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Summary 
Diffusion is a mass transport phenomenon caused by chaotic 
thermal movements of molecules. Studying the transport in 
specific domain is simplified by using evolutionary differential 
equations for local concentration of the molecules instead of 
complete information on molecular paths [1]. Compounds in a 
fluid mixture tend to smooth out its spatial concentration 
inhomogeneities by diffusion. Rate of the transport is 
proportional to the concentration gradient and coefficient of 
diffusion of the compound in ordinary diffusion. The evolving 
concentration profile c(x,t) is then solution of evolutionary partial 
differential equation 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐷𝐷𝐷𝐷𝐷𝐷 

where D is diffusion coefficient and Δ is Laplacian operator. 
Domain of the equation may be a region in space, plane or line, 
a manifold, such as surface embedded in space, or a graph. The 
Laplacian operates on smooth functions defined on given 
domain. We can use models of diffusion for such diverse tasks 
as: a) design of method for precise measurement of receptors 
mobility in plasmatic membrane by confocal microscopy [2],  
b) evaluation of complex geometry of trabeculae in developing 
heart [3] to show that the conduction pathway within the 
embryonic ventricle is determined by geometry of the trabeculae. 
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Introduction 
 

Energy of thermal molecular movements is 
distributed into various modes according to configuration 
and environment of the molecules. Besides rotational and 
vibrational modes there are thermal molecular 
translations, chaotic motions causing the phenomenon of 
diffusion. The speed of the ordinary diffusion is fully 
characterized by diffusion coefficient (D) [1]. Ordinary 
diffusion takes place in homogeneous environment and 
the diffusion in structured or compartmentalized 
environment is usually anomalous. Anomalies in 
diffusion can be utilized for studying the underlying 
structure, for example, mean square displacement (MSD) 
of a particle, which is linear function of time in ordinary 
diffusion (MSD(t) = D t), can serve this purpose. 

Specific methods of optical microscopy study 
molecular translations on scales ranging from single 
molecule up to the size of field of view. 

Single fluorescently labelled molecule can be 
tracked in real time by superresolution microscope 
Minflux [4]. This method provides real path of the 
molecule, hence all parameters of the movements can be 
calculated, but very special equipment is needed and it 
tracks only one target at a time. 

Fluorescence fluctuation techniques follow 
fluctuation of local concentration of the molecules. 
Fluorescence correlation spectroscopy (FCS) calculates 
diffusion coefficient D from time correlations of 
fluorescence in static focal volume [5]. Methods based on 
spatiotemporal correlations of fluorescence (ImCS) [6] 
provide information on anomalies in diffusion in MSD 
function. Those techniques require very low 
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concentration of fluorophores (i.e. dim fluorescence), 
units to tens molecules per focal volume, to obtain 
fluctuating fluorescence signals. 

Methods operating in coarsest spatial scale 
calculate the diffusion coefficient D (or apparent D if the 
diffusion is in fact anomalous) from time evolution of the 
molecules concentration profile. Widely used is fluorescence 
recovery after photobleaching (FRAP) [5,7]. We analyzed 
dynamics of receptors on plasmatic membranes by FRAP on 
periphery of cell. We developed customized model of 
bleaching and diffusion in vertical plane in order to evaluate 
properly the FRAP experiment using microscopic objective 
with high numerical aperture [2]. 

Mathematical model of the evolving 
concentration profile is partial differential equation 
(PDE) of diffusion on a given domain. The diffusion 
coefficient D is calculated by fitting model FRAP curve 
to the measured one. 

Properties of the Laplacian operator reflect form 
(i.e. dimension, shape and size) of the equation domain. 
Regular domains in Euclidean spaces [8,9] and fractal 
domains [10] were characterized by asymptotic properties 
of the operator eigenvalues. 

We studied geometry of trabeculation in 
developing mouse embryonic heart using solutions of 
diffusion equation on graph obtained by skeletonization 
of the trabeculae. The directionality of the trabeculae was 
calculated from directionality of the equation solutions. 
[3]. The connectivity of the trabecular graph was 
characterized by fracton dimension estimated from 
asymptotics of the Laplacian operator eigenvalues. 
 
Equations of diffusion 
 

The Laplacian operator in one dimension (along 
line) is 

𝛥𝛥𝛥𝛥 =
𝜕𝜕2𝑐𝑐
𝜕𝜕𝑥𝑥2

 

hence, the simplest (one-dimensional) equation of 
diffusion along line is 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐷𝐷
𝜕𝜕2𝑐𝑐
𝜕𝜕𝑥𝑥2

 

The equation has special solutions, so called Green 
functions, centered in point y 

1
2√𝜋𝜋𝜋𝜋𝜋𝜋

𝑒𝑒−
(𝑥𝑥−𝑦𝑦)2
4𝐷𝐷𝐷𝐷  

and we obtain diffusion profile c(x,t) evolving from 
arbitrary initial profile c(x,0) by integration 

1
2√𝜋𝜋𝜋𝜋𝜋𝜋

� 𝑒𝑒−
(𝑥𝑥−𝑦𝑦)2
4𝐷𝐷𝐷𝐷

∞

−∞
𝑐𝑐(𝑥𝑥, 0)𝑑𝑑𝑑𝑑 

For example, the profile evolving from c(x,0), 
concentration equal to zero in interval from -l/2 to l/2 and 
equal to one elsewhere (Fig. 1a), can be expressed 
explicitly by formula 

𝑐𝑐(𝑥𝑥, 𝑡𝑡) = 1 −
1
2
�𝐸𝐸𝐸𝐸𝐸𝐸

�𝑙𝑙2 − 𝑥𝑥�

2√𝐷𝐷𝐷𝐷
+ 𝐸𝐸𝐸𝐸𝐸𝐸

�𝑙𝑙2 + 𝑥𝑥�

2√𝐷𝐷𝐷𝐷
� 

[11], where 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = ∫ 𝑒𝑒−𝑧𝑧2𝑦𝑦
0 𝑑𝑑𝑑𝑑 is error function. 

 

 

 
 
Fig. 1. (a) Concentration profile evolving in time, D=1. l=5. Time 
step 2 s. (b) Integral of the profile from -2,5 to 2,5 as function of 
time. 
 
Diffusion of fluorescent receptors on vertical 
plasmatic membrane 
 

Mobility of fluorescent molecules is studied by 
microscopic technique called fluorescence recovery after 
photobleaching (FRAP). Region of interest (ROI) in the 
target object is irreversibly bleached and then we record 
the light recovered by flow of fluorescent molecules into 
ROI. 

FRAP along a tubule, e.g. neurite can be 
evaluated by fitting one-dimensional model curve to the 
recorded data 

𝐹𝐹(𝑡𝑡) = 𝐹𝐹0 + (𝐹𝐹∞ − 𝐹𝐹0)𝐹𝐹(𝐷𝐷𝐷𝐷) 
where F0 is the postbleach value of F and F∞ is the 

limit at infinity and F is calculated from the ordinary 
diffusion model (with D=1) as the amount of matter 
transported into the interval from -l/2 to l/2 up to time t by 
the integral of the concentration profile over the interval 
(Fig. 1b), which can be expressed in closed form as



2024  Models of Diffusion    3  
 

 
 
Fig. 2. FRAP measurement of plasma membrane protein mobility using „equatorial set-up“. (a-c) Confocal images of the HEK293 cell 
expressing δ-OR-eYFP in the course of FRAP experiment: the optical section of the cell before the bleach (a), shortly after the bleach 
(b) and after the recovery of fluorescence signal in the bleached region of interest (ROI) (c). The white circle in b and c represents ROI 
used for recording the fluorescence recovery curve. Scale bars represent 5 µm. (d) Scheme of confocal imaging of plasma membrane 
region within the equatorial plane of the cell. (e) Axial profile of photobleaching irradiance calculated for horizontal circular ROI with 
diameter of 5 µm and water immersion objective with numerical aperture (NA) 1,2. 
 
 

𝐹𝐹(𝑡𝑡) = 1 −
2√𝑡𝑡
𝑙𝑙√𝜋𝜋

�𝑒𝑒−
𝑙𝑙2
4𝑡𝑡 − 1� − 𝐸𝐸𝐸𝐸𝐸𝐸

𝑙𝑙
2√𝑡𝑡

 

See 7.2 in [12] for integral of Erf. 
Mobility of molecules constrained to plasmatic 

membrane may be assessed by FRAP. The signal from 
plasmatic membrane with ROI on the periphery of the 
cell (Fig. 2a,b,c) obtained by confocal microscope 
equipped with objective with high numerical aperture 
cannot be analyzed neither by the above 1 dimensional 
model nor by other models found in FRAP literature [13], 
because the cone of light from high NA objective has 
obtuse apical angle and the bleached region on the 
horizontal plane approximating the plasma membrane 

(Fig. 2d) has hour-glass shape [14]. Analysis of FRAP of 
fluorescently labelled opioid receptors thus required 
development of new specific model [2]. We started with 
analytical expression for irradiance I(x, z) applied in the 
bleaching in circular ROI (Fig. 2e) where horizontal 
coordinate x and axial coordinate z have origin in the 
center of ROI (see Appendix and [2] for details). 

Concentration of fluorophore 𝑐𝑐(𝑥𝑥, 𝑧𝑧, 𝑡𝑡) in 
vertical x, z-plane obeys the diffusion equation: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐷𝐷 �
𝜕𝜕2𝑐𝑐
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝑐𝑐
𝜕𝜕𝑧𝑧2

� 

where D is the diffusion coefficient. 
The initial, normalized concentration of 
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fluorophore is calculated from 3D irradiation intensity 
I(x,z) (defined in Appendix) by formula: 

𝑐𝑐(𝑥𝑥, 𝑧𝑧, 0) = 𝑒𝑒−𝛼𝛼T I(𝑥𝑥,𝑧𝑧) 
where α is rate constant and T is duration of the 

bleaching pulse. Let D = 1. 

𝑐𝑐(𝑥𝑥, 𝑧𝑧, 𝑡𝑡) =
1

4𝜋𝜋𝜋𝜋
� � 𝑒𝑒−

(𝑥𝑥−𝜉𝜉)2+(𝑧𝑧−𝜁𝜁)2
4𝑡𝑡 𝑐𝑐(𝑥𝑥, 𝑧𝑧, 0)𝑑𝑑𝑑𝑑

∞

−∞
𝑑𝑑𝑑𝑑

∞

−∞
 

Let 𝐾𝐾 = 𝛼𝛼T I [7], the model FRAP recovery 
curve 𝐹𝐹𝐾𝐾 is then obtained by integration of the 
fluorophore concentration over the linear segment, 

𝐹𝐹𝐾𝐾(𝑡𝑡) =
1

2𝑅𝑅
� 𝑐𝑐(𝑥𝑥, 0, 𝑡𝑡)𝑑𝑑𝑑𝑑
𝑅𝑅

−𝑅𝑅
 

which is equal to: 

𝐹𝐹𝐾𝐾(𝑡𝑡) =
1

8𝑅𝑅√𝜋𝜋𝜋𝜋
� 𝑒𝑒−

𝑧𝑧2
𝑡𝑡 𝐽𝐽𝐾𝐾(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑑𝑑

∞

−∞
 

where 

𝐽𝐽𝐾𝐾(𝑧𝑧, 𝑡𝑡) = � �𝐸𝐸𝐸𝐸𝐸𝐸
𝑅𝑅 − 𝑥𝑥
2√𝑡𝑡

+ 𝐸𝐸𝐸𝐸𝐸𝐸
𝑅𝑅 + 𝑥𝑥
2√𝑡𝑡

�
∞

−∞
𝑒𝑒−𝛼𝛼𝛼𝛼𝛼𝛼(𝑥𝑥,𝑧𝑧)𝑑𝑑𝑑𝑑 

The double integral in equation for FK (t) is 
evaluated for using a numerical procedure in program 
Mathematica (Wolfram). The example of FK (t) curves is 
depicted in Figure 3a. 

Experimental FRAP curve, such as that at 
Figure 3b, is fitted by function 

𝐹𝐹(𝑡𝑡) = 𝐹𝐹∞𝐹𝐹𝐾𝐾(𝐷𝐷𝐷𝐷) 
where F∞ is the limit at infinity. 

 

 

 
 
Fig. 3. (a) Simulated fluorescence recovery (FRAP) curves for 
various values of bleaching intensity K=0,5 to 3,5, numerical 
aperture NA=1,2, refractive index n=1,33 and diffusion coefficient 
D=1. (b) an example of real FRAP signal from plasmatic 
membrane on the periphery of cell. 

Directionality of trabeculae in embryonic heart 
 

Trabeculae in embryonic heart of Nkx-2.5:GFP 
mice were visualized in 3D using confocal microscope 
with 10× dry objective [3]. 

The binary image obtained by segmentation of 
the original image was skeletonized obtaining the graph 
(Fig. 4a) representing the trabeculae. 

Local anisotropy of the trabecular structure is 
characterized by directionality of heat conduction, or 
equivalently by directionality of Brownian motion. For 
this purpose we use the graph G = (V, E) with edges 
weighted by 𝑠𝑠- “conductance” (equal to reciprocal 
distance) 

𝑠𝑠�𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗� = �𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑗𝑗�
−1

 
as the model of the trabecular structure. 

The graph Laplacian 𝛥𝛥 is I × I matrix with 
elements 

𝛥𝛥𝑖𝑖𝑖𝑖 = − � 𝑟𝑟�𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗�
�𝑣𝑣𝑖𝑖,𝑣𝑣𝑗𝑗�∈𝐸𝐸

 

𝛥𝛥𝑖𝑖𝑖𝑖 = 𝑟𝑟�𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗� if 𝑖𝑖 ≠ 𝑗𝑗 for �𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗� ∈ 𝐸𝐸 
and 𝛥𝛥𝑖𝑖𝑖𝑖 = 0 for �𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗� ∉ 𝐸𝐸 

The Laplacian is employed in formulation of the 
diffusion equation on the graph: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑣𝑣, 𝑡𝑡) = 𝛥𝛥𝛥𝛥(𝑣𝑣, 𝑡𝑡),  𝑣𝑣 ∈ 𝑉𝑉, 𝑡𝑡 ≥ 0. 
𝜆𝜆𝑛𝑛- eigenvalues and 𝜑𝜑𝑛𝑛- orthonormal eigenvectors of 

the graph Laplacian 𝛥𝛥 are related by equations 
𝛥𝛥𝜑𝜑𝑛𝑛 = 𝜆𝜆𝑛𝑛𝜑𝜑𝑛𝑛, 𝑛𝑛 = 1 … 𝐼𝐼 

so that 𝑒𝑒𝜆𝜆𝑛𝑛𝑡𝑡𝜑𝜑𝑛𝑛(𝑣𝑣) are generators of solutions of the 
diffusion equation. 

The Green functions of the diffusion equation 
are defined using the eigenvectors and eigendomains as: 

𝐾𝐾(𝑥𝑥,𝑦𝑦, 𝑡𝑡) = �𝜑𝜑𝑛𝑛(𝑥𝑥)𝜑𝜑𝑛𝑛(𝑦𝑦)𝑒𝑒𝜆𝜆𝑛𝑛𝑡𝑡
𝐼𝐼

𝑛𝑛=1

 

Second moments of the Green function in each point 
𝑦𝑦 ∈ 𝑉𝑉 can be calculated as: 

𝑇𝑇𝑙𝑙𝑙𝑙(𝑦𝑦, 𝑡𝑡) = ��𝜑𝜑𝑛𝑛(𝑦𝑦)𝜑𝜑𝑛𝑛(𝑥𝑥)𝑒𝑒𝜆𝜆𝑛𝑛𝑡𝑡(𝑥𝑥𝑙𝑙 − 𝑦𝑦𝑙𝑙)(𝑥𝑥𝑘𝑘 − 𝑦𝑦𝑘𝑘)
𝐼𝐼

𝑛𝑛=1𝑥𝑥∈𝑉𝑉
𝑙𝑙, 𝑘𝑘 = 1,2,3

 

Eigenvalues were calculated by DSBEVX routine in 
LAPACK library [15]. 

Eigenvectors were calculated by inverse 
iterations: 

(∆ − 𝜆𝜆𝜆𝜆)𝜑𝜑 = 𝑏𝑏𝑚𝑚 
𝑏𝑏𝑚𝑚+1 = ±

𝜑𝜑
‖𝜑𝜑‖

 

using LU decomposition from Numerical Recipes 
[16]. The tensor of the heat kernel second moments 
𝑇𝑇(𝑦𝑦, 𝑡𝑡) was calculated, the values were interpolated and 
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visualized (Fig. 4b) in Amira 6.5 (FEI) using the module 
Tensor View. 

Eigenvalues 𝜆𝜆𝑛𝑛 were distributed as 𝑛𝑛
2
𝑑𝑑, where d 

correspond to (fractal) dimension growing from value 2.1 
at ED10 to 2.5 at ED14. 
 

 

 
 
Fig. 4. (a) Graph of skeletonized trabeculae in mouse embryonic 
heart. (b) directionality tensor of diffusion on the graph. 

Discussion and Conclusions 
 

We demonstrated custom made FRAP model for 
evaluation of receptor mobility measured on periphery of 
cell by microscope with high numerical aperture. Using 
precise model is necessary, because 1D model, that is 
used for evaluation of this experiment with objective with 
low numerical aperture, would overestimate the value of 
diffusion coefficient by factor of two. 

The history of the study of asymptotics of 
Laplacian operator eigenvalue in relation to its domain is 
long and interesting. First results were obtained in 
theoretical studies on radiation of the dark body [8] and 
they were completed by results on vibrational modes of 
solid bodies [9] and of fractals [10]. Trabeculae in 
embryonic heart have complicated structure of open foam 
that is difficult to characterize by conventional 
geometrical parameters. Dimension calculated from 
asymptotics of Laplacian eigenvalues somehow 
characterizes local connectivity of the structure, that is 
slightly lower than that of regular 3D grid. Fractal 
characterization of heart trabeculae were used also by 
others [17] and it can be applied in future to 
characterization of other complicated biological 
structures and network like objects. 
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Appendix 

Let n be refractive index of the immersion media, let β be half angle of the objective light cone satisfying the 
relation 𝑁𝑁𝑁𝑁 = 𝑛𝑛 sin𝛽𝛽 for numerical aperture NA of the objective and let region of interest (ROI) be a circle with radius 
R, then I(r, z), where horizontal coordinate r>0 and axial coordinate z have origin in the center of ROI, can be calculated 
using formula for the area of intersection of two circles with radii R and |𝑧𝑧|tan𝛽𝛽 and distance between the two centers r. 

𝐼𝐼(𝑟𝑟, 𝑧𝑧) = 𝐼𝐼    for  0 < 𝑟𝑟 < 𝑅𝑅 − |𝑧𝑧|tan𝛽𝛽, 
𝐼𝐼(𝑟𝑟, 𝑧𝑧) = 0    for  𝑟𝑟 > 𝑅𝑅 + |𝑧𝑧|tan𝛽𝛽, and 

𝐼𝐼(𝑟𝑟, 𝑧𝑧) = 𝐼𝐼
𝜋𝜋(|𝑧𝑧|tan𝛽𝛽)2

�𝜙𝜙(𝑅𝑅, |𝑧𝑧|tan𝛽𝛽, 𝑟𝑟) + 𝜙𝜙(|𝑧𝑧|tan𝛽𝛽,𝑅𝑅, 𝑟𝑟)� for |𝑟𝑟 − 𝑅𝑅| < |𝑧𝑧|tan𝛽𝛽. 
where φ is function 

𝜙𝜙(𝜌𝜌1,𝜌𝜌2,𝑑𝑑) = 𝜌𝜌22 �arccos 𝑑𝑑
2+𝜌𝜌2

2−𝜌𝜌1
2

2𝑑𝑑𝑑𝑑2

− 𝑑𝑑2+𝜌𝜌2
2−𝜌𝜌1

2

2𝑑𝑑𝑑𝑑2
�1 − �𝑑𝑑

2+𝜌𝜌2
2−𝜌𝜌1

2

2𝑑𝑑𝑑𝑑2
�
2
�

, 

representing the area of the circular segment cut off from the circle with radius ρ2 by a chord of another circle with 
radius ρ1 where d is the distance of circles centers. The expression for φ follows from the law of cosines. 

Finally, 𝐼𝐼(𝑥𝑥, 𝑧𝑧) = 𝐼𝐼(|𝑥𝑥|, 𝑧𝑧) for negative x. 
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