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Summary 
Three decades ago, the first endocannabinoid, anandamide 
(AEA), was identified, and its analgesic effect was recognized in 
humans and preclinical models. However, clinical trial failures 
pointed out the complexity of the AEA-induced analgesia. The 
first synapses in the superficial laminae of the spinal cord dorsal 
horn represent an important modulatory site in nociceptive 
transmission and subsequent pain perception. The glutamatergic 
synaptic transmission at these synapses is strongly modulated by 
two primary AEA-activated receptors, cannabinoid receptor 1 
(CB1) and transient receptor potential vanilloid 1 (TRPV1), both 
highly expressed on the presynaptic side formed by the endings 
of primary nociceptive neurons. Activation of these receptors can 
have predominantly inhibitory (CB1) and excitatory (TRPV1) 
effects that are further modulated under pathological conditions. 
In addition, dual AEA-mediated signaling and action may occur in 
primary sensory neurons and dorsal horn synapses. 
AEA application causes balanced inhibition and excitation of 
primary afferent synaptic input on superficial dorsal horn neurons 
in normal conditions, whereas peripheral inflammation promotes 
AEA-mediated inhibition. This review focuses mainly on the 
modulation of synaptic transmission at the spinal cord level and 
signaling in primary nociceptive neurons by AEA via CB1 and 
TRPV1 receptors. Furthermore, the spinal analgesic effect in 
preclinical studies and clinical aspects of AEA-mediated analgesia 
are considered. 
 
Key words 
Anandamide • CB1 • TRPV1 • NAPE • Spinal cord • Synaptic 
transmission 
 
 

Corresponding author 
D. Spicarova, Laboratory of Pain Research, Institute of Physiology 
CAS, Videnska 1083, 142 00 Praha 4, Czech Republic. E-mail: 
Diana.Spicarova@fgu.cas.cz 
 
Introduction 
 

Pain modulation and analgesic effects of the 
endocannabinoid anandamide (AEA, N-arachidonoyl-
ethanolamine) were recognized in humans and 
intensively studied in experimental rodent models [1-7]. 
However, the underlying mechanisms of AEA anti-
nociceptive action still need to be understood better due 
to the complexity of the AEA metabolism, trafficking and 
storage, the whole endocannabinoid system balance, and 
AEA dual effects on sensory processing and signaling [8-
10]. The scientific effort to understand and modulate 
AEA-mediated signaling at the spinal cord level has 
substantial implications for the development of new 
possible therapeutic strategies for pain relief. 
 
Anandamide as a part of the endocannabinoid 
system and endocannabinoidome 
 

The endocannabinoid system consists of 
classical cannabinoid CB1 and CB2 receptors, endo-
cannabinoids – AEA and 2-arachidonoylglycerol (2-AG), 
and their synthesizing and degradation enzymes [11]. It 
exerts homeostatic function and controls a wide range of 
various physiological roles like emotional processing, 
learning and memory, sleep, appetite, cardiovascular 
functions, reproduction, temperature control, immune 
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response, inflammation and pain. The essential role of the 
endocannabinoid system in CNS is neuromodulation, 
affecting synaptic plasticity, as well as nociceptive synaptic 
transmission [12]. Imbalance or malfunction of 
endocannabinoid system is involved in nervous system 
disorders such as anxiety, depression, schizophrenia, 
multiple sclerosis, neurodegeneration, stroke, epilepsy, 
addiction, and pathological pain states [13-15]. 

Lately, a new concept of endocannabinoidome 
has been established (Fig. 1). The endocannabinoidome 
extends the boundaries of the endocannabinoid system to 
include endocannabinoid-like lipid mediators that are 
biochemically related to the endocannabinoids. These 
lipids include a family of N-acylethanolamines (NAEs), 
including N-palmitoylethanolamine (PEA), N-oleoyletha-
nolamine (OEA), N-linoleoylethanolamine (LEA),  
N-docosahexaenoylethanolamine (DHEA), a family of  
2-acylglycerols (2-oleoyl glycerol, 2-OG; 2-linoleoyl 
glycerol, 2-LG), N-acyl neurotransmitters (N-acyl 
dopamines, N-acyl serotonins) or also lipoamino acids 
(N-acyl taurines, N-acyl glycines). The endocanna-
binoidome further encompasses enzymes for the 
mentioned bioactive lipids syntheses and degradation, 

and their receptors, among others, orphan G-protein 
coupled receptors (GPR55, GPR110, GPR18 or 
GPR119), one of the key nociceptive receptors – transient 
receptor potential vanilloid 1 (TRPV1) or nuclear 
peroxisome proliferator-activated receptors PPARα and 
PPARγ [1]. Changes in AEA metabolism/level within the 
wider endocannabinoidome may alter metabolic 
pathways of other lipid mediators and modulate 
alternative signaling with an impact on physiological 
functions. The endocannabinoidome exerts a more 
comprehensive impact on health and body homeostasis 
and thus should also be considered in clinical studies 
related to AEA. 

AEA is an arachidonic acid derivative, N-arachi-
donoylethanolamine, a naturally occurring compound 
within the body belonging to the larger family of NAEs. 
It was the first endocannabinoid identified from the 
porcine brain and was later isolated and measured in 
humans and rats [16,17]. The word Ananda means bliss 
and happiness in Sanskrit, which fits well with current 
research that describes AEA-mediated signaling through 
the CB1 receptor to produce analgesic, anxiolytic, and 
antidepressant effects [7,18-20]. 

 

 
 
Fig. 1. Endocannabinoidome receptors and mediators. Groups of endocannabinoid-like lipid mediators are distinguished in colors:  
N-acylethanolamines in red, 2-acylglycerols in black, N-acyl neurotransmitters in blue, and lipoamino acids in green. Abbreviations:  
2-AG, 2-arachidonoylglycerol; AEA, N-arachidonoylethanolamine (anandamide); DEA, N-docosatetraenoylethanolamine; DHEA,  
N-docosahexaenoylethanolamine; HEA, N-homo-γ-linolenylethanolamine; LEA, N‑linoleoylethanolamine; NADA, N-arachidonoyldopamine; 
OEA, N-oleoylethanolamine; OLDA, N-oleoyldopamine; PEA, N-palmitoylethanolamine. The image was created with BioRender.com. 
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AEA was initially identified to bind 
preferentially to the CB1 receptor and with lower affinity 
to the CB2 receptor [16]. Later, the activation of 
nonselective cation channel TRPV1 by AEA was 
recognized, while its efficacy at human TRPV1 was 
reported to be higher than that at rat TRPV1 [21,22]. 
Thus, AEA acts as an endocannabinoid and 
endovanilloid; the CB1 and TRPV1 being the main 
AEA activated receptors. Other molecular targets affected 
by AEA were also recognized – including nuclear 
receptors PPARγ and PPARα, voltage-gated T-type 
calcium channels (CaV3) and sodium channels [23-27]. 
AEA activation of both CB1 and TRPV1 receptors at the 
first nociceptive synapse in the spinal cord dorsal horn 
plays an important role in pain modulation. The action of 
AEA at this synapse is complex, as the effect of 
presynaptic CB1 receptor activation on neurotransmitter 
release is inhibitory, and the main impact of 
TRPV1 activation is excitatory. 
 
Anandamide metabolism 
 

Under neuronal stimulation, AEA is produced in 
and released from neurons in a Ca2+-dependent manner 
[28]. Furthermore, the Ca2+-independent formation of AEA 
was later demonstrated after PKC and PAK activation in 
primary sensory neurons, also named dorsal root ganglion 
(DRG) neurons [29]. Redundant biosynthetic pathways of 
AEA were characterized; phospholipase A2 group IV E 
(PLA2G4E, cPLA2ε) was identified as Ca2+-dependent N-
acyltransferase (Ca-NAT), which catalyzes the formation 
of AEA precursor N-acylphosphatidylethanolamine 
(NAPE) from phosphatidylethanolamine (PE) and 
phosphatidylcholine (PC), with a transfer of the acyl group 
of PC to the amine of PE [30]. In brain lysate, Ca-NAT 
activity preferably generates N-arachidonoyl-containing 
(p)NAPEs with polyunsaturated acyl groups at the sn-2 
position [1,31]. On the other hand, Ca2+-independent  
N-acyltransferases (NATs) termed phospholipase A and 
acyltransferase (PLAAT) can also generate NAPE [32,33]. 
The main enzyme converting NAPE to AEA is N-
acylphosphatidylethanolamine phospholipase D (NAPE-
PLD), which catalyzes the AEA syntheses in a Ca2+-
sensitive manner [34]. But, AEA may also be synthesized 
from NAPE by other Ca2+-insensitive enzymes [35]. 

In the CNS, the enzyme fatty acid amino 
hydrolase (FAAH) primarily degrades AEA to 
arachidonic acid and ethanolamine. It is important to note 
that it accepts multiple fatty acid amides as a substrate, 

including palmitoyl- and oleoyl-ethanolamide [36]. In 
addition to the hydrolytic pathway, AEA undergoes 
oxygenation by cyclooxygenase 2 (COX-2), 5-, 12-, 15-
lipoxygenase (LOX) and cytochrome P450 monooxy-
genases to create prostaglandin-ethanolamides, 
hydroxyeicosatetraenoyl-ethanolamides (HETE-EAs) and 
epoxyeicosatrienoyl-ethanolamide see for reviews [1,8]. 
 
Interaction between CB1 receptor and 
TRPV1 channel signaling in DRG neurons 
 

In nociceptive DRG neurons, an opposite role for 
CB1 and TRPV1 receptor activation was suggested, while 
AEA may activate both and trigger complex effects. 
AEA acts as a low-efficacy TRPV1 agonist. The efficacy of 
AEA may be affected by the number of TRPV1 channels in 
the plasmatic membrane, their phosphorylation, 
AEA metabolism, efflux or uptake, trafficking, storage, and 
the critical role also plays the concomitant CB1 receptor 
activation [8,37-41]. The AEA-mediated effects may differ 
based on the expression of the target receptors. Neurons 
expressing only CB1 receptors or only TRPV1 channels may 
exert the opposite AEA-induced effects. In neonatal rat 
cultured neurons, the AEA-mediated inhibitory or excitatory 
effect was reported in size-segregated DRG populations of 
neurons. In supporting experiments, Ca2+ transients were 
evoked by KCl-induced depolarization and AEA application 
inhibited or potentiated these Ca2+ transients [42]. The CB1 
activation-mediated inhibitory effect on depolarization-
induced Ca2+ transients was also shown in primary culture of 
adult DRG neurons, which additionally rarely responded to 
capsaicin [43]. The dual effect of AEA application on 
synaptic input from primary nociceptive fibers was 
demonstrated at the first nociceptive synapses formed by 
these nociceptive DRG endings in acute spinal cord slices 
[10]. 

However, CB1 and TRPV1 receptors exhibit high 
co-expression within the DRG neurons [44-46], suggesting 
complex AEA-mediated regulation based on CB1/TRPV1 
crosstalk in these neurons. In transfected cells over-
expressing both receptors, a dual effect of CB1 activation 
on capsaicin evoked, TRPV1-mediated Ca2+ response was 
described. Activation of the CB1 receptor inhibited or 
enhanced capsaicin-induced responses depending on the 
signaling pathways activated. Inhibition of TRPV1 channel 
responses was mediated by negative regulation of the 
cAMP signaling via CB1 receptor activation. The opposite 
effect, potentiation of TRPV1 channel responses, was 
mediated via phosphatidylinositol 3-kinase (PI3K) and 
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phospholipase C (PLC) pathways stimulated by CB1 
receptor activation [47]. Meanwhile, the activation of 
diverse intracellular signaling cascades, such as PI3K, 
PLC-PKC or PKA are known to sensitize the TRPV1 
channel to the agonist [38,41,48-53]. Further, it was shown 
that the constitutive activity of the CB1 receptor maintains 
the TRPV1 channel in a sensitized state [54]. The effect of 
AEA thus depends on the activation/regulation of CB1 and 
TRPV1 receptors and the concomitant CB1-mediated 
regulation of specific intracellular signaling with an impact 
on the TRPV1 sensitization. The order in which individual 
receptors are activated could also play a role [47,54]. 
A later study suggested that CB1-supported 
TRPV1 sensitization and the induction of TRPV1 respon-
siveness to AEA in DRG neurons may be underlined by 
the spatial proximity of both receptors [55]. 

On the other hand, reduction of TRPV1 
sensitization after CB1 receptor activation was also shown 
in experiments where AEA in subthreshold concentration 
for TRPV1 activation facilitated heat-induced 
Ca2+ transients that were further enhanced by CB1 receptor 
inhibition. The Ca2+ transients induced by AEA in the 
concentration to activate TRPV1 were reduced by 
simultaneous CB1 receptor activation by CB1 agonist 
HU210 [56]. Capsaicin evoked TRPV1-mediated cationic 
influx was attenuated by CB1 receptor activation, which in 
addition also reduced the number of capsaicin-responsive 
cells in these experiments [40,57]. Remarkably, 
experiments in spinal cord slices showed that AEA 
induced a concentration-dependent release of neuropeptide, 
calcitonin gene-related peptide (CGRP) and substance P 
(SP), via TRPV1 channel activation on central terminals of 
DRG neurons [58]. This TRPV1-mediated pronociceptive 
process of neuropeptide release in the dorsal horn was 
reduced by CB1 activation [59]. Thus, AEA activation of 
CB1 receptors on central terminals of DRG neurons may 
concomitantly affect the sensitization/activation of 
TRPV1 channels, and the final AEA effect could be 
concentration and receptors proximity dependent. In 
addition, the increase in intracellular Ca2+ concentration in 
DRG neurons stimulates the formation of endogenous 
AEA. Newly synthesized AEA was shown to mediate 
TRPV1-dependent Ca2+ influx subsequently. Thus, AEA 
was proposed to act as an intracellular messenger, 
amplifying intracellular concentration of Ca2+ via TRPV1 
channels [39]. 

A fatty acid binding protein 5 (FABP5) is an 
intracellular carrier for AEA transport to FAAH-mediated 
hydrolyses. A conditional knockout strategy was used to 

selectively ablate FABP5 in the TRPV1 channel 
expressing DRG neurons. This genetic approach elevated 
AEA, PEA, and OEA levels in DRGs, while 2-AG levels 
remained unchanged. Elevated AEA levels in nociceptive 
DRGs after FABP5 deletion attenuated nerve growth 
factor-mediated TRPV1 sensitization via CB1 receptor 
activation, and the emergence of antinociceptive effects 
mediated by CB1 was thus revealed [60]. 
 
CB1 and TRPV1 receptors modulation of 
transmitter release in spinal cord dorsal horn 
 

The first synapses of the pain pathway are localized 
in the spinal cord dorsal horn, particularly in the superficial 
laminae. Nociceptive signaling from the periphery is 
transmitted from DRG neurons, to dorsal horn neurons, 
which convey signaling to higher brain areas. AEA acts on 
the CB1 and TRPV1 receptors expressed at presynaptic 
endings of primary afferents and modulate neurotransmitter 
release. Activation of presynaptic CB1 receptors decreases 
glutamate release by a well-established mechanism of 
trimeric Gi/o-protein cascade stimulation, inhibiting adenylyl 
cyclase, decreasing calcium conductance by inhibition of 
high-voltage activated N- and P/Q-type Ca2+ channels, and 
increasing the potassium conductance via stimulation of 
inwardly rectifying and A-type outward potassium channels 
(Fig. 2) [61,62]. In comparison, CB1 receptor coupling to  
Gs-protein, stimulating adenylyl cyclase, was unmasked 
when the Gi/o-protein cascade was inhibited [63]. Whereas 
the isoform of adenylyl cyclase expressed in cells may be 
crucial in the CB1 receptor activation-induced dual effect on 
adenylyl cyclase [64]. 

TRPV1 activation-mediated responses are 
characterized by two phenomena – desensitization and 
tachyphylaxis. During TRPV1 stimulation, the channel 
activity is Ca2+-dependently reduced, and TRPV1 thus 
undergoes rapid desensitization. Tachyphylaxis occurs 
during repetitive agonist stimulation while the TRPV1-
mediated responses are diminished. TRPV1 channel 
activation at presynaptic ending allows Ca2+ influx through 
the opened pore, increasing Ca2+ concentration in the 
cytosol and dramatically enhancing spontaneous glutamate 
release [65-67]. Potent TRPV1 agonist capsaicin 
application elicited action potentials in superficial dorsal 
horn neurons, but evoked glutamate release induced by 
electrical stimulation of the dorsal root was prevented 
[65,66]. Thus, the facilitation of spontaneous glutamate 
release by capsaicin was sufficient to transmit nociceptive 
information further along the pain pathway by activating 
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Fig. 2. Simplified illustration of AEA action at the first nociceptive synapse formed by the central terminal of the primary sensory neuron 
and the secondary spinal cord dorsal horn neuron. Autocrine and retrograde signaling of AEA is suggested, whereas AEA is synthesized in 
addition to other enzymes by Ca2+-dependent NAPE-PLD in both primary and secondary nociceptive neurons. (The contribution of glial cells 
to AEA signaling is not depicted). Translocation of the lipid molecule of AEA across the plasma membrane by diffusion and a membrane 
transporter was proposed. Intracellular carriers, including the fatty acid binding protein 5 (FABP5) and the heat shock protein 70 (HSP70), 
may facilitate the intracellular transport of AEA, for example, towards the FAAH for degradation. Two primary AEA-activated receptors are 
abundantly expressed on the presynaptic side, where they regulate glutamate release. At lower concentrations, the CB1 receptor is 
suggested to be activated, while at higher concentrations, both the CB1 and TRPV1 receptors are activated. In addition, AEA could directly 
inhibit low-voltage-activated calcium channels (CaV3) to modulate the excitability of neuron. The reduction in transmitter release after CB1 
receptor activation is attributed to the inhibition of high-voltage-activated calcium channels (VACC) and the activation of inwardly rectifying 
potassium channels (Kir). The image was created with BioRender.com. 
 
 
 
second-order neurons even when the action potential-evoked 
glutamate release from primary afferent endings was 
blocked. Furthermore, in vivo electrophysiological 
experiments demonstrated that spinal administration of 
TRPV1 antagonist capsazepine reduced nociceptive fibers 
(Aδ- and C-) stimulation-evoked responses of dorsal horn 
neurons [68]. It is suggested that endogenous AEA primarily 
activates CB1 receptors under normal conditions, and its 
concentration is insufficient for TRPV1 channel stimulation 
on the central endings of DRG neurons. 
 
Modulation of synaptic transmission at first 
nociceptive synapses by anandamide 
 

In the superficial spinal cord dorsal horn, the patch-
clamp recording of the dorsal root electrical stimulation-

evoked excitatory postsynaptic currents (eEPSCs) from 
lamina II neurons revealed inhibition of the eEPSC 
amplitude by AEA application. Meanwhile, AEA attenuated 
evoked excitatory transmission more effectively during  
Aδ-fiber than C-fiber stimulation. A similar decrease of 
eEPSC amplitude was demonstrated after the CB1 receptor 
agonist WIN55,212-2 application [69,70]. The effects of 
AEA on spontaneous synaptic transmission were reported 
inconsistently, from no detected change in the frequency of 
miniature EPSC (mEPSC) [70] to a concentration-dependent 
effect of AEA [71]. In the latter experiments, mEPSCs were 
recorded, and the low AEA concentration-induced inhibition 
of frequency was suggested to be mediated via 
CB1 receptors activation, and the higher AEA concentration-
induced excitatory effect via TRPV1 channels [71]. 

A recent study evaluated AEA modulation by 
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Fig. 3. Peripheral inflammation enhanced the inhibitory effect of AEA application on dorsal horn neurons mEPSC frequency in spinal cord slices. 
(A, B) Normalized frequency of mEPSC during acute AEA application (1 µM, 10 µM, and 30 µM, 4 min each concentration) in control conditions 
(A) and 24 h after induction of peripheral inflammation (B) by subcutaneous carrageenan injection. Statistical analysis showed a significant 
difference between control and inflammatory conditions in each AEA concentration tested (1 μM AEA, p<0.05; 10 μM AEA, p<0.05; 30 μM AEA, 
p<0.05). (C) Application of AEA induced decrease or increase of mEPSC frequency in a comparable number of superficial dorsal horn neurons in 
control conditions. The number of neurons with mEPSC frequency inhibition by AEA application was reduced after inhibition of the CB1 receptor 
(PF514273 application) and especially after CB1 and FAAH co-inhibition (PF514273/URB597 co-application) used as a pretreatment. (D) After 
peripheral inflammation, most neurons received synaptic input inhibited by the AEA application (73 %). Pretreatment with PF514273 and 
PF514273/URB597 reduced the inhibitory and enhanced the excitatory AEA-induced effect. Abbreviations: PF (PF514273, CB1 receptor 
antagonist), SB (SB366791, TRPV1 antagonist), URB (URB597, FAAH inhibitor). The figure was adapted from Pontearso et al. [10]. 
 
 
 
recording mEPSC from neurons in lamina I and II(outer) in 
acute slices [10]. The results suggested that applied AEA 
had a dual effect on mEPSC frequency with similar size 
populations of recorded neurons showing inhibition and 
excitation. This balanced AEA effect on mEPSC frequency 
was changed following peripheral inflammation when AEA-
induced decrease of neurotransmitter release from primary 
afferent fibers (mEPSC frequency) was dominant (Fig. 3). 

The excitatory effect of AEA application was evident only 
when CB1 receptors and FAAH were inhibited [10]. 
Notably, these described effects of exogenous 
AEA application contrast with those observed following the 
application of its precursor 20:4-NAPE, which increased 
levels of endogenous AEA and consistently inhibited both 
action potential-dependent and -independent excitatory 
synaptic transmission, as evidenced by the recording of 
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eEPSC, sEPSC, and mEPSC [9,72]. In these experiments, 
AEA was synthesized in spinal cord slices from 20:4-NAPE 
primarily by NAPE-PLD (Fig. 4) [72]. The 20:4-NAPE 
mediated inhibition was also present after peripheral 
inflammation while the underlying mechanisms were 
altered. In naïve animals, the 20:4-NAPE effect was 
mediated by CB1 receptors, but after inflammation, the 
TRPV1 channel-mediated mechanism was also involved 
[9,72]. The physiological mechanism of AEA syntheses by 
available catabolic enzymes, together with their cellular 
distribution and level of enzymatic activity, regulate 
AEA concentration locally and may have a crucial role in 
the AEA-induced modulation of nociception [9]. The local 
production of AEA from its precursor could thus be 
advantageous for analgesic purposes in clinical settings. 
 

 
 
Fig. 4. Application of the AEA precursor 20:4-NAPE decreased 
excitatory synaptic transmission at the first nociceptive synapses 
via NAPE-PLD activation. Application of 20:4-NAPE (20 μM, 
4 min) decreased the frequency of mEPSC (n = 15, *** p<0.001) 
recorded from superficial dorsal horn neurons in acute spinal 
cord slices. Incubation of slices with the NAPE-PLD inhibitor  
LEI-401 (1 μM, 2 h) prevented the effect of acutely applied  
20:4-NAPE (20 μM, 4 min) on mEPSC frequency. The figure was 
adapted from Spicarova et al. [72]. 
 

Well-known endocannabinoid retrograde 
signaling described at synapses in the brain was also 
recognized in the spinal cord dorsal horn. Activation of 
spinal metabotropic glutamate receptor 5 (mGluR5) 
stimulated endocannabinoid-mediated stress-induced 
analgesia by retrograde signaling via diacylglycerol lipase 
– 2-arachidonoylglycerol – CB1 receptor pathway [73]. In 
other experiments different conditioning stimulation 
protocols known to induce endocannabinoid production 

and CB1 receptor-dependent synaptic plasticity in other 
brain areas [74,75] were employed in spinal cord slices. 
Low-frequency stimulation of primary afferent fibers 
combined with depolarization of postsynaptic neuron led to 
profound long-term depression mediated by CB1 receptors 
[76]. These results indicated that CB1 receptors activation 
in primary afferent fibers could prevent long-term 
potentiation underlying hypersensitive states. 

Various populations of excitatory and inhibitory 
spinal interneurons form neuronal circuits in the dorsal 
horn and modulate the nociceptive signaling from the 
periphery. This signaling is also affected by descending 
modulation from higher brain areas. Many studies aimed 
at spinal nociception are performed in spinal cord slices. 
This preparation decreases the degree of complexity of 
spinal nociceptive signaling by eliminating functional 
descending pathways. Despite the expression on central 
terminals of primary sensory neurons, CB1 receptors are 
also expressed in dorsal horn interneurons [44,73,77-79]. 
Their activation may decrease the inhibitory 
neurotransmitter release, leading to increased excitability 
of nociceptive dorsal horn neurons. Thus, an unexpected 
role of endocannabinoids acting on inhibitory 
interneurons as mediators of heterosynaptic pain 
sensitization was revealed in the dorsal horn [77]. 
 
Analgesia mediated by spinal anandamide 
 

Treatment with cannabinoids induces analgesia 
by acting at the peripheral, spinal, and supraspinal levels 
[2,4,18,80,81]. Intrathecal (i.t.) administration of the CB1 
receptor antagonist, SR141716A, induced thermal 
hyperalgesia and facilitated responses of dorsal horn 
neurons evoked by transcutaneous electrical stimulation. 
These experiments suggested tonic activation of spinal 
CB1 receptors modulating nociceptive threshold [82,83]. 
In comparison, i.t. administration as well as topical 
application of CB1 receptor agonist WIN55,212-2 
produced analgesia. When ineffective i.t. doses of 
WIN55,212-2 were used with topical tail immersion in 
the WIN55,212-2 solution, an antinociceptive effect was 
markedly potentiated. Thus, antinociceptive synergy 
occurred in both peripheral and spinal application sites 
[84]. Spinal administration of AEA had inconsistent 
effects on neuronal responses evoked by transcutaneous 
electrical stimulation of nociceptive primary afferent 
fibers in control animals. In contrast, under inflammatory 
conditions, AEA reduced these responses via 
CB1 receptor activation [85]. Intrathecal application of 
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WIN55,212-2 via activation of CB1 receptors attenuated 
mechanical hypersensitivity associated with peripheral 
inflammation induced by complete Freud’s adjuvant 
(CFA) injection and also present after peripheral 
neuropathy caused by partial ligation of the sciatic nerve 
[86,87]. Increased AEA level in the spinal cord was 
reported in neuropathic pain model with chronic 
constriction injury (CCI) of the sciatic nerve [88]. 
Intrathecal AEA administration blocked carrageenan-
induced thermal hyperalgesia [89] and CCI-induced 
mechanical allodynia via both CB1 and TRPV1 receptor-
dependent mechanisms [90]. Suppression of spinal 
AEA degradation by FAAH inhibition led to the TRPV1-
mediated analgesic effect in neuropathic rats while 
supporting experiments indicated the lipoxygenase-
mediated remodeling of AEA metabolism [91]. 
 
Clinical aspects of anandamide-mediated 
analgesia 
 

Ongoing research focuses on the use of exo- and 
endo-cannabinoids to treat pain. Exocannabinoids, 
naturally occurring phytocannabinoids from the cannabis 
plant, and synthetic cannabinoids differentiate from 
endocannabinoids synthesized within the body in 
chemical structure and pharmacological properties upon 
activation of the classical cannabinoid receptors CB1 and 
CB2, reflecting their different origins. The beneficial 
effect of Sativex (Nabiximols), a cannabis-based 
pharmaceutical product containing Δ9-tetrahydro-
cannabinol (Δ9-THC) and cannabidiol (CBD) approved 
for pain and spasticity treatment in patients with multiple 
sclerosis in 2005 in Canada, was confirmed in patients 
with peripheral neuropathic pain in further clinical trials 
[92,93]. The approval of Sativex encouraged further 
studies of new analgesics targeting the endocannabinoid 
system, modulating AEA levels and related signaling. 

Clinical trials looking for AEA analgesic 
properties in pathological pain states and neurological 
disorders were supported by positive preclinical results 

[91,94,95]. However, the failure of these clinical trials 
testifies to the complexity of the AEA-induced effect, 
including the regulation of a wide range of physiological 
processes, which could underlie severe side effects. It 
also demonstrates the difficulty of the translation of 
promising results from animal models to clinical settings 
in humans. Several inhibitors of the AEA degradation 
enzyme FAAH entered clinical trials also with a focus on 
pain relief. These FAAH inhibitors elevated plasma AEA 
levels and were well tolerated [96]. However, clinical 
trials targeted at pain relief failed to produce analgesia in 
patients with osteoarthritic pain manifestation [97]. 
Clinical interest in this area waned when phase I of 
clinical trials testing BIA 10-2474 was terminated for 
tragic fatality in the group of volunteers receiving the 
highest dose [98]. Activity-based protein profiling 
revealed off-target BIA 10-2474 activities that may have 
contributed to the induced neurotoxicity [99]. However, 
the adverse effects of BIA 10-2474 remain unexplained 
[100]. The great hope of clinicians was to test 
peripherally restricted cannabinoid agonists based on 
preclinical research clearly showing the analgesic effects 
of peripheral cannabinoid receptor activation [2,3,81]. 
However, clinical trials using AZD1940 and AZD1704 
have failed to produce any analgesic effect [101,102]. It 
is unclear if an optimal activation of CB1 receptors to 
produce analgesia was achieved or if peripheral 
CB1 receptor stimulation failed to inhibit nociceptive 
signaling [103]. A better understanding of the underlying 
mechanisms of AEA-induced effects and the differences 
between rodents and humans is essential to advance 
preclinical and translational research. 
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