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Summary 
The study of ontogenetic aspects of water and electrolyte 
metabolism performed in the Institute of Physiology (Czechoslovak 
Academy of Sciences) led to the research on the increased 
susceptibility of immature rats to salt-dependent forms of 
hypertension since 1966. Hemodynamic studies in developing rats 
paved the way to the evaluation of hemodynamic mechanisms 
during the development of genetic hypertension in SHR. A 
particular attention was focused on altered renal function and 
kidney damage in both salt and genetic hypertension with a special 
respect to renin-angiotensin system. Renal damage associated 
with hypertension progression was in the center of interest of 
several research groups in Prague. The alterations in ion transport, 
cell calcium handling and membrane structure as well as their 
relationship to abnormal lipid metabolism were studied in a close 
cooperation with laboratories in Munich, Glasgow, Montreal and 
Paris. The role of NO and oxidative stress in various forms of 
hypertension was a subject of a joint research with our Slovak 
colleagues focused mainly on NO-deficient hypertension elicited by 
chronic L-NAME administration. Finally, we adopted a method 
enabling us to evaluate the balance of vasoconstrictor and 
vasodilator mechanisms in BP maintenance. Using this method we 
demonstrated sympathetic hyperactivity and relative NO deficiency 
in rats with either salt-dependent or genetic hypertension. At the 
end of the first decennium of this century we were ready to modify 
our traditional approach towards modern trends in the research of 
experimental hypertension. 
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Our teachers 
 

Physiological changes occurring during the 

ontogenesis belong to the historical research topics in the 

Institute of Physiology (Czechoslovak Academy of 

Sciences) (IPHYS). Water and electrolyte metabolism, 

body fluid distribution, renal function and vasopressin 

action were studied in developing rats since 1954 [1,2]. 

Dr. Jiří Jelínek focused his attention to the characteristic 

changes of water, sodium, potassium and chloride content 

in the body and body fluids of laboratory rats in particular 

developmental periods (suckling, weaning, prepuberty) 

[3,4]. Later he was inspired by the paper of Guillebeau and 

Skelton [5] who reported that immature rats are more 

susceptible to the induction of salt hypertension elicited by 

adrenal regeneration after its enucleation. In 1966 he 

published two papers indicating that not only adrenal-

regeneration hypertension but also deoxycorticosterone 

(DOCA)-salt hypertension are more severe and self-

sustaining in young than in adult animals [6-8]. Jelínek´s 

research group paid a special attention to the study of 

changes in body fluids, renal function and structure with a 

special attention to renin-angiotensin system (RAS) [9-

15]. They also performed fundamental studies on salt 

hypertension in monkeys (Papio hamadrys), indicating a 

greater blood pressure elevation (BP) in primates exposed 

to high salt intake from birth as compared to those exposed 

to this hypertensinogenic factor during sexual maturation. 

On the other hand, in adult salt hypertensive primates there 

was enhanced pulse pressure and reduced plasma volume 

as compared to control animals. They also demonstrated 

that blood pressure was inversely related to plasma volume 

in salt hypertensive monkeys [16,17].  
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In parallel, Prof. Jiří Křeček, who investigated the 

antidiuretic action of vasopressin in suckling and weanling 

rats [2,18,19], also started to study developmental aspects 

of salt hypertension using a peculiar model of 

uninephrectomized vasopressin-deficient Brattleboro rats 

drinking 0.6 % saline [20]. His experiments indicated that 

the age-dependent salt hypertension can be elicited even in 

the absence of vasopressin [21] and that prepuberty seems 

to be a critical period for the induction of more pronounced 

form of salt hypertension [22]. Subsequent hemodynamic 

studies, which used a dye dilution technique for the 

estimation of cardiac output in conscious animals [23], 

confirmed a significant BP elevation due to the increase in 

peripheral resistance and a major reduction of arterial 

compliance in young but not in adult animals with the 

above form of salt hypertension [24]. 

 

Newly formed research group 
 

In 1983 two young investigators from the above 

research groups – Dr. Jaroslav Kuneš and Dr. Josef Zicha 

– formed an independent research team and combined their 

methodical experience on body fluids and hemodynamic 

measurements in order to study further aspects of age-

dependent salt hypertension. Using homozygous and 

heterozygous Brattleboro rats we demonstrated that 

sodium retention, which is not accompanied by sufficient 

water retention, did not induce of DOCA-salt 

hypertension. Thus, antidiuretic rather than vasopressor 

effects of vasopressin are important for the development 

of DOCA-salt hypertension [25-27]. Another important 

topic of our study was the age-dependent role of digoxin-

like factor (DLF) in BP maintenance in young and adult 

rats with DOCA-salt hypertension. Using the approach of 

Kojima et al. [28] based upon the acute administration of 

antidigoxin antibody, we found that endogenous DLF is 

important for BP maintenance especially in young DOCA-

salt hypertensive rats [29,30], while this was not true for 

adult BP-matched rats with either DOCA-salt or 

spontaneous hypertension [31]. These findings were 

esteemed by Demuth Prize (Young Investigator Award of 

International Society of Hypertension, Interlaken 1984). 

Our subsequent review in Hypertension [32] suggested 

that prepuberty might be a critical period for enhanced salt-

induced DLF production (Fig. 1). The third interesting 

field of our research was the role of sodium and chloride 

in the development of DOCA-salt hypertension. At that 

time there was an idea that chloride might be more 

important than sodium in the pathogenesis of salt-

dependent forms of hypertension [32-36]. Our 

hemodynamic studies [37-39] revealed the delayed 

induction of hypertension and the absence of decreased 

arterial compliance in DOCA-treated rats, in which the 

dietary NaCl was replaced by NaHCO3 to avoid the excess 

chloride intake. 

 

 
Fig. 1. The inverse relationship of natriuretic response to plasma volume expansion [176] and blood pressure response to high salt intake 
during prepuberty and puberty [21,177]. Full horizontal bars indicate the onset and duration of high salt intake in the studies revealing a 
positive evidence for digoxin-like natriuretic factor [178-181], whereas negative studies are depicted as broken bars [182-185]. The 
density of vertical lines reflects the intensity of maturation processes. Modified from our review [32]. 
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The research of genetic hypertension at the 

IPHYS in Prague was started by Dr. Ivan Albrecht who 

received first breeding pairs of spontaneously hypertensive 

rats (SHR) from Prof. Yukio Yamori in 1972. His 

measurements of cardiac output revealed that the 

prepuberty is a hyperkinetic phase of hypertension 

development in SHR [40,41]. Furthermore, on the basis of 

his original pharmacological interventions he proposed the 

prepuberty as a critical period for the development of 

genetic hypertension in this rat strain [42]. In 1981 Dr. 

Kuneš joined the laboratory of Dr. Pavel Hamet in 

Montreal and they started a long-term cooperation on the 

research of several important aspects of genetic 

hypertension. At the beginning they were interested in 

cardiac and renal hyperplasia of newborn SHR [43-46]. 

Ontogenetic aspects of hypertension development in the 

rat were later reviewed in Physiological Reviews in 1999 

[47]. 

 

Jiří Heller and Prague hypertensive rats 
 

In the late 80ties Dr. Jiří Heller (Institute of 

Clinical and Experimental Medicine, Prague) developed a 

new model of genetic hypertension based upon Wistar rats 

– Prague hypertensive (PHR) and normotensive (PNR) 

rats [48]. This form of hypertension had many features 

similar to SHR but the main advantage of this model was 

that PHR and PNR had no histocompatibility problems so 

that kidneys could be transplanted between both lines 

without any signs of rejection [49,50]. The cross-

transplantation of PNR kidney to bilaterally 

nephrectomized PHR animal lowered its blood pressure, 

while the transplantation of PHR kidney to PNR always 

induced hypertension development. This was true even if 

the transplanted kidney originated from PHR animals 

treated with antihypertensive drugs (captopril or 

nifedipine) since weaning [49]. A later study [50] indicated 

that the transplanted PHR kidney is important for the 

development but not for the maintenance of this Prague 

form of genetic hypertension. Using isolated kidneys from 

this model, Vaněčková et al. [51] reported the impairment 

of renal sodium excretion in adult PHR animals. Renal 

endothelin system was considered to be a possible 

candidate for a "hypertensinogenic" substance produced 

by PHR kidney [52]. 

Blood pressure and proteinuria were lowered in 

both PHR and PNR by chronic administration of AT1 

receptor inhibitor losartan, which also prevented later 

development of renal damage in PHR animals [53]. One of 

the most fascinating findings in this rat strain was the 

demonstration of long-term blood pressure effects elicited 

by a brief treatment of young PHR with antihypertensive 

drugs inhibiting renin-angiotensin system. The beneficial 

BP effects were observed in 30-week-old PHR treated with 

losartan or perindopril at the age 5-9 weeks. Blood 

pressure reduction was even enhanced if this 

antihypertensive intervention was repeated at the age of 

15-19 weeks. In addition, this long-term BP reduction was 

accompanied by a substantial antiproteinuric effect [54]. 

Blood pressure effects of early RAS blockade in PHR were 

considerably greater than those that we observed in 

similarly treated SHR [55]. 

 

Recombinant inbred strains as a research tool 
in the research of genetic hypertension 
 

A major stimulus for further research of the 

genetics in SHR was the establishment of recombinant 

inbred (RI) strains derived from SHR and normotensive 

BN.lx rats by Prof. Vladimír Křen and Dr. Michal 

Pravenec [56,57]. Blood pressure in this set of RI strains 

was initially determined by Dr. Kuneš using a direct 

carotid puncture [56]. Later he verified it by radiotelemetry 

measurement [58].The initial papers started a very 

productive international cooperations (Theodore W. 

Kurtz, Tim J. Aitman, Pavel Hamet) leading to numerous 

highly cited papers [59-64] in prestigious journals 

including Nature Genetics [64-70]. A part of the results on 

the role of RI strains in the progress of genetics in SHR 

was summarized by Pravenec et al. [71,72]. However, the 

history of this extraordinary successful international 

research would deserve a separate review. 

 

Red cell ion transport in experimental 
hypertension 

 

At the same time Dr. Zicha received the breeding 

pairs of inbred salt-sensitive (SS/Jr) and salt-resistant 

(SR/Jr) Dahl rats [73] from Prof. John P. Rapp (Toledo, 

OH). In these rats we studied red cell ion transport, effect 

of dietary calcium on blood pressure, alterations in arterial 

baroreflex function, changes in particular compartments of 

body fluids, adrenergic vascular innervation etc. [74-78]. 

In 1987-1988 Dr. Zicha studied the kinetics of ouabain-

sensitive Na+ and K+ transport in erythrocytes of young 

and old Dahl rats in the laboratory of Prof. Jochen Duhm 

in Munich. The data obtained in Munich [79] confirmed 

our earlier study done in Prague [74], which disclosed the 
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enhanced ouabain-sensitive ion transport in red blood cells 

but a reduced activity of Na+-K+-ATPase in young salt 

hypertensive SS/Jr rats. The explanation of these 

experimental findings was simple but shocking. Salt 

hypertension in Dahl rats was associated with two major 

kinetic abnormalities of Na+-K+ pump – the combination 

of increased affinity for internal sodium and decreased 

maximal transport rate. The former alteration is 

responsible for the enhanced ouabain-sensitive Na+ and K+ 

transport (studied under low physiological concentrations 

of internal sodium), while the latter kinetic change caused 

the decreased Na+-K+-ATPase activity (determined under 

saturating Na+ concentrations) [74,79]. Our further studies 

on membrane ion transport in Dahl rats indicated that the 

altered function of Na+-K+ pump was related to 

abnormalities in cholesterol metabolism rather than to a 

mutation in Atp1a1 gene [80-82]. 

In the early 90´s Dr. Hasan Karama Bin Talib 

from Yemen made his PhD Thesis in our lab. He was 

trained in the study of red cell ion transport at Prof. Alan 

R. Chipperfield (Dundee, UK). Thanks to his dedication to 

experimental work we were able to extend our ion 

transport studies to further hypertensive models such as 

DOCA-salt treated rats [83,84], hereditary 

hypertriglyceridemic rats [85] or SHR and RI strains [86]. 

Our papers indicated that enhanced inward sodium leak 

and/or augmented Na+-K+-cotransport are responsible for 

the increased red cell Na+ content, which is compensated 

by the acceleration of ouabain-sensitive Na+ extrusion by 

the Na+-K+ pump. This was in line with our cooperative 

study with Dr. Sergei N. Orlov [87] which revealed a 

higher Na+-K+-ATPase activity and enhanced passive K+ 

permeability in erythrocytes of SHR compared to WKY or 

BN.lx rats. The findings on the red cell Na+ and K+ 

transport in experimental hypertension were later 

summarized in our reviews [88,89]. 

 

New cooperations, new possibilities, new 
challenges 

 

After the Velvet revolution the close cooperation 

of Dr. Zicha and Dr. Kuneš continued not only in 

traditional but also in newly added fields. They became to 

be the Editors of the journal Physiological Research 

(formerly Physiologia bohemoslovaca) published by 

IPHYS since 1954. Dr. Kuneš returned from his second 

stay in Montreal where the attention was focused on 

numerous genetic determinants of high BP in SHR - 

HSP70 [90-92], HSP27 [93], stress genes [94], major 

histocompatibility complex [95] etc. In 1993 Dr. Kuneš 

accepted a surprising idea of Dr. Hamet to apply for the 

organization of the congress of the International Society of 

Hypertension in Prague 2002. Thus, we spent further 

10 years not only with scientific research but also with the 

preparation of this major event which brought to Prague 

almost 8000 participants of the first Joint ISH/ESH 

Meeting (Fig. 2). 

 

 
 

Fig. 2. Dr. Kuneš and Dr. Zicha with the President of ISH Prof. Kikuo Arakawa. 
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Fig. 3. The relationship of plasma triglycerides to membrane microviscosity (left panels) and cell calcium handling (right panels) in 
platelets of Wistar rats (green symbols) and HTG rats (red symbols). The data were published in our papers [110, 111]. 

 

 

A new model of Prague hereditary hyper-

triglyceridemic (HTG) rats was developed by Vrána and 

Kazdová [96] and a moderate hypertension was disclosed 

in these animals by our lab [97]. HTG rats were utilized to 

evaluate the relationship of abnormalities in BP, lipid and 

glucose metabolism or ion transport [85,97,98] with 

particular genetic determinants [99-101]. Further studies 

evaluated the role of Cd36 and Igf2 genes in this model of 

hypertension [102,103]. The findings obtained in HTG rats 

were summarized in two review papers [104,105]. 

In 1991 we established a long-term cooperation 

with Dr. Marie-Aude Devynck (Hospital Necker, Paris) on 

the analysis of alterations in membrane structure and 

function, cell calcium handling, intracellular pH regulation 

and platelet aggregation in several hypertensive models 

such as Sabra, Dahl, Lyon and HTG rats. Our first joint 

study, which was focused on the effects of sodium on 

membrane fluidity in platelets of Wistar rats, indicated that 

the changes of intracellular rather than extracellular 

sodium are responsible for the alterations of platelet 

membrane microviscosity in the membrane outer leaflet 

(TMA-DPH anisotropy) but not in the membrane lipid 

core (DPH anisotropy). Sodium depletion increased TMA-

DPH anisotropy and sodium repletion lowered it [106]. 

The next study in Lyon hypertensive (LH) rats 

demonstrated a positive correlation of TMA-DPH 

anisotropy with the intracellular calcium (Ca2+
i) in both 

platelets and erythrocytes, while DPH anisotropy 

correlated negatively with blood pressure and Ca2+
i [107]. 

DPH anisotropy but not TMA-DPH anisotropy was 

reduced in erythrocytes of Sabra and Dahl rats prone to 

develop salt hypertension in which DPH anisotropy also 

correlated negatively with blood pressure [108]. Platelets 

of LH rats were characterized by substantially elevated 

basal Ca2+
i values, higher Ca2+

i levels after thrombin 

stimulation, and enhanced initial rate of thrombin-induced 

Mn2+ entry through the receptor-operated Ca2+ channels. 

Plasma triglycerides but not cholesterol seemed to be 

related to platelet calcium handling [109].  

Platelet or erythrocyte Ca2+
i values were similar 

in HTG and Wistar rats, the same was true for Ca2+ influx 

into erythrocytes. On the other hand, Ca2+
i response to 

thrombin stimulation and Mn2+ entry through the receptor-

operated Ca2+ channels were reduced in platelets of HTG 

rats [110]. Plasma triglycerides correlated positively with 

platelet TMA-DPH anisotropy and negatively with DPH 

anisotropy. These relationships were present in both HTG 

and Wistar rats but the slopes of these relationships were 

considerably smaller in HTG than in Wistar rats (Fig. 3). 

In addition, platelet Ca2+
i correlated positively with TMA-

DPH anisotropy and negatively with DPH anisotropy, but 

the slopes of these relationships were almost identical in 

both rat strains [111,112]. HTG rats were also 

characterized by platelet hypoaggregability. The initial 

rate of platelet aggregation was dependent on plasma 

triglycerides and the slope of this relationship was smaller 
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in HTG than in normotensive control rats [113]. 

Furthermore, we tried to increase circulating triglycerides 

by drinking of fructose solution or to lower them by 

gemfibrozil treatment. Chronic reduction of plasma 

triglycerides was associated with increased DPH 

anisotropy, while chronic increase of plasma triglycerides 

was accompanied by decreased DPH anisotropy [114]. 

Our experiments also revealed different platelet 

calcium handling in rats with salt-dependent hypertension 

(Sabra and Dahl rats) and those with genetic hypertension 

(Lyon rats). In the former rat strains there was a highly 

significant correlation of platelet Ca2+
i with pulse pressure 

but not with diastolic blood pressure, whereas platelet 

Ca2+
i in Lyon rats correlated with diastolic blood pressure 

but not with pulse pressure [115,116]. Finally, we also paid 

attention to the cytosolic pH (pHi) and Ca2+
i in platelets of 

Dahl and Sabra rats susceptible to salt hypertension 

development. Although there were no strain or salt-

dependent differences in platelet Ca2+
i, both strains had 

lower cytosolic pHi [116,117]. Basal platelet pHi of Dahl 

rats correlated positively with plasma triglycerides and 

plasma cholesterol and the changes in microviscosity of 

the outer membrane leaflet might be involved in pHi 

regulation [117,118]. The above findings were summarized 

in a review on the abnormalities of membrane function and 

lipid metabolism in hypertension, which was published in 

American Journal of Hypertension in 1999 [112]. 

 

Center for Cardiovascular Research 
 

In 1999 the Center for Cardiovascular Research 

was established to combine the effort and expertise of 

leading Czech cardiovascular investigators. On this 

platform we have met an excellent newly formed research 

team of Dr. Luděk Červenka (Institute of Clinical and 

Experimental Medicine, Prague). He started his study in 

experimental nephrology and hypertension under the 

supervision of Dr. Jiří Heller [119,120]. In 1998 Dr. 

Červenka joined the laboratory of Dr. L. Gabriel Navar in 

New Orleans. There he studied the participation of renin-

angiotensin system in the pathogenesis of two-kidney, 

one-clip Goldblatt hypertension with a special focus on 

renal functions [121-124]. He also paid the attention to the 

salt-sensitive hypertensive mice, in which bradykinin B2 

receptor was inactivated, showing that high-salt diet and 

angiotensin II infusion induces the increase in blood 

pressure [125,126]. Moreover, genetic inactivation of B2 

receptor led to the worsening of 2K-1C Glodblatt 

hypertension [127] (Červenka 2003). After the return to 

Prague, Dr. Červenka succeeded to establish a breeding 

colony of Ren-2 transgenic rats (harboring mouse renin 

gene), the breeding pairs being provided by Prof. Detlev 

Ganten and Dr. Michael Bader (Berlin). Thanks to a long-

term fruitful cooperation with Prof. Herbert J. Kramer 

(Bonn) the experimental research performed in Ren-2 

transgenic rats covered not only the contribution of 

particular RAS components such as angiotensin II receptor 

subtype AT1A [128,129] or angiotensin 1-7 [130,131] but 

also the role of neuronal NO synthase [132,133] and 

oxidative stress [134-136] as well as the influence of salt 

intake [137,138] or anesthesia [139]. Importantly, they 

demonstrated substantial differences in plasma and renal 

angiotensin II concentrations depending on whether the 

animals were anesthetized or conscious. A considerable 

attention was paid to endothelin system. They 

demonstrated that non-selective ET receptor blockade 

reduced proteinuria and attenuated cardiac hypertrophy in 

homozygous TGR [140]. Later, they focused on selective 

ETA receptor blockade both in heterozygous and 

homozygous TGR [141-143]. Another important topic of 

his research were CYP-450-dependent oxygenase 

products – epoxyeicosatrienoic acids (EETs) and 20-

hydroxyeicosatetraenoic acid (20-HETE). They found 

higher urinary 20-HETE and lower EETs excretion in 

TGR as compared with normotensive HanSD, suggesting 

that the imbalance between pro-hypertensive and anti-

hypertensive CYP-450 products contribute to 

hypertension in TGR [144]. The inhibition of 20-HETE 

formation and EETs degradation led to BP decrease 

[145,146]. Dr. Červenka also acquired CYP1a1-Ren-2 

transgenic rats in which hypertension is inducible by 

xenobiotic indole-3-carbinole. Severe hypertension 

develops already two days following its administration and 

is accompanied by substantial body weight loss and 

cardiac hypertrophy [147]. Moreover, impaired renal 

autoregulation precedes the development of hypertension 

in this experimental model [148]. 

Since hypertension is largely caused by the 

enhanced constriction of small resistance arteries together 

with the attenuation of vasodilator mechanisms, we 

directed our research to both in vitro and in vivo 

abnormalities of vascular tone in various form of 

experimental hypertension. We also paid our attention to 

the accelerated growth of vascular smooth muscle cells 

(VSMC) isolated from SHR aorta and to the respective sex 

differences in this strain. We demonstrated a shorter 

doubling time in VSMC from male SHR compared to 

those from female animals [149,150]. VSMC isolated 
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from the aorta of male SHR proliferate more rapidly than 

those obtained from female SHR. Angiotensin II 

stimulation of VSMC growth was more pronounced in 

cells isolated from the aorta of male SHR compared to 

cells from female SHR [151]. Furthermore, we observed 

that the augmented [Ca2+]i response to angiotensin II in 

male compared to female aortic VSMC was dependent on 

Ca2+ influx [152].  

 

The balance of vasoconstrictor and 
vasodilator mechanisms  

 

In 1987 we started to evaluate the contribution of 

various pressor systems to BP maintenance in DOCA-salt 

hypertensive rats [153]. Simultaneously, we were inspired 

by the papers of Dr. Haralambos Gavras and Dr. Bernard 

Waeber [154-157] who performed the acute blockade of 

particular vasoactive systems in conscious rats. Therefore, 

we adapted the experimental protocol described by 

Minami et al. [158] for the estimation of the contribution 

of three principal vasoactive systems (renin-angiotensin, 

sympathetic and nitric oxide) to BP maintenance. A 

sequential blockade of these three systems in conscious 

cannulated animals was used for this purpose. This gave 

us the opportunity to study the role of sympathetic nervous 

system (SNS) which seemed to be enhanced in various 

salt-dependent forms of hypertension [76,159,160]. Our 

first studies, which were performed in Dahl and HTG rats, 

indicated the sympathetic hyperactivity and relative NO 

deficiency in both forms of hypertension [161,162]. 

A comparison of BP response to the acute administration 

of tempol (superoxide dismutase mimetic) in young and 

adult Dahl rats suggested a greater involvement of reactive 

oxygen species in young salt hypertensive animals [163].  

At that time Dr. Kuneš became a director of 

IPHYS and we established a valuable cooperation with Dr. 

Olga Pecháňová from the Institute of Normal and 

Pathological Physiology (Slovak Academy of Sciences, 

Bratislava). She introduced to us a model of NO-deficient 

hypertension elicited by chronic administration of non-

specific NO synthase inhibitor L-NAME [164-166] and 

we started to examine this model using our techniques. 

One of our first joint papers [167] revealed the importance 

of sympathetic hyperactivity in this form of hypertension. 

We also reported that a considerable part of vasodilation 

persisting in L-NAME-treated rats can be abolished by the 

acute administration of the inhibitors of inducible NO 

synthase. Our further studies indicated a similarity of L-

NAME-induced hypertension in immature and adult rats 

[169] and a possibility to attenuate the development of this 

NO-deficient form of hypertension by chronic N-

acetylcysteine (NAC) administration [170]. Furthermore, 

we demonstrated that chronic NAC treatment augmented 

NO-dependent vasodilatation, whereas chronic captopril 

treatment reduced sympathetic vasoconstriction in rats 

with L-NAME-induced hypertension [171]. The 

importance of sympathetic hyperactivity in this form of 

hypertension was confirmed in our further study indicating 

the attenuated development of L-NAME-induced 

hypertension in rats pretreated with pertussis toxin 

inactivating Gi protein [172]. Within the frame of this 

cooperation we also studied the effects of chronic NAC 

administration on the development of genetic hypertension 

in young SHR (preventive study) [173] and on the 

maintenance of hypertension in adult SHR with 

established hypertension (therapeutic study) [174]. 

Finally, Dr. Kuneš upgraded the original concept that 

hypertension is a result of the interaction between genetic 

and environmental factors [175] by considering the 

significant role of epigenetic inheritance [176] (Fig. 4).

 

 
Fig. 4. Epigenetic and gene interactions with 
environmental factors during blood pressure ontogeny 
and hypertension development. E1 - En represent 
environmental stimuli affecting expression of genetic 
information (G1 - Gn) occurring in particular critical 
periods (developmental windows). Modified from our 
review [47]. 
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Future perspectives 
 

Another major profit from the collaboration with 

Dr. Pecháňová was the facilitation of the long-term work 

of several young Slovak colleagues in our lab – Drs 

Ludovít Paulis, Silvia Líšková, Mária Pintérová, Michal 

Behuliak and Michal Bencze. Together with the return of 

Dr. Ivana Vaněčková from the Institute of Clinical and 

Experimental Medicine (Prague) in 2010, this team was 

prepared for a further development of the Laboratory of 

Experimental Hypertension in IPHYS. The original 

direction of our research was modified towards new 

hypertensive models (Ren-2 transgenic rats) and new 

mechanisms in blood pressure control and hypertension 

development (role of endothelin, interaction of RAS and 

SNS, central and peripheral effects of angiotensin II, 

mechanisms of sympathetic hyperactivity, contribution of 

Ca2+ influx and Ca2+ sensitization, wire myography for the 

examination of conduit and resistance arteries). Thus, we 

were ready for a new chapter in the history of the 

Laboratory of Experimental Hypertension in IPHYS. 
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