https://doi.org/10.1161/CIRCRESAHA.120.316932</u>
- 135. El Azzouzi H, Vilaça AP, Feyen DAM, Gommans WM, de Weger RA, Doevendans PAF, Sluijter JPG. Cardiomyocyte Specific Deletion of ADAR1 Causes Severe Cardiac Dysfunction and Increased Lethality. Front Cardiovasc Med 2020;7:30. <u>https://doi.org/10.3389/fcvm.2020.00030</u>
- 136. Garcia-Gonzalez C, Dieterich C, Maroli G, Wiesnet M, Wietelmann A, Li X, Yuan X, Graumann J, Stellos K, Kubin T, Schneider A, Braun T. ADAR1 prevents autoinflammatory processes in the heart mediated by IRF7. Circ Res 2022;131:580-597. <u>https://doi.org/10.1161/CIRCRESAHA.122.320839</u>
- 137. Borik S, Simon AJ, Nevo-Caspi Y, Mishali D, Amariglio N, Rechavi G, Paret G. Increased RNA editing in children with cyanotic congenital heart disease. Intensive Care Med 2011;37:1664-1671. <u>https://doi.org/10.1007/s00134-011-2296-z</u>
- 138. Kokot KE, Kneuer JM, John D, Rebs S, Möbius-Winkler MN, Erbe S, Müller M, Andritschke M, Gaul S, Sheikh BN, Haas J, Thiele H, Müller OJ, Hille S, Leuschner F, Dimmeler S, Streckfuss-Bömeke K, Meder B, Laufs U,

Boeckel JN. Reduction of A-to-I RNA editing in the failing human heart regulates formation of circular RNAs. Basic Res Cardiol 2022;117:32. <u>https://doi.org/10.1007/s00395-022-00940-9</u>

- 139. Altaf F, Vesely C, Sheikh AM, Munir R, Shah STA, Tariq A. Modulation of ADAR mRNA expression in patients with congenital heart defects. PLoS One 2019;14:e0200968. <u>https://doi.org/10.1371/journal.pone.0200968</u>
- 140. Wu X, Wang L, Wang K, Li J, Chen R, Wu X, Ni G, Liu C, Das S, Sluijter JPG, Li X, Xiao J. ADAR2 increases in exercised heart and protects against myocardial infarction and doxorubicin-induced cardiotoxicity. Mol Ther 2022;30:400-414. <u>https://doi.org/10.1016/j.ymthe.2021.07.004</u>
- 141. Birgaoanu M, Sachse M, Gatsiou A. RNA editing therapeutics: advances, challenges and perspectives on combating heart disease. Cardiovasc Drugs Ther 2023;37:401-411. <u>https://doi.org/10.1007/s10557-022-07391-3</u>