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Summary
Mitochondria (mt) represent the vital hub of the molecular
physiology of the cell, being decision-makers in cell life/death and

information signaling, including major redox regulations and

redox signaling. Now we review recent advances in
understanding mitochondrial redox homeostasis, including
superoxide sources and H:0: consumers, i.e., antioxidant

mechanisms, as well as exemplar situations of physiological

redox signaling, including the intramitochondrial one and
mt-to-cytosol redox signals, which may be classified as acute and
long-term signals. This review exemplifies the acute redox signals
in hypoxic cell adaptation and upon insulin secretion in pancreatic
B-cells. We also show how metabolic changes under these
circumstances are linked to mitochondrial cristae narrowing at
higher intensity of ATP synthesis. Also, we will discuss major
redox buffers, namely the peroxiredoxin system, which may also
promote redox signaling. We will point out that pathological
thresholds exist, specific for each cell type, above which the
superoxide sources exceed regular antioxidant capacity and the
concomitant harmful processes of oxidative stress subsequently
initiate etiology of numerous diseases. The redox signaling may

be impaired when sunk in such excessive pro-oxidative state.
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Mitochondrial reactive oxygen species (ROS)
sources

Primary sources of mitochondrial superoxide

According to the classification of M. Brand
[1-4], flavin (F) and ubiquinone (Q) containing binding
sites, typically within structures of respiratory chain (RC)
complexes, belong to the most critical superoxide
formation sites in mitochondria [5-7], besides particular
loci of dehydrogenases [1,2] (Fig. 1). Recent progress in
understanding mechanisms involved in proton-coupled
electron transfer via the RC and in resolving
supercomplexes formation and single crista architecture
[7-9] then calls for reconsiderations of these mechanisms
and more precise determination of superoxide formation
sites within the given and already resolved protein
structures.

A general requirement for superoxide (O2*; and
its conjugated acid - hydroperoxyl radical, HO-*,
pKa 4.9) to be formed is a local retardation of the electron
transfer or an enzyme reaction process so that intermediate
radicals have enough lifetime to react with oxygen. These
intermediates are typically semiquinone anion radical (Q*-;
or semiquinol QH*®) for Q sites and flavosemiquinone
radical FMNH® for F sites. Thus, the flavin site on
Complex | (termed Ig) can produce superoxide at a higher
NADH/NAD* ratio after the direct H- transfer between
NADH and FMN [10]. When an excessive electron cannot
pass through the existing FeS chain within the Complex |
matrix arm, the NAD* binding is interrupted, and the
pairing of FMNH- and NADH form FMNH®. At lower
NADH, indeed, NAD* can pair with FMNH®, and
superoxide cannot be formed [11].
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Fig. 1. Sites of superoxide formation in mitochondria. Schema depicts locations for the identified sites of superoxide formation, acting
at the ~280 mV redox potential of the NADH/NAD* iso-potential pool (index F, flavin; dark blue capitalized fonts) and sites acting at the
~20 mV redox potential of the ubiquinol/ubiquinone (QH2/Q) iso-potential pool (index Q; red capitalized fonts), according to the Brand’s
nomenclature introduced by Martin Brand [1]. Thus the major sites I, lq and Illq exists for Complex | and Il1, respectively; at certain
circumstances also Complex Il/succinate dehydrogenase forms superoxide at site Ilr; and sites for probable superoxide formation by
dehydrogenases (DH) are shown (Gq for a-glycerolphosphate dehydrogenase, GPDH; Dq for dihydroorotate DH; Ar for 2-oxoadipated
DH; Br for branched-chain ketaoacid DH, BCKDH; O for 2-oxoglutarate DH, 20GDH; Per for pyruvate DH. In case of acylCoA
dehydrogenases acting in fatty acid B-oxidation, two electron transfer flavoproteins (ETF) are required to transfer electrons to the
membrane-attached ETF:ubiquionone oxidoraductase (ETF:QOR, depicted by its structure) containing a site Er (though a site Eq also
potentially exists). The scheme also depicts a situation when retardation fo cytochrome c shuttling induces superoxide formation on site
Illqo; as well as attenuation of superoxide formation by uncoupling proteins (UCP) based on the fatty acid-cycling mechanism [119].
Finally, formed superoxide is converted to H.02 by MnSOD in the matrix or by CuZnSOD within the intermembrane space. H202 may
readily penetrate to the cell cytosol (for special relations of such diffusion, see Reference [7].

Complex I, as an H*-pumping NADH:quinone
oxidoreductase, possesses a Q-tunnel structure, where an
ongoing inhibition by a product (ubiquinol, QH,) can
form superoxide at the phenomenologically defined site
lo [1] (Fig.1). This typically occurs when the whole
Complex | runs backward during so-called reversed
electron transfer (RET). Disputes still exist whether under
conditions of e.g. reperfusion after ischemic
accumulation of succinate, superoxide is formed at lg or
Ir site [12,13]. Due to the suppression of the electron leak
to oxygen at site lo by a specific antioxidant SIQEL, the
site I is more plausible to act in RET-derived superoxide

formation [1].

We have also revealed that the maximum
superoxide was formed only when electron transport and
H* pumping were retarded [14,15]. H* pumping may be
attenuated by a high electrochemical gradient of protons
established at the inner mitochondrial membrane (IMM),
termed protonmotive force, Ap (when expressed in
mV units) [16-18]. In pathologies this can be induced by
mutations of the ND5 subunit (or other mitochondrion-
encoded subunits) of the Complex | membrane arm.

Complex 11, a ubiquinol-cytochrome c reductase,
contributes to O,* generation by autooxidation of the
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semiquinone anion radical (Q®?) within the so-called Q
cycle [1,5,7,19,20], while it releases O,*" about equally to
both sides of IMM [20,21]. Typically, when cytochrome ¢
turnover is delayed for some reason, then a feedback
inhibition of the Q-cycle within CIII is induced, causing
the superoxide formation at the Complex Il site, termed
g (,,0“ for outer, which is located in proximity to the
intracristal space, [1]) (Fig.1). This is because of the
increased lifetime of QH® and oxygen diffusion into this
site [22]. In vivo, a physiological delay of the Q-cycle
occurs at hypoxia or pathological one with specific
mutations in Complex IV [23]. Retardation of the
cytochrome ¢ cycling automatically exists at the escape of
cytochrome ¢ from the cristae lumen during initiation of
mitochondria-related apoptosis.

Also, Complex Il (succinate dehydrogenase,
SDH) may form superoxide under specific conditions but
not at high succinate concentrations [24,25]. But
superoxide is formed when the flavin site 1l within the
SDHA subunit is less occupied, such as when succinate
concentrations approach to Ky, of 100-500 uM [26-28].
Pathologically, with the blocked SDHD subunit and
hence interrupted electron transfer to Q, Complex 11/SDH
produces H2O: (with a 70 % capacity) directly due to the
ability of existing three FeS clusters to provide two-
electron transfer to oxygen [29]. The 3Fe-4S cluster may
also theoretically provide superoxide [30].

Evidence was also reported for superoxide
formation within the dehydrogenase (DH) complexes in
isolated mitochondria when excessive particular
substrates for given DHs were used. Hence with
excessive 2-oxoglutarate (20G, 2-ketoglutarate) for
OGDH, pyruvate for pyruvate dehydrogenase (PDH) and
substrates of branched-chain 2-ketoacid (2-oxoacid)
dehydrogenase (BCKDH) superoxide/H,O, formation in
skeletal muscle mitochondria was eightfold, fourfold, and
twofold higher, respectively, than that one ascribed to the
site I [31]. Phenomenological sites were termed as site
Or, Pr, and Bg, respectively, but mechanisms and
occurrence in vivo must be further investigated.

Also, isolated mitochondria respiring with
glycerol-3-phosphate partly produced superoxide at site
Gq of the glycerol-3-phosphate dehydrogenase [4,26,32-
34]. Analogously, dihydroorotate dehydrogenase was
reported to form superoxide at side Dq [1,4,33,35].
Moreover, ongoing fatty acid (FA) p-oxidation also
produces superoxide. Its portion may originate from the
sitt Er of the electron-transferring flavoprotein —
ubiquinone oxido reductase (ETFQOR) [27] (Fig. 1).

Superoxide dismutation into H,O,

Manganese superoxide dismutase (MnSOD or
SOD?2) is localized in the mitochondrial matrix, whereas
CuzZnSOD (SOD1) localizes to the mitochondrial
intermembrane space, besides residing in the cell cytosol.
MnSOD dismutates the majority of superoxide released
to the matrix into H»O,. It is not known whether
CuznSOD is exclusively located between the outer
mitochondrial membrane (OMM) and the inner boundary
membrane (IBM, the unfolded part of IMM) in the so-
called intermembrane space peripheral (IMSp), or
whether in also resides in the intracristal space (ICS). In
the latter case, it could more effectively convert
superoxide therein [36], namely the part released from the
site 11qo.

MnSOD activity was found to be regulated.
Rather fast posttranslational modifications (PTMs) were
reported for NAD*-dependent sirtuin-3- (SIRT3-)
mediated deacetylation of MnSOD, activating the enzyme
[37-40]. These results and derived conclusions need to be
validated since not always a large population of MnSOD
molecules in the matrix is acetylated/deacetylated. Only
a fraction is affected, therefore, one should expect that
this particular MnSOD molecule fraction is activated and,
for example, only the resulting fraction of H.O> may thus
participate in intramitochondrial redox signaling or
aweak redox signal directed to the cytosol. MnSOD
regulations rather proceeded within an hour-time frame
and could be regarded as chronic regulations [41-45].
Thus a subtle change in H,O; release, accumulated during
sufficient time, can be effective.

Ultrastructure of mitochondrion vs. H,O; diffusion to the
cell cytosol

We have published several reviews on how
mitochondrial morphology and ultrastructure affect the
diffusion of H.O. into the cell cytosol and/or other
organelles and up to the plasma membrane or even
diffusion into the extracellular space [5-9,46-48]. Hence,
let’s briefly summarize 3D architecture of mitochondria
(Fig. 2). Actually the plural is adequate for isolated
fragments of the original mitochondrial network, the
mitochondrion [6-8,49-51]. Note that such a network also
exists in skeletal muscle and the heart [52,53]. Small
fragments are constantly separated from the main
mitochondrial network by fission machinery (Fig. 2E),
while at the same time, fragments join the main network
by fusion (Fig. 2D), which is aided by the pro-fusion
proteins [54,55]. This process is important, since
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Fig. 2. Cristae in mitochondrial network of pancreatic islet B-cells. (A) An exemplar 3D image of crista lamellae within a 4-um segment
of the mitochondrial tubule, obtained by the focused ion beam/scanning electron microscopy (FIB/SEM); (B) detail of the single crista
lamella from A). (C) Comparison with the 3D image of a single crista with resolved ATP-synthase dimers at the lamella edge, adapted
from Ref. [67]. Also, structures of respiratory chain supercomplexes are visible on a lamella flank, which represents the crista
membrane lipid bilayer leaflet oriented toward the matrix. The distances are marked for a minimum path of proton diffusion (mild blue
arrows), providing a substantial coupling between the respiratory chain proton pumping and the ATP-synthase. The purple arrow
indicates a shuttling of cytochrome c at the supercomplex surface. The distances are also marked for a short ubiquinol QH2 (or
ubiquionone Q) diffusion between Complex | (Cl) and Complex Il (ClII) around supercomplexes (red arrow) and a much longer
diffusion path from Complex Il (red arrow) to ClII or from oxidoreductases and dehydrogenases to CllII (dashed red arrows). Inside the
broken portion of crista lamella at the inner (intracristal space) surface, a QH-diffusion path is indicated by orange arrows. This path
must be followed by the flip across the membrane to ClII. (D, E) Mitochondrial reticular network in pancreatic islet B-cells of Wistar (D)
and diabetic Goto-Kakizaki rats (E) in 3D images adopted from Ref. [49]. Note the nearly continuous mitochondrial network in intact 8-
cells (D), but the fragmented network in diabetic B-cells (E).

mitochondrial-specific autophagy, termed mitophagy, The mitochondrial tubular network possesses
eliminates those fragments that do not possess a sufficient ~ a complex ultrastructural organization of mt cristae,
IMM membrane potential (or Ap) as a result of local i.e., rich invaginations of IMM from the IBM, which

predominance of the mutated mt-DNA-encoded RC and  shrink or inflate according to the metabolic performance
ATP synthase subunits. or other reasons [7] and might exhibit dynamics in a short
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time scale [56]. To understand mitochondrial
compartments, one must recognize their three-

dimensional (3D) architecture. The cristae form rather
lamellae with bottleneck connections to the IBM, where
ICS meets IMSp (Fig. 2A, B). The mitochondrial cristae
organization system (MICOS) complex is attached to the
OMM SAM complex and thus forms crista junctions
(CJs) [57-59] around the crista outlets [7,60]. Note that at
the edges of single crista lamella, the ATP-synthase
dimers form rows or arrays [61-67] (Fig.2C), the
dynamic of which may also affect the cristae morphology
[68-70]. Small MICOS subunits may intercalate between
ATP-synthase dimers, such as Micl0, bound to the
ATP-synthase membrane subunit e [71]; or Mic27 [72].

RC supercomplexes (typically CI Clll; CIV;
[73-75] then reside at flanks of crista lamellae [61,67]
(Fig. 2C). Just below CJs (crista outlets) other cristae-
shaping proteins reside within cristae membranes (CM)
facing ICS (crista lumen), such as various oligomers of
OPA1l [76,77] or even filaments of OPAL ortholog
MGM1 [78]; and scaffolding proteins prohibitins,
forming hetero-oligomeric 20-27 nm rings [79]. Positive
curvature of 90° bends of the crista outlets, when
IBM meets CM, is provided by oligomers of MICOS
subunit MIC10 [80,81], while the negative curvature of
crista lamellae is established by FAM92Al protein,
which  binds cardiolipin and phosphatidylinositol
4,5-bisphosphate [82].

The rich lamellar cristae organization affects
H20; diffusion into the cytosol [6]. If even H20- released
into ICS (crista lumen) diffuses across the crista
membrane, it will still reach the mt matrix in ~99 % of
CM surface. Only at the proximity of CJs the ICS-located
H>0, might escape into the IMSp, across CM or IBM or
through the crista outlet; and subsequently to the cytosol
via the OMM. So, taking into account the mitochondrion
ultrastructure, we see the limitations of H,O, diffusion
from ICS to the cytosol. On the contrary, such H,O;
diffusion is allowed upon initiation of mt-related
apoptosis, when CJs (or crista outlets) are widened or
broken, and this is accelerated by the cytochromec
escape [76,77,83] and concomitant increased superoxide
formation.

Nevertheless, cristae lamellae inflate
physiologically under hypoxic conditions due to partial
losses of MIC60/mitofilin subunit of MICOS complex
[60] or in pancreatic p-cells at low glucose (insulin non-
stimulating) [46]. On the contrary, with a sudden excess
of respiration substrate, the inflated cristae shrink. Such

anarrowing of cristae was observed after dimethyl-2-
oxoglutarate addition to hypoxia-preadapted HEPG2 cells
[63] or upon glucose-stimulated insulin secretion (GSIS)
in pancreatic B-cells, i.e., when high glucose was set [46].
buffers

Mitochondrial redox and/or

antioxidant systems

Mitochondrial glutathione
peroxidase system

Redox buffers and antioxidant enzymes detoxify
the produced ROS and may exert specific roles in redox
signaling. Similarly to the cell cytosol, in addition to
small antioxidant molecules such as vitaminE
(o-tocopherol), ascorbate, and uric acid, enzyme systems
of glutathione peroxidase (GPX) and peroxiredoxin
represent the most critical intracellular antioxidants and
aprimary defense system. Catalase is absent in
mitochondria except in the heart [5,9].

Glutathione is present in a reduced (GSH) or
oxidized (GSSG, glutathione disulfide) form. Glutathione
reductase (GRX; EC 1.8.1.7) catalyzes the NADPH-
dependent reduction of GSSG to GSH [84], and hence
oxidized glutathione is regenerated.  Glutathione
provides/GRX a major mt matrix redox buffer in numerous
cells [85]. On the contrary, pancreatic [3-cells exhibit a less
abundant glutathione/GRX system [6,18,86-88].

GSH is also a cofactor of enzymes of the
glutathione peroxidase (GPX) family. These enzymes
reduce H,O, to water, and some isoforms (e.g. GPX4)
also reduce lipid hydroperoxides to their corresponding
alcohols. The GPX family contains five enzymes with
seleno-cysteine active sites (GPX1 to 4, and GPX6) and
three other enzymes, acting as redox sensors (GPX5,
GPX7, GPX8) [89,90]. The latter possess cysteine
residues in their active sites and modest peroxidase
activity [91]. The cytosolic and mt-residing GPX1 and
plasma membrane and cytosolic GPX4 are abundant in
all tissues and cell types. GPX1, GPX2, and GPX3 are
homo-tetrameric proteins. GPX4 has a monomeric
structure.

reductase & glutathione

Mitochondrial vs. cytosolic peroxiredoxin system
Peroxiredoxins (PRDX) are hydroperoxide
reductases, either of the 2-Cys type (cytosolic
peroxiredoxins PRDX1 and PRDX2 (Fig.3); PRDX3
residing in the mt matrix; and PRDX4 of the endoplasmic
reticulum) or 1-Cys type (PRDX6) [92-98]. The second
mitochondrial PRDX, PRDX5, also contains two
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Fig. 3. Possible modes of peroxiredoxin participation in redox signaling. Possible ways of redox signal spreading from vicinity of the
outer mitochondrial membrane (OMM) to the plasma membrane — from left to right: /) direct superoxide diffusion (range only in
OMM proximity); /) direct H202 diffusion; /i) peroxiredoxin-mediated redox signal transfer, including diffusion of peroxiredoxin decamers
allowed by the flood-gate model mechanism; /) hypothetical redox relay via an array of peroxiredoxins. Note, that according to the
flood-gate model, H202 oxidizes PRDX to higher states than a sulfenic state, allowing distant decamers in a S-S state to migrate to the
target and exchange the two target sulfhydryls for PRDX S-S bridge. In (/V) the target is the PRDX itself. Left inset: color coding of
PRDX monomers: green — PRDX S-S bridge; the very light green — basic reduced state (sulfhydryl and thiolate anionic form); the /ight
green — the first-degree of oxidation, i.e., sulfenic state; yellow — oxidation into the second degree, i.e., sulfinic state; orange —
oxidation into the third degree, irreversible, sulfonic state. Note, thioredoxin (TRX) converts either disassembled S-S state dodecamers
to the basic sate; and, together with sulfiredoxin (SRX), TRX regenerates PRDX in sulfinic state into the sulfenyl state.

cysteines in the monomer [99] but allows an atypical
mechanism, while forming the intra-subunit S-S bridge
within the single monomeric subunit [92-96,98].
However, PRDX5 is located also in the cytosol and
peroxisomes and prefers lipid peroxides and peroxynitrite
over H.0,. Artificial PRDX5 expression in IMSp
attenuated hypoxic transcriptome reprogramming [100]
and cancerogenesis [101].

PRDX6 is a 1-cys-PRDX, which can also be
recruited to mitochondria (probably to OMM) [102-104].
PRDX6 forms only homodimers, cannot form disulfide
bonds, and is not reduced by sulfinyl reductase (SRX).
PRDX6 reduces oxidized phospholipids. The sulfenic
moiety of PRDX6 is subsequently reduced with
GSH/GRX system but not with thioredoxins. PRDX6
also exerts Ca®*-independent phospholipase A2 activity.

Cytosolic  peroxiredoxins are  decameric,
containing five homodimers. Mitochondrial PRDX3 is
dodecameric, consisting of six homodimers. Thus,
PRDX1, PRDX2, and PRDX3 form a toroid
(doughnut-like) structure of five (six) homodimers, which
can split from the toroid in an unstable disulfide
conformation (see below). Such mechanism allows
disulfide regeneration.

Peroxiredoxin catalytic cycle

PRDX monomers of the 2-Cys type contain the
peroxidatic cysteine, Cp and the resolving cysteine, Cr.
After reaction with H2O2, the peroxidatic cysteine Cp of
the first monomer within a homodimer forms an inter-
subunit disulfide bond with the resolving cysteine Cr of
the second homodimer subunit [92-98]. As an
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intermediate, sulfenic acid (R-SOH) is first formed by
two-electron reversible oxidation of the Cp. Subsequently,
the disulfide (S-S bridge) between Cp and Cg is formed.
Interestingly, the PRDX ring is destabilized when such
disulfide bonds are formed [92,94], thus allowing
homodimers (monomers) to interact with their
regenerating enzyme systems, completing the cycle. Such
regeneration is catalyzed either by a couple of
thioredoxin  (TRX) plus NADPH-dependent TRX
reductase (TRXR) [105] or by glutathione
(GSH)/glutaredoxin (GRX) [92-98]. The disulfide bonds
of homodimers are thus converted back to two cysteines.

PRDXs react with H,O, faster than other
peroxidases (catalases and GPX); hence they outcompete
them and serve as the primary regulators of cytosolic
H20, and in specific tissues also of the mt matrix H,O..
The latter is valid for pancreatic B-cells. Therefore
PRDXs have been considered major players in
cancerogenesis [93,97] and are promising targets for
therapies of cardiovascular [106] or neurodegenerative
diseases [107] and for defense against oxidative stress in
pancreatic [3-cells [108].

Peroxiredoxins enable redox signaling

There are two other uniqgue PRDX properties,
making them essential players in the redox homeostasis
regulations and even redox signaling. The first such
property is the  formation of stacks of
decamers/dodecamers, thus establishing high molecular
weight complexes (HMW), which can even form
filaments with chaperone function [109]. Since this
formation happens only with PRDXs oxidized into higher
oxidation state (sulfinyl and sulfonyl), the HMW
formation effectively withdraws PRDX molecules from
their entire population. This instantly leads to a higher
local H20; concentration in the HMW loci.

The second property lies in the specific
interaction of PRDXs with other proteins containing the
two proximal cysteines, which enables their direct redox
regulation (targeting the redox signal). The PRDX
disulfides (S-S bridges) oxidize those proximal cysteines
of the target protein into the S-S bridge between them,
while PRDX homodimer become reduced back into two
cysteines, Cp and Cg.

Indeed, when sulfenyls of PRDX1,2 and PRDX3
are oxidized into higher oxidized states, i.e., sulfinyls or
sulfonyls, HMW complexes are formed [109]. The
sulfinyls within HMW complexes or filaments can still be
reduced by ATP-dependent sulfinyl reductase (SRX)

enzymes [109,110]. However, hyperoxidation into
sulfonyls is irreversible and can be regarded as a sign of
oxidative stress. Mitochondrial PRDX3 underlies
hyperoxidation about twice as slower when compared to
PRDX2 [109].

In summary, the redox signal can be initiated by
peroxiredoxins, by two mechanisms, which can even be
considered as the two different interpretations of the same
phenomenon. So we can point out that the formation of
HMW complexes withdraws PRDX molecule from the
catalytic cycle reaction, otherwise consuming HzOo.
Despite that, the prerequisite for such a withdrawal is
oxidation into sulfinyls or sulfonyls. Due to their
formation, still consuming H.0,, the local PRDX
molecules can no longer react with the local H,O, after
a certain time period. Hence, if such a locus still contains
the H,0, source, the local H,O, concentration is elevated.

An alternative interpretation considers the so-
called floodgate model (Fig. 3). This model has been
predicted to describe the shift of the oxidation from the
original to distant locations [6,9,111,112]. According to
the floodgate model, the HMWs formed in the original
locations upon a sustained H,O; flux allow oxidation in
the distant loci, proximal to target proteins, enabling
execution of the redox signal. This can happen simply by
the direct interaction of H,O, with target proteins or via
oxidation of distant PRDX molecules, which
subsequently oxidize proximal cysteines in the target
protein. The latter mechanism can be regarded literally as
a “redox kiss”. Cytosolic peroxiredoxins convey their
oxidation by H>O; to the terminal target proteins (Fig. 3),
typically  phosphatases or transcription  factors
[92,94,113,114-118]. It still remains to be investigated
whether mitochondrial PRDX3 exhibits its own specific
mitochondrial targets.

Mitochondrial redox signaling enabled by peroxiredoxins

However, sulfinyls in PRDX decamers/
dodecamers or HMW complexes can still be slowly
reduced back to cysteines after their reduction by the
SRX system. Mitochondrial SRXs were reported to act
even in the transfer of circadian rhythms to the mt matrix.
This is enabled by periodically enhanced SRX expression
intermittent with enhanced SRX degradation by LON-
protease under control of the clock genes in the adrenal
gland, brown adipose tissue and heart [109,119,120]. It
should be further investigated whether such elegant
circadian regulation of the mitochondrial matrix redox
homeostasis exists in pancreatic p-cells.
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Mild uncoupling attenuates mitochondrial ROS generation
at intact mtDNA

Oxidative phosphorylation (OXPHOS)
represents an ATP synthesis by the mt ATP-synthase
(Complex V), which is driven by the protonmotive force,
Ap. Ap is formed by the respiratory chain H* pumping at
Complex I, 111, and 1V [7,16-18,119]. The IMM domain
(membrane domain) of the ATP-synthase (FoATPase)
consumes an adequate Ap portion in a state, historically
termed state-3, for isolated mitochondria with an
ADP excess. In vivo, cellular respiration is governed by
the metabolic state and/or availability of substrates.
Hence, a finely tuned spectrum of various states-3 can be
established, depending on the substrate load
(e.g., increasing glucose). A state-4, is then given by zero
ATP synthesis, when zero H* backflux via the FoATPase
exists, while respiration and H* pumping are given by so-
called H* leak, mediated by mitochondrial -carrier
proteins, as their side-function and by the native H*
permeability of IMM. Since Ap exists predominantly in
the form of ¥, (IMM electrical potential), ¥m is
maximum at state-4 with the maximum substrate load.

Besides other proteins, such as the ADP/ATP
carrier, Ap dissipation by a protonophoric short-circuit,
termed uncoupling, can be physiologically provided by
mitochondrial uncoupling proteins (UCPs) [119], frequently
in synergy with mitochondrial phospholipases cleaving
nascent fatty acids [120-123]. A mild uncoupling exists
when carrier-mediated protonophore activity plus the native
IMM  H* leak do not overwhelm the FoATPase
protonophoric activity, and hence, ATP synthesis still takes
place. This contrasts to a complete uncoupling when
Ap approaches zero, such as established by agents termed
uncouplers. The mild uncoupling is able to decrease
mitochondrial O* formation at Complex | [62,63] and
Complex I11 [124]. In cell types where such mitochondrial
ROS source predominates, even redox homeostasis in the
cytosol may be more pro-oxidant. However, oxidative stress
originating from irreversible changes, such as stress due to
mutated subunits encoded by mitochondrial DNA (mtDNA),
cannot be counteracted by mild uncoupling [62].

Previously, an antioxidant role for UCP2 has
been demonstrated in vivo [123,125,126]. For example,
Duval et al. [127] have shown that UCP2-mediated
uncoupling in endothelial cells is able to decrease
extracellular ROS in co-incubated low-density-
lipoproteins (LDL). Mice with deleted LDL receptors
exhibited extensive diet-induced atherosclerotic plaques
when they received bone marrow transplanted from

UCP2 (-/-) mice, and the appearance of these plagues was
prevented when they received bone marrow transplants
from UCP2 (+/+) mice [128]. We have also demonstrated
that UCP2 function suppresses mitochondrial superoxide
production in vitro [121,123,129,130].

Physiological redox signaling vs. oxidative
stress

Oxidative stress

In principle, there exists no net oxidative stress
without the other consequences, such as proteinaceous
stress due to the disrupted turnover of intact proteins,
concomitantly impaired autophagy and/or mitochondria-
specific authophagy, i.e., mitophagy, or without the
endoplasmic reticulum stress. Oxidative stress cannot be
separated from the possible initiation of apoptosis,
ferroptosis, or other forms of the cell death, as well as
from impaired mitochondrial biogenesis. Moreover, all
these phenomena are projected to an abnormal mt
network morphology, frequently also to an abnormal
cristae morphology (e.g., apoptosis). Redox-sensitive
transcriptomic reprogramming sets altered metabolism
and changes in epigenetics, which may further accelerate
pathogenesis. In addition, the internal causes should be
distinguished from the external ones, such as macrophage
attacks and other immune system stimuli. That is why
oxidative-stress-related pathologies must always be
analyzed in a complex way, and frequently it is difficult
to establish the primary cause. The reason is that under
oxidative stress, cellular constituents are oxidized,
i.e., covalently modified, deteriorating function and/or
quality with serious consequences. To avoid the
encyclopedic description, next, we will only briefly
describe the oxidative stress of mitochondrial origin and
how we can distinguish it from the redox signaling.

Moreover, recently, mitochondria are regarded
as signaling organelles when signals of different origins
are produced, not only the redox signals [55,130,131].
The evoked signals affects not only cells and tissues but
also the systemic levels of the organism. The latter exists
with the metabokine/mitokine signaling [133-135],
mt-nuclear crosstalk [136-139], and mt-initiated
epigenome remodeling [140-143].

Oxidative stress of mitochondrial origin

Theoretically, when an overly excessive
superoxide/H,O, formation exceeds the mitochondrial
redox buffering, i.e., antioxidant capacity in the
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mt matrix, local oxidative stress in the matrix takes place.
When concomitant H,O; diffusion into the cytosol and/or
other cell constituents exceeds the cellular antioxidant
buffers and defense mechanisms, cellular oxidative stress
is developed. We should admit that the frequent causes of
such disequilibria are consequences of certain mutations
in mtDNA and changes resulting from the impaired mt
network morphology and/or cristae architecture. The
extracellular origins or cytosolic oxidative stress acting
on mitochondrial constituents also belong to frequently
occurring pathologies.

The typical example of oxidative stress of mt
origin is RET due to a previous accumulation of
succinate, such as during heart reperfusion after ischemia
[12]. Artificially induced mt oxidative stress resulted in
chromatin release into the cytosol when mediated by
MAPK/INK signaling [144]. Similar manipulations
induced telomere damage [145] or altered nuclear DNA
methylation [146]. Senescent signaling due to increased
mt ROS production activating NFkB pathway belongs to
other examples [147-149].

Typically, proteinaceous stress and impairments
of mitophagy and/or induction of all distinct types of cell
death are developed when these thresholds are overcome.
These mechanisms are out the scope of this review. We
exemplified these phenomena in cases of normal
physiology of pancreatic B-cells and the effects of
lipotoxicity, glucotoxicity and glucolipotoxicity in the
etiology of type 2 diabetes [150].

Mitochondrial redox signaling

Mitochondrial redox signaling of any time range
was previously reviewed in References [151,152]. Here,
we deal specifically with the acute redox signals. The
triggering of redox-sensitive gene-regulatory processes
(e.g. [153,154]) is beyond the scope of this review. We
will discuss in detail redox signals in pancreatic p-cells in
the next chapter. Now, we will list a few examples of
rather acute redox signals of mitochondrial origin.

The uncoupling protein UCP1 was reported to be
activated in order to switch on heat production and,
therefore, nonshivering thermogenesis in brown adipose
tissue (BAT) by oxidation of its Cys253 due to the
elevated mt superoxide/H.O, [155]. We speculated that
H2O-activated mt phospholipase iPLA2y can also
participate in this process by providing free fatty acids
required for the UCP1-mediated uncoupling (thermogenic
and not mild one) [156]. Mitochondrial superoxide/H,0,
may influence the local synaptic activity of neurons

[157], and increased ROS upon mt fission provided
a repair signal [158].

Mitochondrial redox signaling at hypoxia

One would not expect increasing ROS with
a lowering oxygen. This paradox has been investigated,
and mitochondrial contribution to oxygen sensing and
hypoxic transcriptome reprogramming is still debated
[159,160]. The central cytosolic mechanism of oxygen
sensing is based on prolyl hydroxylases (PHD1 to 3, or
Egl nine homolog 1 proteins, GLNSs)[159,161-163],
which catalyze hydroxylation of hypoxia-induced factor
HIF-1a, -20 or -3a in a ferrous iron- (Fe'-) plus 20G-
plus Oz-dependent manner. The resulting hydroxylation
promotes its constant proteasome degradation after
ubiquitination by pVHL ubiquitin ligase (Von
Hippel-Lindau tumor suppressor protein) [164-166].
Therefore, by decreasing O, by lowering 20G and by
oxidation of Fe' to Fe'"" due to increasing cytosolic ROS,
PHDs are inhibited, and HIF-la stabilization occurs.
Also, another O,- and 20G-dependent dioxygenase,
termed factor inhibiting HIF (FIH), hydroxylates HIFa,
but at asparagines. This blocks the binding of the
coactivators CBP (CREB-binding protein) and p300, and
thereby disables HIF-1-mediated transcription. Upon
hypoxia, both PHD and FIH are inhibited; hence, HIF-a
is stabilized and binds HIF-p plus coactivators VBP and
p300, which allows activation of transcription of >400
genes [167-172]. In this way, the HIF system is activated,
resulting in transcriptome reprogramming important in
cancerogenesis and numerous physiological and
pathological situations.

Since both PHD and FIH are affected by ROS,
both can be targets of redox signaling. Various ROS may
oxidize Fe' of PHD to Fe'' [173]. Still, also reactive
cysteines were recognized in PHD2, which, after
oxidation, inactivate the enzyme (probably inactive PHD
homodimers are formed due to S-S bridges) and initiate
HIF-response upon oxidation [174-176]. Cytosolic
peroxiredoxins may also be involved. In any case, PHDs
sense oxygen independently of mitochondria, however,
mitochondrial metabolism and mt redox signaling may
also independently participate. Since PHDs are also
inhibited by the lack of 20G-related substrates, such as
fumarate, succinate, malate isocitrate, and lactate
[177,178], suppression of mitochondrial metabolism may
stimulate HIF system.

Moreover, participation of mt redox signaling
linked to HIF-1a stabilization was suggested by the A¥m
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restoration, which returned a higher mt superoxide
formation in cells with deleted mtDNA polymerase when
respiration and hence Krebs cycle turnover was largely
abolished [179]. After an instant hypoxia switch-on,
a hypoxic burst of mt matrix superoxide release was
observed [180] but delayed by several hours [181,182].
Other reports described an instant hypoxic ROS burst in
endothelial, HeLa, and HK2 cells [183]. Originally, the
Complex 11 site Illg, was considered as the superoxide
source for the mt hypoxic ROS burst [180,184-188].
A similar hypoxic mt ROS burst was also detected for
normoxic HIF activation [189]. The emanated mt H20; to
the cytosol was suggested to oxidize Fe' in PHDs. When
certain Complex III subunits, such as Rieske iron-sulfur
protein [190] or others were ablated, HIF-la was
stabilized [180], unlike in anoxia [187]. Moreover,
suppressors of site Illg, electron leak (S3QELS)
prevented the HIF response [34]. The key evidence for mt
redox signal participation in HIF-system signaling was
provided by PRDX5 overexpression in the mt
intermembrane  space, which abolished HIF-1a
stabilization [100].

HIF strikes back on mitochondria

The chicken-and-egg problem of the steady-state
established upon HIF-signaling can be solved by precisely
time-resolved events. This is because the execution of HIF-
mediated transcriptome reprogramming affects redox
homeostasis, which is then different than that one allowing
HIF-system initiation. Indeed, HIF activates transcription for
the expression of proteins, decreasing ROS formation or
scavenging ROS [171].

Mitochondrial cristae inflate with dormant ATP synthesis in
hypoxic cells and shrink with its restoration

We have also encountered that mitochondrial
cristae inflate after adaptation of HepG2 cells to hypoxia
[60] (Fig.4). It is recognized as cristae widening in
transmission electron microscopic (TEM) images (Fig. 4A)
and as inflation (widening in 2D projections) of 3D super-
resolution images of mitochondrial cristae stained with Eos-
Lactamase-p (Fig. 4B,D). Due to the HIF transcriptome
reprogramming, hypoxic HepG2 cells exhibited a low-
intensity (dormant) ATP synthesis and respiration [60,182].
Partial degradation of mitofilin/MIC60 protein led to the
decrease of crista junctions and the widening of crista outlets
from the inflated crista to the intermembrane space [60,63].

In contrast, after addition of respiratory substrate to
the hypoxia-adapted HepG2 cells, a sudden narrowing of

cristae in 2D projections (shrinkage of crista lamellae in
aspace) resulted from the restored respiration and ATP-
synthesis [63,188] (Fig.4B). We have observed similar
changes in rat pancreatic B-cells, INS-1E, after the addition
of a substrate, i.e. glucose (which stimulates secretion of
insulin) [46]. This observation led us to a hypothesis
assuming that strengthening and ordering the ATP-synthase
dimers at the crista lamellar edges leads to sharpening of
these edges and that the two lamellae flanks mechanistically
come close together [46,63]. When metabolic conditions and
signaling allow disordering of the ATP-synthase dimers at
the crista lamellar edges, this allows a more flat edge, which
mechanistically puts apart the two lamellae flanks of the
crista, resulting in cristae inflation [7,46,63].

However, considering that individual mechanistic
tension within the single crista is responsible for the lamella
inflation and shrinkage seems insufficient. Hence, recently,
we came up with a novel hypothesis [7], which may be valid
simultaneously, that the osmotic forces are the real engines
of the crista lamellae inflation and shrinkage (Fig. 4E). The
hypothesis expects that at low ATP-synthesis and low Ap,
ion fluxes allow the salt to be extruded from the matrix
(cations such as K* and Na* and anions such as phosphate
and Krebs cycle intermediates). After a switch-on of the
ATP synthesis and before the built-up of the high
ATP concentration, i.e., at the beginning of cristae
morphology changes, the open mitochondrial ATP-sensitive
K* channel (mtKate) allows an influx of K* from the
intracristal space to the matrix. Since simultaneous
phosphate uptake to the matrix diminishes a salt content in
the ICS and enriches it in the matrix, water uptake to the
matrix occurs concomitantly to the salt influx. As a result,
this osmotic force shrinks the ICS. However, to prevent an
infinite cristae shrinkage, abuilt-up of ATP closes the
mtKarpe, stopping salt leakage from the ICS and water
transport to the matrix. Also, mt K*H* and Na'/H*
antiporters, being driven by Ap, prevent the infinite
shrinkage of cristae.

We have already obtained the first evidence
supporting the relevance of the osmotic hypothesis of cristae
morphology changes. In hypoxia-adapted HepG2 cells
where the addition of dimethyl-2-oxoglutarate initiated
respiration and cristae shrinkage, glibenclamide, an inhibitor
of the mtKare, blocked such shrinkage [60] (Fig. 4C).
Further investigations are required to reveal whether the
mechanistic or osmotic hypothesis is relevant, or whether
both are relevant; as well as to describe possible regulations
which transfer metabolic changes to the activation of
relevant proteins which initiate cristae morphology changes.
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Fig. 4. Hypoxic cristae inflation, its reversal at restored respiration and ATP synthesis and possible osmotic mechanism involving
mitochondrial ATP-sensitive K* channel. (A) lllustration of mitochondrial cristae widening after adaptation of HepG2 cells to hypoxia in
transmission electron microscopic (TEM) sections (adapted from Ref. [60]). (B-D) Mitochondrial cristae widening indicated by the
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form (mtKare). (E) Osmotic hypothesis for participation of mtKare in cristae shrinkage. For an explanation, see text (Chapter 3.6).
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Pancreatic  p-cells as an
mitochondrial redox system

exemplar

Oxidative phosphorylation and NADPH-oxidase-4-
mediated redox signaling as essential determinant of
glucose-stimulated insulin secretion

Previously, an effect of antioxidants upon
exhausted glutathione in pancreatic B-cells has been
reported as an unspecified link between glucose-
stimulated insulin secretion (GSIS) and external H>O;
[191]. Recently, it has been established that the essential
conditions for GSIS involve the elevated OXPHOS and
consequent ATP/ADP elevation in the peri-plasma
membrane space [87,192,193] plus essential redox
signaling, mediated by the NADPH-oxidase 4 (NOX4)
[18,88,194] (Fig.5). Together with ATP, the cytosolic
redox (H202) signal closes the plasma membrane
ATP-sensitive K* channels (Karp), together with the
elevated ATP [18,88,194]. For a closing of the entire
Kate population and setting a threshold membrane
potential to -50 mV, opening of other non-specific
calcium channels (NSCCs, such as TRMP2 channels,
[195]) or CI channels is required [87]. At -50 mV an
intermittent opening of voltage-dependent Ca?* channels
(Cav) is initiated, being instantly counteracted by voltage-
dependent K* channels (Ky). This leads to a pulsatile
Ca?* entry into the cytosol and in-phase exocytosis of
insulin granule vesicles (IGV) [18,87].

Upon GSIS, an NADPH supply to the
constitutively expressed NOX4 originates from the two
enzymes of the pentose phosphate pathway (PPP),
producing NADPH, i.e., glucose-6-phosphate dehydro-
genase (G6PDH) 6-phosphogluconate dehydrogenase
(6PGDH) [196]; plus from so-called (pyruvate redox)
shuttles [18,88,193,197]. Interestingly, these shuttles do
not allow synthesis of one NADH molecule in the mt
matrix, but instead, NADPH is formed in the cytosol after
a few transport steps and enzyme reactions [197]. As
aresult, production of superoxide released to the mt
matrix is slowed down, most probably due to the
decreased NADH/NAD* ratio affecting the Complex |
superoxide formation site I¢ [7,197]. We have linked two
redox shuttles with the decreasing superoxide formation
upon GSIS, the pyruvate-malate shuttle and the pyruvate-
isocitrate shuttle [197]. Other shuttles were also reported
[193,198]. The pyruvate-malate shuttle is allowed by the
pyruvate carboxylase (PC). Such a bypass of pyruvate
dehydrogenase makes possible a reverse reaction of
malate dehydrogenase (MDH2), consuming NADH.

A concomitant malate export from the mt matrix enables
the cytosolic malic enzyme (MEL) to convert malate into
pyruvate while yielding NADPH. The pyruvate-isocitrate
shuttle stems from a truncated Krebs cycle after citrate
synthase so that isocitrate dehydrogenase 3 (IDH3) does
not form NADH. Instead, matrix NADPH is converted by
IDH2 together with 2-oxoglutarate (20G) into isocitrate,
allowing its export from the mt matrix and subsequent
reaction of cytosolic IDH1, transforming cytosolic
isocitrate back to 20G and synthesizing NADPH.
13C-glutamine-assisted isotope tracing enabled to verify
the existence of this redox shuttle [197,199].

Relative easy spread of redox changes in
pancreatic B-cells is possible due to a rather weak
antioxidant defense system and low capacity of redox
buffers [200,201]. Such a delicate redox homeostasis is
then disturbed by a rather weak insult. Expression and
activity of antioxidant enzymes is low in rodent -cells as
compared to other organs [202].

Oxidative phosphorylation and mitochondrial redox
signaling as essential determinant of branched-chain-
ketoacid- and fatty-acid-stimulated insulin secretion

Insulin is also stimulated by other metabolites,
collectively termed secretagogues [7,88] (Fig.5). Thus,
aleucine metabolite, keto-isocaproate (KIC) was
demonstrated to stimulate insulin secretion, while its
oxidation (termed commonly as B-like oxidation)
provides both elevated ATP and redox (H.0.) signal
[194]. The mitochondrial origin of this redox signal was
suggested by the blockage of KIC-stimulated insulin
secretion with mt-matrix-targeted antioxidant SkQ1
[194]. This excludes the previous hypothesis that leucine
itself stimulate IGV exocytosis.

Also, free fatty acids (FAs) have been regarded
to augment GSIS [203], meaning that insulin secretion in
the presence of FAs required certain higher glucose
concentrations [204-206]. Nevertheless, we and others
have demonstrated that the net FA-stimulated insulin
secretion (FASIS) exists [18,88,123,207-210], i.e., insulin
secretion stimulated by FAs at low glucose concentration,
which otherwise does not stimulate insulin release alone.
Similarly to KIC, FA B-oxidation [123] provides both
elevated ATP and increased mt superoxide formation
transformed into the redox (H20O2) signal, which is
subsequently spread up to the plasma membrane [9].
Previously, mitochondrial ROS resulting from the
addition of monooleoyl-glycerol [211] have been
suggested to modulate insulin secretion, and mt-derived
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Fig. 5. Redox signaling upon insulin secretion stimulated with glucose or ketoisocaproate (KIC) or fatty acid. Redox signaling is
depicted for insulin secretion stimulated with three distinct secretagogues. In all cases, the plasma membrane ATP-sensitive K* channel
(Karp) is synergically closed only when both ATP and H20: (redox signaling) are elevated [194]. This predetermines plasma membrane
depolarization to -50 mV and concomitant opening of the voltage-dependent Ca?* channels (typically Ca.), allowing the Ca?* entry and
exocytosis of insulin granule vesicles [88]. For the glucose-stimulated insulin secretion (GSIS) the constitutively expressed
NADPH-oxidase isoform 4 (NOX4) substantiates cytosolic redox signaling, while NADPH is supplied by pentose phosphate (PP) shuttle
[194] and by redox pyruvate transport shuttles (causing matrix NADH to be down and increased cytosolic NADPH, [197]). For
ketoisocaproate stimulation of insulin secretion, KIC oxidation (termed B-like oxidation) generates both ATP and H:02, which now
originates from the mt-matrix-formed superoxide/H.02 [194]. For fatty acid, stimulating insulin secretion even at low glucose [123],
fatty acid B-oxidation also provides both ATP and H:0: [88]. Similarly, as for KIC, H20. substantiates the redox signal from the
mitochondrial matrix directed to the plasma membrane. Simultaneously, H:O: also activates mitochondrial phospholipase iPLA2y
(“phospholipase™), which adds a surplus of mitochondrial fatty acids for both B-oxidation and the metabotropic GPR40 receptor on the
plasma membrane [123]. The downstream pathways of the GPR40 receptor further stimulate insulin secretion.

ROS were regarded as obligatory signals for insulin  open Katp, hence its degradation by PLC-hydrolysis
secretion [212]. facilitates the Kartp closure [213]. The reaction product

FASIS is more complex than the KIC-stimulated =~ DAG stimulates protein kinase-C (PKC) iso-enzymes,
insulin secretion (Fig.5), since also metabotropic  some of which phosphorylate TRPM4 and TRPM5 [214],
GPR40 receptors, residing presumably on the plasma  which opens these channels, enabling them to activate
membrane, sense FAs and initiate a complex downstream  Cay channels, similarly to the TRPM2 action upon GSIS.
signaling. When this proceeds via Gag/11 heterotrimeric Moderately elevated cytosolic [Ca?*] should be
G-proteins,  followed by the Ca?*-dependent  required for PLC activity, however, DAG could also
phospholipase-C-(PLC)-mediated hydrolysis of  originate from the so-called glycerol/FA cycle [203], if it
phosphatidylinositol-4,5-bisphosphate (PIP2) into diacyl-  exists at “fasting” glucose. Interestingly, novel PKCs
glycerol (DAG) and inositol-3-phosphate (IP3), anon-  (nPKCs) are activated by DAG alone, but not by Ca?* [215].
metabolizable GPR40 agonist can stimulate insulin  Hence, GPR40-signaling to final targets via nPKCs,
secretion even at low glucose and ATP (Jezek et al.,  promoting IGV-exocytosis, could exist even at low glucose.
unpublished). Indeed, PIP2 was known to stabilize the The other product IP3 acts in the Ca®*-induced
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Ca?*-release from endoplasmic reticulum, enabled by the
IP3-receptor (IP3R), functioning as a Ca®* channel. Note
also that in vivo, FASIS is not separated but acts in
parallel with the signaling by monoacyl-glycerols (MAG)
via the GPR119-Gas-PKA(EPAC?2) pathway. The PKA
and EPAC2 pathways also serve as a biased pathways for
certain GPR40 agonists. The protein kinase A (PKA)
phosphorylates glucose transporter GLUT2 to facilitate
glucose entry. PKA also phosphorylates Karp and Cay to
ease action potential triggering. The EPAC pathway acts
similarly by phosphorylating TRPM2, releasing PIP2
from Katp and affecting Rim2a interaction with SNARE
proteins, thus facilitating IGV exocytosis [18,87,88].

Yet another phenomenon is concomitant to
FASIS. Interestingly not the extracellular FAs, but FAs
cleaved from the mt phospholipids by the redox-activated
mt phospholipase A2, isoform y (iPLA2y) stimulate the
GPR40 receptors [123]. Silencing of iPLA2y led to
a profound decrease of FASIS [123] despite the redox
signaling up to the plasma membrane was not attenuated
(Jaburek et al., unpublished). There was a paradox
encountered which has to be resolved. Due to the
antioxidant synergy provided by a couple of iPLA2y and
uncoupling protein 2 (UCP2), the FA addition to
pancreatic  B-cells  first attenuates mitochondrial
superoxide formation released to the matrix. This
mechanism exists since the redox-activated iPLA2y
provides nascent free FAs for UCP2 to initiate a mild
uncoupling and thus reduce the mt superoxide formation
[123]. However, when H,O; is monitored in the cell
cytosol or extracellularly at the same time, it is elevated
(MJ, unpublished data). This paradox could be
speculatively explained by MnSOD activation or by the
involvement of the peroxiredoxin system [9]. Indeed
PRDX3 silencing in INS-1E cells partly inhibited FASIS
(MJ, unpublished data).

Future perspectives

It is an experimental challenge to track or
monitor acute redox signaling by observing changes in
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