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Summary 

Metabolomics and lipidomics have emerged as tools in 

understanding the connections of metabolic syndrome (MetS) 

with cardiovascular diseases (CVD), type 1 and type 2 diabetes 

(T1D, T2D), and metabolic dysfunction-associated steatotic liver 

disease (MASLD). This review highlights the applications of these 

omics approaches in large-scale cohort studies, emphasizing their 

role in biomarker discovery and disease prediction. Integrating 

metabolomics and lipidomics has significantly advanced our 

understanding of MetS pathology by identifying unique metabolic 

signatures associated with disease progression. However, 

challenges such as standardizing analytical workflows, data 

interpretation, and biomarker validation remain critical for 

translating research findings into clinical practice. Future research 

should focus on optimizing these methodologies to enhance their 

clinical utility and address the global burden of MetS-related 

diseases. 
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Introduction 

 

Metabolic syndrome (MetS), also known as 

insulin resistance syndrome, is defined as a cluster of risk 

factors for cardiovascular disease and diabetes. The main 

risk factors include raised blood pressure, visceral 

obesity, hyperglycemia, and dyslipidemia (reduced high-

density lipoprotein cholesterol or raised triacylglycerols) 

[1-3]. These features are often related to insulin 

resistance, which can lead to prediabetes or type 2 

diabetes [4]. Recent studies have shown that even non-

obese patients may suffer from insulin resistance, with 

visceral adiposity being considered the primary 

contributor to MetS pathology. Visceral adiposity is 

strongly associated with hepatic fatty infiltration, 

indicating that the amount of fatty acids in the liver is 

indirectly linked with MetS, both as a cause and 

a consequence of the syndrome [5]. Furthermore, in 

recent decades, MetS has become a significant health 

concern with a high prevalence worldwide [4,6-8]. To 

properly understand MetS metabolism and the 

relationships between the aforementioned risk factors 

[9,10], metabolomics and lipidomics can be applied. 

Metabolite profiling is conducted using either 

untargeted or targeted approaches, applied to biological 

samples through various analytical methods and 

platforms [11]. Large-scale metabolomics and lipidomics 

studies, which involve extensive populations or numerous 

samples (over 1000), have demonstrated their 

effectiveness in various scientific fields. These studies 

have defined individual phenotypes and shown the effects 

of genetic, environmental, intervention, or aging factors. 

They have also discovered biomarkers and validated 

metabolite patterns associated with specific biological 
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states [11]. Integrating newly identified metabolite 

biomarkers with clinical characteristics can potentially 

enhance the prediction of disease development [12]. 

In this review, we examine metabolomics and 

lipidomics human cohort studies and their application in 

MetS research. We introduce the analytical workflow and 

provide examples of recent MetS studies on 

cardiovascular diseases, type 1 and type 2 diabetes, and 

metabolic dysfunction-associated steatotic liver disease. 

 

Metabolomics and lipidomics in large cohort 

studies 

 

Large-scale metabolomics and lipidomics 

studies analyze hundreds to thousands of human samples 

containing thousands of metabolites. These samples are 

often processed in multiple batches over several weeks or 

months. No single analytical platform can cover all 

metabolites in a biological sample due to the complexity, 

diversity, and size of the human metabolome and 

lipidome. Therefore, multiple analytical platforms are 

employed to increase metabolite coverage [13]. Figure 1 

shows metabolomics and lipidomics workflow, consisting 

of sample handling, instrumental analysis, data 

processing, and bioinformatics. 

 

 

 

 

 

 
 

Fig. 1. Metabolomics and lipidomics workflow. 

 

 

 

Sample handling 

The first step in metabolomics and lipidomics 

studies is creating a proper experimental design, 

including sample size, sample collection and storage, 

sample preparation, quality control, and analytical 

techniques [14]. 

Determining the appropriate sample size, both 

overall and for each group, is essential. Insufficient sample 

size can lead to errors and lack of precision. Conversely, 

even small, insignificant differences might appear 

statistically significant with a larger sample size, while 

clinically important effects might seem statistically non-

significant with a small sample size [15]. A high sample 

size may also waste resources for minimal information 

gain [16]. The minimal sample size is calculated using 

power analysis, taking into account the significance level 

(e.g., α=0.05), statistical power (e.g., 0.8), and effect size 

(d=0.8, 0.5, 0.2 for large, medium, small effect size, 
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respectively) [17]. To this end, freely available software 

such as G*Power can be used [18]. However, for 

untargeted metabolomics and lipidomics studies with 

a priori unknown number of measured metabolites [19], 

alternative strategies have become available, such as the 

Data-driven Sample size Determination (DSD) algorithm 

for MATLAB and GNU Octave [20], MetSizeR [21], or 

the online tool SSizer (idrblab.org/ssizer) [22]. 

Generally, at least 20-30 samples per group are 

advised for human studies, although the number of 

samples can range from hundreds to even thousands to 

achieve reasonable statistical power. On the other hand, 

for cell and animal studies with tightly controlled 

conditions, 3-6 and 5-10 samples per group, respectively, 

are recommended [23-25]. 

Another crucial aspect to consider is sample 

collection and storage. These steps must be decided 

during preanalytical processing to ensure reliable results 

[26]. Collection procedures differ based on the type of 

samples and planned analysis. For human cohort studies, 

samples typically consist of plasma or serum. The 

selection of a specific anticoagulant for plasma  

(e.g., EDTA, citrate, heparin) should be decided in 

advance and maintained consistently throughout the 

study. Inaccurate sample collection or improper storage 

may cause metabolite degradation, increased variability, 

or interference with instrumentation [27]. 

It is important to quench the metabolism of 

samples as soon as possible prior to their storage. 

Quenching should stop all enzymatic and chemical 

activities and maintain the current metabolite levels 

during harvesting [28]. The recommended method for 

quenching is to rapidly freeze the samples using liquid 

nitrogen, dry ice, or freeze clamping. After that, samples 

should be stored at -80 °C [29]. 

The next step is sample extraction to capture as 

many metabolites as possible in the sample. Various 

sample preparation techniques are available [30]. 

Minimal sample preparation methods, such as dilution, 

are sufficient for some matrices like urine. Water is 

a suitable diluent for reversed-phase liquid 

chromatography platforms, which start with a high 

percentage of water in the mobile phase. On the other 

hand, acetonitrile as a diluent is preferred for hydrophilic 

interaction chromatography, which begins with a high 

percentage of organic solvent (acetonitrile). Additionally, 

normalization to creatinine or osmolality values is 

a common strategy for urine due to its high variability in 

concentration, which correlates with metabolite 

composition [31]. On the other hand, plasma and serum, 

often used in large human cohort studies, contain many 

interfering proteins and require an extraction step to 

remove these before instrumental analysis. Common 

preparation methods like buffering, dilution, evaporation, 

and centrifugation may lead to metabolite losses and 

issues such as high salt concentration and instrument 

disruption, which can be reduced by adding an extraction 

step [32]. 

Extraction techniques in metabolomics and 

lipidomics commonly include organic solvent-based 

protein precipitation, liquid–liquid extraction (LLE), or 

solid-phase extraction (SPE). Isolation can also be 

performed in single or multiple fractions [33]. Single-

phase extraction uses methanol, acetonitrile, isopropanol, 

a mixture of isopropanol/acetonitrile/water, acetonitrile/ 

methanol, butanol/methanol [27,34,35]. This method 

enables simultaneous extraction of lipids and polar 

metabolites, but such extracts are very complex and can 

be challenging during instrumental analysis. 

The most utilized method for reducing extract 

complexity is two-phase liquid extraction, where the 

separate phases are created by combining immiscible 

solvents: methyl tert-butyl ether (MTBE)/methanol/water 

[36], chloroform/methanol/water [37], and dichloro-

methane/methanol/water [38]. After centrifugation, the 

organic phase primarily contains nonpolar metabolites, 

such as lipids, while the polar (water) phase mainly 

consists of polar metabolites (Fig. 2A). In 2019, Vale et 

al. [39] introduced three-phase extraction using hexane, 

methyl acetate, acetonitrile, and water. After 

centrifugation, the upper organic phase is enriched with 

neutral lipids such as triacylglycerols and cholesteryl 

esters; the middle organic phase contains the 

glycerophospholipids, and the bottom aqueous phase 

contains polar metabolites. 

While organic solvent-based protein 

precipitation and LLE methods are typically used for 

untargeted methods, SPE is the first choice for targeted 

methods, usually covering trace concentrations of 

metabolites [40]. 
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Fig. 2. (A) Example of sample extraction using MTBE, methanol, and water [41], leading to two phases for subsequent metabolomics 

and lipidomics platforms. (B) Example of a typical LC-MS sequence during metabolomics and lipidomic analysis, consisting of solvent 

injection for general platform equilibration, followed by a system suitability test (SST), platform equilibration using pooled QC samples, 

analysis of method blanks (BL), a diluted series of QC samples (SD), randomized study samples with regular QC sample injections after 

every 10 study samples. (C) Example of different LC-MS platforms [41,42] for metabolomic and lipidomic analysis in relation to the 

XlogP (predicted octanol/water partition coefficient) range of subgroups of polar metabolites and complex lipids. 

 

 

 

The success of any research study also depends 

on an effective quality control (QC) process. Using 

internal standards in the extraction and resuspension 

solvents helps control the method’s performance. These 

standards verify that aliquots are collected correctly from 

all extracts, the autosampler injects the correct volume, 

chromatographic and mass accuracy drifts are monitored, 

signal intensity fluctuations are tracked, and the quality of 

generated data is assessed during data processing [29]. 

They can also be used for quantification using a single-

point calibration approach if added during the extraction 

step. Internal standards are essential because they 

represent true positives in the sample. 

QC samples are crucial for obtaining high-

quality data in high-throughput analytical chemistry 

laboratories [43]. They help assess the precision and 

stability of the analysis. QC samples are used to 

equilibrate the analytical platform, monitor signals for 

precision (within and between days), correct signals 

(normalization), and standardize methods. QC data can 

also help indicate random errors or fluctuations during 

the analytical run [44]. 

QC samples can be created by pooling aliquots 

of each study sample, reflecting the composition of all 

samples during analysis. Another option is to employ 

external QC using a matrix that matches the study 

samples, which can be useful in large-scale studies where 

pooling is challenging. In such studies, pooling 

QC samples can be simplified by using pooled aliquots 

from only a portion of the samples. Additionally, 

commercially accessible QC samples (e.g., human plasma 

NIST SRM 1950 standard reference material [45]) can be 

applied, though there is a risk of missing some 

metabolites compared to pooled QC samples [46]. These 

approaches can be combined; however, they should be 

planned in advance and not modified during the study. 
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As Figure 2B shows, a typical metabolomics and 

lipidomics sequence consists of pre-injection steps 

(injection of solvents, QC sample) to equilibrate 

a particular platform, followed by a system suitability test 

(e.g., a mixture of selected metabolites or biological 

samples with known composition), analysis of method 

blanks, a diluted series of QC samples, randomized 

samples, and regular injection of QC samples [42]. All 

these steps are essential to generate reliable metabolomics 

and lipidomics data. 

 

Instrumental analysis 

A multiplatform approach using various 

analytical techniques and platforms is necessary due to 

the diversity and complexity of the metabolome and 

lipidome. This approach can improve the overall 

coverage and reliability of detected metabolites [47]. 

Liquid chromatography-mass spectrometry (LC-MS) 

dominates metabolomics and lipidomics. Other 

commonly applied platforms are gas chromatography-

mass spectrometry (GC-MS), capillary electrophoresis-

mass spectrometry (CE-MS), and nuclear magnetic 

resonance (NMR). However, NMR does not offer as 

broad metabolite coverage as MS-based approaches [29]. 

LC-MS separates metabolites with a wide range 

of polarities due to its versatility in stationary phases, 

column dimensions, mobile phase modifiers, and solvents 

[48]. Commonly used LC-MS separation platforms are 

reversed-phase LC (RPLC) and hydrophilic interaction 

chromatography (HILIC). RPLC separates polar to semi-

polar metabolites using C18, C8, or C30 columns, 

whereas HILIC separates highly polar metabolites using 

silica, alkyl amide, aminopropylsilane, or sulfobetaine 

groups as the stationary phase [48]. Efficient 

chromatographic separation enhances the sensitivity of 

MS detection, while background noise reduction 

improves the quality of MS data [49]. For the analysis of 

polar metabolites (Fig. 2C), RPLC and HILIC are 

preferred, with mobile phases containing water, 

acetonitrile, and methanol. On the other hand, for RPLC-

based lipidomics, stronger mobile phases are needed, 

typically containing a high percentage of isopropanol 

[41,42]. The column formats vary around 50-150 mm in 

length, with an internal diameter of 2.1 mm, packed with 

sub-2 µm particles. The separation process takes between 

10 and 30 min [50]. However, fast, high-throughput  

LC-MS methods (<5 min), combined with 96-well plate 

sample preparation, are preferred for large cohort studies 

since they allow for hundreds of injections to be 

performed daily [29,42]. 

Once separated, analytes are ionized in an ion 

source to create charged particles. In LC-MS, 

electrospray ionization (ESI) is typically used, allowing 

ion formation for small molecules (<2,000 Da) and large 

molecules, such as peptides and proteins. Due to the 

chemical diversity of the metabolome and lipidome, ESI 

is usually applied in both positive and negative modes for 

more efficient coverage. ESI is a soft ionization 

technique, minimizing the fragmentation of molecular 

ions compared to electron ionization (EI) in GC-MS. 

However, ESI is sensitive to non-volatile salts, leading to 

limited use of only volatile mobile phase modifiers  

(e.g., formic acid, acetic acid, ammonium formate, 

ammonium acetate) in the chromatography part of the 

method. Due to the possible occurrence of ion 

suppression, metabolites with lower affinity for electrons 

or protons can be masked or undetected when competing 

for ionization [51]. 

MS techniques used for analyte detection can be 

either in a simple MS system with a single mass analyzer 

or in a tandem MS/MS system with multiple analyzers. 

These systems fall into low-resolution (LRMS) and high-

resolution (HRMS) techniques. The main difference 

between LRMS and HRMS is their mass accuracy, i.e., the 

precision in determining the mass. HRMS can reach the 

accurate mass and increase confidence during metabolite 

annotation, whereas LRMS can only differentiate 

compounds based on nominal mass, which can cause false 

positives for compounds that share mass but are 

structurally unrelated [52]. Therefore, untargeted 

metabolomics and lipidomics rely on HRMS and  

HR-MS/MS using time-of-flight or orbital ion trap 

analyzers and operating in data-dependent acquisition 

(DDA) or data-independent acquisition (DIA) modes. In 

DDA mode, precursor ions above a pre-set threshold are 

selected using a narrow isolation window, making 

connecting product and precursor ions easier. However, 

low-abundance ions can be missed, and the settings are 

more complex than in DIA, which may lead to errors 

[53,54]. Conversely, in DIA mode, all precursor ions 

within the wide isolation window are fragmented, covering 

more low-abundance ions; however, this results in more 

complex spectra that are harder to interpret [55]. Tools like 

MS-DIAL [56], DecoMetDIA [57], and DecoID [58] help 

to deconvolute these complex MS/MS spectra. For the 

targeted LC-MS method, LRMS triple-quadrupole (QqQ) 

and quadrupole/linear ion trap (QLIT) are used, usually 

operating in a multiple reaction monitoring (MRM) mode to 
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improve sensitivity and selectivity of monitored ions [50]. 

In general, untargeted methods provide semi-

quantitative data, meaning that the results are reported as 

peak areas or heights in arbitrary units within the linear 

dynamic range of the detector. In contrast, targeted 

methods report quantitative data in molar concentrations 

[29]. Although quantification is often requested, it is not 

necessary for many studies since both semi-quantitative 

and quantitative data can be used for statistical analysis. 

However, the advantage of quantitative data is that it 

allows for the immediate distinction between major and 

minor metabolites and enables direct comparisons of 

results between laboratories and studies. 

 

Data processing 

Properly handling complex datasets produced by 

metabolomics and lipidomics experiments is crucial, as 

this process significantly impacts metabolite annotation 

and quantification, consequently affecting the biological 

interpretation of results [59]. A standard untargeted 

metabolomics and lipidomics study can generate 

hundreds of annotated metabolites and numerous 

unknown features characterized by retention time and 

mass-to-charge ratio (m/z). Data handling can be divided 

into data processing and data analysis. Data processing 

uses signal processing methods to refine the raw data and 

combine them between measurements, converting data 

into a format that is easier for further analysis. This 

includes feature detection, chromatogram building, 

deisotoping, peak alignment, and gap-filling. Data 

analysis involves examining and interpreting processed 

data from previous steps, using methods like clustering 

metabolic profiles or finding key differences between 

sample groups [59]. Over the last decade, numerous 

processing tools have been introduced, such as 

MarkerLynx, MarkerView, MassHunter Profiling, 

Compound Discoverer, MS-DIAL (Fig. 3A), MZmine, 

XCMS, MetAlign, GeneDATA, Matlab and R scripts [29]. 

 

 
 

Fig. 3. (A) Example of MS-DIAL software [56] used for processing lipidomics data acquired using the RPLC-ESI(–)-MS [41], with 

annotated PC 16:0_18:2 in human serum. Using ammonium acetate and acetic acid as mobile phase modifiers led to the detection PC 

34:2 as an acetate adduct ([M+CH3COO]-) (m/z 816.576). The MS/MS spectrum of PC 34:2 provided a fragment ion [M–CH3]- (m/z 
742.539) and a series of fragments for elucidating fatty acyl chains (e.g., m/z 255.233 for 16:0 and m/z 279.233 for 18:2). The use of 

the underscore “_” indicates certainty in the composition of the fatty acyl constituents but not their specific placement on the glycerol 

backbone. (B) Example of MS-FINDER software [60] used for the structure elucidation of an unknown compound (m/z 189.1597, 

retention time 4.57 min) in human serum acquired using the HILIC-ESI(+)-MS platform [41], with tentative annotation as N6,N6,N6-

trimethyl-L-lysine. 
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Due to the structural variability and diversity of 

metabolites, detecting and annotating metabolites can be 

challenging. On average, successful annotation occurs for 

only approximately 10 % of the molecules, underscoring 

the importance of accurately identifying most molecular 

structures [61]. It should also be noted that in LC-MS, 

each metabolite can be detected in multiple ion forms, 

which can be annotated if present in spectral libraries or 

based on accurate mass differences. For instance, 

phosphatidylcholines (PC) can be detected during 

lipidomics profiling in positive ESI as [M+H]+ (major 

peak) and [M+Na]+ (minor peak), while negative ESI 

provides [M+CH3COO]- (major peak in the presence of 

ammonium acetate in the mobile phase [41]) and [M+Cl]- 

(minor peak). Depending on the data processing 

workflow, various options are possible for reporting these 

ion forms, such as providing all annotated species 

separately, species from one ionization mode only  

(e.g., the one with a lower relative standard deviation in 

QC samples), or combining adducts (summing peak 

intensities) for each ionization mode. 

The Metabolomics Standardization Initiative 

(MSI) describes community-based guidelines for 

reporting and performing metabolomics workflows, 

proposing four confidence levels [62]: Level 1 – 

matching based on retention time, MS1, and MS/MS 

spectrum; Level 2 – matching based on MS1 and MS/MS 

spectrum; Level 3 – annotation based on matching MS1 

accurate mass only; Level 4 – unknown compound 

characterized by retention time and m/z. However, 

multiple researchers have suggested revisions and 

modifications [63-65]. The Lipidomics Standards 

Initiative (LSI) has recently been introduced to create 

standardized lipid species annotations and unify 

community efforts [66]. 

The most reliable approach for metabolite 

annotation represents the use of spectral libraries 

containing retention time, m/z (MS1 accurate mass), and 

MS/MS fragmentation spectra (MSI – Level 1). However, 

it is virtually impossible to obtain all three pieces of 

information for every possible metabolite. Thus, 

commercial or open-access MS/MS libraries (with 

MS1 precursor ions and MS/MS spectra) are crucial in 

confident compound annotation in metabolomics and 

lipidomics (MSI – Level 2). In recent years, spectral 

libraries and databases have grown in both coverage and 

diversity [67]. METLIN Gen2 is the most extensive 

spectral library (metlin.scripps.edu), containing over 

900,000 molecular standards and MS/MS data, 

comprising over 4 million tandem spectra [68]. Other 

extensive MS/MS libraries include the National Institute 

of Standards and Technology (NIST) MS/MS library 

(chemdata.nist.gov) and MassBank of North America 

(MoNA, massbank.us). Additional resources include 

MassBank (massbank.jp), ReSpect (spectra.psc.riken.jp), 

RIKEN PlaSMA (plasma.riken.jp), mzCloud 

(mzcloud.org), GNPS (gnps.ucsd.edu), MSforID 

(msforid.com), and HMBD (hmdb.ca). 

Furthermore, numerous software and tools have 

been developed to help annotate unknown compounds, 

such as MS-FINDER (Fig. 3B), CFM-ID, MetFrag, 

ChemDistiller, and CSI:FingerID. These tools convert 

mass data into molecular fragments using combinatorial 

structure generation techniques and search against 

existing structures in various databases. Potential 

candidates can be filtered using additional orthogonal 

filters based on retention time prediction [69] or 

hydrogen/deuterium exchange mass spectrometry (HDX-

MS) [70,71]. Nevertheless, confirmation should always 

follow by analyzing an analytical standard under identical 

instrumental conditions [72]. 

 

Bioinformatics 

Statistical analysis is essential to properly extract 

relevant information from the obtained data. Statistical 

analyses can be categorized as univariate and multivariate 

methods. Univariate statistical methods include t-test, 

ANOVA, and fold-change analysis to compare different 

sets of samples. These methods are used for sets of tens 

to hundreds of metabolites, which increases the chances 

of false positives [73]. Therefore, correction methods 

such as Bonferroni correction [74] or the Benjamini-

Hochberg [75] false discovery rate should be applied. 

These corrections have been addressed in multiple studies 

[74-76]. Commonly used multivariate methods include 

principal component analysis (PCA), partial least squares 

discriminant analysis (PLS-DA), and hierarchical cluster 

analysis (HCA) [77]. A routinely employed web-based 

platform for comprehensive metabolomics and lipidomics 

data analysis and interpretation is MetaboAnalyst 

(metaboanalyst.ca) [78]. 

Next, the biological relevance of the measured 

metabolites is interpreted using pathway and enrichment 

analysis. Enrichment analysis identifies functionally 

relevant metabolites and links their changes to biological 

contexts, suggesting key pathways or disease conditions 

for further study. Pathway analysis, on the other hand, 

finds pathways that significantly affect specific biological 
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processes [79]. Both analyses are performed using 

various software tools such as MetaMapR, MetabNet, 

GNPS, MS2LDA, MetaboAnalyst, or MetFlow to map 

the metabolic pathways. New tools, such as an ontology 

database and enrichment analysis (LION, 

lipidontology.com) and lipid over-representation analysis 

(LORA, lora.metabolomics.fgu.cas.cz), are also available 

to interpret complex lipids [80]. 

An important part of every experiment is data 

sharing. Data should be shared following the Findable, 

Accessible, Interoperable, and Reusable (FAIR) Guiding 

Principles for scientific data management and stewardship 

[81]. Public repositories such as Metabolomics Workbench 

(metabolomicsworkbench.org), MetaboLights 

(ebi.ac.uk/metabolights), and MassIVE 

(massive.ucsd.edu/ProteoSAFe/static/massive.jsp) enable 

data sharing. A newly introduced dynamic checklist 

(lipidomicstandards.org/reporting_checklist) summarizing 

key details of lipidomic analyses can be stored or shared in 

the supporting materials of papers or at a general-purpose 

open repository Zenodo (zenodo.org). 

Recently introduced metabolomics and 

lipidomics atlases should also serve as open-access 

resources [29]. These atlases monitor the quantities and 

relationships of metabolites in different biological 

matrices, highlighting the importance of reusing and 

sharing data [82]. 

 

Metabolomics and lipidomics for studying 

metabolic syndrome 

 

In recent years, MetS has become a major health 

risk with its increasing prevalence, reaching pandemic 

proportions [83]. The disease affects around 25 % of the 

global population, making prevention and management 

essential [84]. Understanding its pathophysiology is 

crucial in this effort. Metabolomics and lipidomics have 

been employed to investigate various diseases by 

identifying diagnostic biomarkers. Recently, research 

efforts have focused on cardiovascular diseases (CVD), 

type 2 diabetes (T2D), and metabolic dysfunction-

associated steatotic liver disease (MASLD), all of which 

are associated with MetS. Wishart’s comprehensive 

review in 2019 further underscored the significance of 

metabolomics studies in understanding physiological and 

pathophysiological processes [19]. Supplementary Tables 

S1-S3 overview metabolomics and lipidomics large-

cohort studies focusing on CVD, T1D/T2D, and 

MASLD. Next, we briefly highlight some of these studies 

to elucidate key findings and advancements, emphasizing 

how metabolomic and lipidomic profiles have provided 

deeper insights into disease mechanisms and potential 

therapeutic targets. 

 

Cardiovascular diseases 

CVDs are the leading cause of death globally. In 

2022, CVDs caused approximately 19.8 million deaths, 

accounting for about one-third of all global mortality that 

year. Major contributors to this toll were ischemic heart 

disease (9.2 million deaths) and ischemic stroke 

(3.5 million deaths) [85]. More than three-quarters of 

CVD deaths occur in low- and middle-income countries, 

compared to high-income countries, where the 

CVD death rate has declined [86,87]. 

CVDs are disorders of the heart and blood 

vessels, including coronary heart disease, cerebrovascular 

disease, peripheral arterial disease, rheumatic heart 

disease, congenital heart disease, deep vein thrombosis, 

and pulmonary embolism. Heart attacks and strokes are 

usually considered acute events, primarily resulting from 

a blockage that obstructs blood flow to the heart or brain 

[86]. The risk factors for cardiovascular diseases often 

include an unhealthy diet, physical inactivity, tobacco 

use, and harmful use of alcohol. These factors can be 

controlled, reducing the risk of CVD occurrence [86]. 

One area in CVD research involves exploring 

the role of different metabolites in disease promotion and 

progression. For instance, amino acids (alanine, 

glutamine, glycine, histidine, isoleucine, leucine, lysine, 

valine, phenylalanine, and tyrosine) have been identified 

as predictors of incident CVD risks [88-92]. Other 

discovered biomarkers of CVD are choline, 

trimethylamine N-oxide (TMAO), and betaine [93-96]. 

Similarly, compounds such as trimethyllysine [97], 

phenylacetyl glutamine [98], and niacin metabolites (N1-

methyl-2-pyridone-5-carboxamide and N1-methyl-4-

pyridone-3-carboxamide) [99] have been linked to CVD 

risks. Moreover, in recent studies, the endogenous sugar 

alcohols erythritol and xylitol were both clinically and 

mechanistically linked to CVD [100,101]. 

The association of diet-linked metabolites with 

CVD has also been explored. Fu et al. [102] investigated 

metabolites connected with a healthy lifestyle and their 

effect on CVD incidence. They identified and validated 

111 metabolites associated with overall lifestyle, 65 of 

which were related to CVD risk. Healthy lifestyle-linked 

metabolites were also studied by Lu et al. [90]. Diabetes 

patients free of CVD were divided into groups based on 
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the healthy level of five lifestyle factors and observed. 

Adherence to healthy lifestyle factors was associated with 

44 plasma metabolites (e.g., 3-hydroxybutyrate, alanine, 

glutamine, glycine, branched-chain amino acids), and 

approximately half of them mediated between at least one 

lifestyle factor and CVD risk. Both studies suggest that 

a healthy diet positively affects the incidence of CVD. 

Additionally, the effects of legume [103] and 

walnut [104] consumption on CVD risk were researched. 

Walnut consumption was found to lower the risk of 

incident CVD and T2D, while legume consumption was 

associated with a lower risk of T2D but not CVD. 

Furthermore, gut microbiome-derived metabolites such as 

p-cresol sulfate and indoxyl sulfate have garnered 

attention [105]. This study shows that these abundant 

microbiome-derived metabolites have a greater impact on 

CVD than previously thought. It also suggests targeting 

the gut microbial pathways that produce p-cresol and 

indole as a potential strategy for treating CVD. 

Lipidomics profiling also reveals characteristic 

lipid signatures associated with increased CVD risk. 

Harm et al. [106] focused on the platelet lipidome of 

coronary artery disease patients and found alterations in 

the lipid composition of patients with adverse 

cardiovascular events. The results showed that the 

platelet lipidome of CVD patients with increased 

cardiovascular risk is changed, and specific platelet lipids 

may indicate adverse events. These findings may help 

discriminate the individual risk of patients with coronary 

artery disease. Eichelmann et al. [88] investigated 

associations of plasma lipid alterations with incident 

cardiometabolic diseases and studied the effect of dietary 

fat modulation on discovered risk-associated lipids. The 

results suggest that dietary fat intervention can alter 

lipids, which may serve as a potential tool for primary 

disease prevention. Furthermore, Seah et al. [107] 

suggested that certain classes of sphingolipids may also 

affect CVD risk. 

 

Type 1 & 2 diabetes 

As of 2021, the global prevalence of diabetes 

was estimated at 10.5 % (537 million people), projected 

to rise to 12.2 % (783 million people) by 2045. Diabetes 

was responsible for approximately 6.7 million deaths 

worldwide in 2021, with global healthcare expenditures 

amounting to approximately USD 966 billion [108]. 

However, the majority of these cases are attributed to 

T2D, while T1D affected approximately 8.4 million 

individuals globally in 2021 [109]. In the future, access to 

and affordability of insulin may become challenging, 

particularly in underdeveloped and developing countries, 

due to the increasing prevalence and incidence of T1D 

[110]. 

Diabetes is a complex chronic metabolic disease 

characterized by high prevalence and mortality, 

encompassing T1D, T2D, and gestational diabetes 

occurring during pregnancy. T1D results from 

insufficient insulin production by the pancreas, 

necessitating daily insulin administration. T2D arises 

from inadequate insulin secretion and the body’s 

ineffective use of insulin, leading to elevated blood sugar 

levels. T2D impacts the metabolism of glucose, lipids, 

and amino acids [111,112]. 

Metabolomics and lipidomics studies of T1D aim 

to identify biomarkers for predicting T1D risk and aiding 

in early disease detection. Orešič et al. [113] analyzed the 

lipidome profile of cord serum samples to investigate 

associations between lipid profile changes and β-cell 

autoimmunity development or clinical T1D. Their study 

found that progression to T1D correlated with decreased 

concentrations of major choline-containing phospholipids 

(sphingomyelins and phosphatidylcholines) in cord blood. 

The study also indicated that phospholipid reduction is 

associated explicitly with T1D progression rather than 

general β-cell autoimmunity. 

La Torre [89] and Tapia [90] also studied cord 

blood samples. La Torre et al. [114] discovered that 

decreased levels of phospholipids at birth, especially 

phosphatidylcholines and phosphatidylethanolamines, 

may contribute to early induction of islet autoimmunity 

and increased T1D risk. Conversely, Tapia et al. [115] 

focused more on changes in the metabolome profile than 

lipidome alterations. However, the research showed no 

strong associations of selected polar metabolites with 

T1D. Nevertheless, Webb-Robertson et al. [116] 

identified multiple metabolites associated with 

T1D progression by age 6, primarily comprising sugar 

metabolism compounds such as fructose, levoglucosan, 

glycerol-α-phosphate, and xylulose. 

Recent studies have explored metabolomics’ 

potential in predicting T2D risk based on dietary patterns 

and corresponding biomarkers. One study involving 

nearly 6,000 participants identified 29 plasma metabolites 

associated with inflammatory and insulinemic dietary 

patterns [117]. The top five biomarkers included PE 36:4, 

CAR 5:0, PC 34:4, 1-methylguanosine, and  

N4-acetylcytidine. Additionally, investigations into the 

lipid profile of lean and obese individuals with 
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T2D revealed significant lipidome changes (lyso-, diacyl- 

and ether-phospholipids, and 1-deoxyceramides), aiding 

in T2D diagnosis [118]. 

Lipid profiles containing 69 odd-chain saturated 

fatty acids (OCFA) among 15 lipid subclasses were also 

examined for their potential as T2D biomarkers [119], 

revealing variations dependent on lipid class and sex, 

correlating with food consumption. Sun et al. [120] 

investigated plasma acylcarnitines’ role in early 

T2D prediction, identifying long-chain acylcarnitines as 

significantly linked to future T2D risk. 

Moreover, interventions targeting weight loss 

have shown promise in altering metabolite signatures 

associated with T2D. Studies have noted positive 

associations between changes in branched-chain amino 

acids (valine, leucine, isoleucine) and branched-chain 

ketoacids (α-ketoisovalerate, α-ketoisocaproate, α-keto-β-

methylvalerate) with glycated hemoglobin (HbA1c) 

levels following weight loss [121]. Branched-chain amino 

acids are frequently studied due to their association with 

increased T2D risk [122-127]. 3-Hydroxybutyrate is 

another frequently studied metabolite, often alongside 

branched-chain amino acids [122-126,128]. Similar to its 

association with CVD, TMAO has also been investigated 

in relation to T2D [129]. Lemaitre et al. [129] explored 

the connections of TMAO, carnitine, crotonobetaine, and 

γ-butyrobetaine with insulin resistance, and betaine and 

choline with enhanced insulin sensitivity. However, they 

did not establish a definitive association. 

 

Metabolic dysfunction-associated steatotic liver disease 

MASLD is the latest term used to describe 

steatotic liver disease associated with MetS, 

encompassing various metabolic risk factors and often 

coexisting with other chronic liver conditions [130]. 

Historically, the term nonalcoholic fatty liver disease 

(NAFLD) was used. In 2020, Eslam et al. [131] proposed 

the term metabolic dysfunction-associated fatty liver 

disease (MAFLD), which was further modified to 

MASLD in 2023 [132]. Both MAFLD and MASLD 

identify patients with hepatic steatosis and metabolic 

dysfunction [133]. There are slight differences in the 

definitions of MASLD and MAFLD, which have been 

discussed in several articles [130,132-134]. Notably, 

MAFLD encompasses patients with fatty liver regardless 

of alcohol consumption pattern or amount [132], whereas 

MASLD introduces the term MetALD for patients who 

meet alcohol-related fatty liver disease criteria [134]. 

MASLD diagnosis requires meeting one of five 

cardiometabolic risk factors [132], while MAFLD 

requires meeting two out of seven metabolic dysfunction 

parameters [131]. De et al. [135] suggest that MASLD 

and SLD (steatotic liver disease) criteria may better suit 

lean patients with NAFLD than MAFLD criteria. 

Consequently, both MASLD and MAFLD terms are used 

in literature to classify liver diseases associated with 

metabolic dysfunction, although NAFLD remains 

prevalent in many studies since the new nomenclature’s 

introduction. 

The global prevalence of NAFLD was estimated 

to be approximately 30 % between 1990 and 2019, with 

a continuing upward trend [136]. This increasing 

prevalence of NAFLD is likely associated with rising 

rates of diabetes and obesity. However, the global 

mortality rate declined from 2.39 per 100,000 population 

in 1990 to 2.09 per 100,000 population in 2019 [137]. 

MASLD includes a range of steatotic liver 

conditions, from isolated hepatic steatosis to metabolic 

dysfunction-associated steatohepatitis (MASH), with 

varying levels of liver fibrosis that can potentially lead to 

cirrhosis. MASLD is associated with a higher risk of liver 

complications (e.g., cirrhosis), end-stage liver disease, 

and hepatocellular carcinoma, as well as an increased risk 

of developing extrahepatic issues such as cardiovascular 

disease (CVD), chronic kidney disease, and certain 

extrahepatic cancers [138]. 

Recent large-scale cohort studies aim to identify 

risk factors and biomarkers for MASLD, aiding in its 

challenging diagnosis. Commonly identified biomarkers 

include amino acids, particularly aromatic amino acids 

(tyrosine, tryptophan) and branched-chain amino acids 

(isoleucine, leucine, valine) [139-143]. Studies by Hirata 

[142] and Martínez-Arranz [144] examined the 

association of NAFLD with cardiovascular risk, 

identifying metabolomic signatures aligning with known 

CVD risk factors. Hirata et al. [142] found that NAFLD 

was positively associated with the cardio-ankle vascular 

index (CAVI), an indicator of subclinical atherosclerosis, 

and identified ten metabolites involved in both NAFLD 

and CAVI: branched-chain amino acids (valine, leucine, 

and isoleucine), aromatic amino acids (tyrosine and 

tryptophan), alanine, proline, glutamic acid, 

glycerophosphorylcholine, and 4-methyl-2-oxopenta-

noate. Martínez-Arranz et al. [144] investigated lipidomic 

profile changes, particularly in triacylglycerols, 

phosphatidylcholines, and sphingomyelins, providing 

evidence of distinct metabolic mechanisms associated 

with NAFLD progression that vary between subtypes. 
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McGlinchey et al. [145] observed lipidomic and 

metabolomic profile changes across different stages of 

NAFLD progression, highlighting unique metabolites and 

27 common metabolites across all stages, including 

significant alterations in cholesteryl esters, ceramides, 

lysophosphatidylcholines, phosphatidylcholines, phospha-

tidylethanolamine, sphingomyelins, and triacylglycerols. Hu 

et al. [146] discovered correlations between NAFLD and 

uric acid, as well as oleic acid-hydroxy oleic acid 

(OAHOA), identifying OAHOA as a novel biomarker for 

NAFLD prevalence in a cohort of 1,479 patients (aged  

18-80 years). Other studies have explored potential 

biomarkers, such as anandamide [147] or taurochloric acid 

[148]. 

 

Conclusions 

 

Metabolomics and lipidomics represent effective 

tools for studying MetS and related disorders. The 

comprehensive multiplatform-based profiling of polar 

metabolites and complex lipids in large cohorts has 

enabled the identification of novel biomarkers and 

enhanced our understanding of disease mechanisms. Key 

advancements include the discovery of metabolic 

signatures associated with CVD, T1D, T2D, and MASLD. 

Regarding polar metabolites, branched-chain 

amino acids (valine, leucine, isoleucine), TMAO, betaine, 

choline, and 3-hydroxybutyrate have been identified in 

multiple studies as promising biomarkers. For complex 

lipids, a panel or combination of affected lipids is 

expected to be useful as biomarkers, including 

acylcarnitines, phospholipids, sphingomyelins, and 

triacylglycerols as key lipid subclasses. 

Further research is needed to validate these 

reported biomarkers in diverse populations and clinical 

settings, ensuring their robustness and clinical utility. 

Standardization of experimental protocols and data 

analysis methods will be critical to facilitate data 

comparability and reproducibility across studies. Based 

on a review of multiple studies, we also advocate for the 

inclusion of authoritative identifiers such as InChI keys 

or identifiers from bioinformatics resources such as the 

Human Metabolome Database (hmdb.ca) and LIPID 

MAPS (lipidmaps.org). This will expedite the 

comparison of potential biomarkers within studies, 

making the process faster and more effective. 

In addition, further advances in analytical 

technologies and computational tools will continue to 

drive innovation in metabolomics and lipidomics, 

offering new opportunities for early disease detection and 

personalized therapeutic interventions. 
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Table S1. Metabolomics and lipidomics cohort studies focused on cardiovascular disease 

Subjects (n) Cohort Matrix Platforms Reported 
metabolites (n) 

Markers Outcomes Ref. 

Discovery cohort: n = 4,824 (27.8% female) 
Replication cohort: n = 1,716 (56.3% 
female) 

Participants with 15.8 years follow-up Serum NMR 41 Isoleucine 
Leucine 
Phenylalanine 
Glycerol 
Cholesterol 
Total lipid concentrations, Glycerides and other 
Phospholipids, Fatty acids, Fatty acids ratios — 
see the original paper. 

 Association with adherence to dietary 
recommendations provided by the 
Alternative Healthy Eating Index 

[1] 

European cohort: n = 352 
USA cohort: n = 1,777 

European participants (100% Caucasian) with 
either abdominal aortic aneurysm or sub-
aneurysmal aortic dilations, and healthy non-
aneurysm subjects 
 
US participants (96% Caucasian) with 
abdominal aortic diameter of 3.0 cm or 
greater, and subjects with history of dilated 
aorta with measurements of abdominal aortic  
diameter less than 3 cm or no prior aortic 
aneurysm, and no MI, stroke or death over the 
following 3 years 

Plasma LC-MS/MS 3 Choline  
Trimethylamine N-oxide 
Trimethylamine 

 Association of elevated TMAO with 
increased abdominal aortic aneurysm 
incidence 

[2] 

Low-risk cohort: n = 620  
Borderline-risk cohort: n = 110 
Intermediate-risk cohort: n = 225 
Highrisk cohort: n = 147 
(53.3% female) 

Participants with LDL levels less than 190 
mg/dl and no pre-existing coronary artery 
disease or myocardial infarction  

Plasma LC-MS/MS 50 Alanine 
Arginine 
Aspartic acid 
CAR 4:0-DC 
CAR 8:1 
CAR 16:0-OH 
Citrulline 
Glutamic acid 
Glutamine 
Glycine 
Histidine 
Phenylalanine 
Threonine 
Tryptophan 

 Association with the 10-year ASCVD risk 
score 

 Identification of metabolic pathways 
associated with the development of 10-
year ASCVD events 

[3] 

EPIC-Potsdam Study cohort: 
Common reference subcohort: n = 1262 
T2D subcohort: n = 1886 (775 incident 
cases) 
CVD subcohort: n = 1671 (551 incident 
cases) 
DIVAS study cohort: 
CVD risk subcohort: n = 113  
(on 3 different isoenergic diets) 

General population 
  
Patients with estimated moderate CVD risk  

Plasma DMS-MS/MS  
 

282 CE 20:3 
DG 16:0 
DG 18:0 
FA 15:0 
FA 20:4 
LPC 18:2 
MG 15:0 
MG 20:4 
PC 20:3 
PE 20:3 
TG 16:0 
TG 18:0 
TG 18:2 
TG 18:3 
TG 22:1 

 Association with cardiometabolic disease 
risk and T2D risk 

 Dietary fat intervention as a potential 
tool for primary disease prevention 

[4] 
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Subjects (n) Cohort Matrix Platforms Reported 
metabolites (n) 

Markers Outcomes Ref. 

Discovery cohort: n = 1,162 (36.3% female) 
Validation cohorts: n = 2,331 (US, 33.2% 
female), n = 832 (European, 29.9% female) 

Stable participants undergoing elective 
diagnostic cardiac evaluation 

Plasma LC-MS/MS 5 N1-Methyl-2-pyridone-5-carboxamide 
N1-Methyl-4-pyridone-3-carboxamide 
Phenylacetylglutamine 
Trimethylamine N-oxide 
Trimethyllysine 

 Association of terminal breakdown 
products of excess niacin with residual 
CVD risk 

[5] 

Phase I: 
Discovery cohort: n = 3,613 
Validation cohorts: n = 121,733 
Phase II: 
n = 118,120 

UK Biobank participants have undergone a 
wide range of physical measures, provided 
information on their lifestyle and medical 
history (follow-up) 

Plasma NMR 111 Multiple markers – see the original paper.  Association with a healthy lifestyle  

 Association of healthy lifestyle-
associated metabolites with coronary 
artery disease (CAD) 

[6] 

Discovery cohort: n = 1,028 
Validation cohort: n = 1,670 

Discovery cohort:  
Participants free of coronary heart disease (10 
years follow-up) 

Plasma LC-MS/MS 32 LPC 18:1 
LPC 18:2 
MG 18:2 
SM d28:1 

 Association of MG 18:2 with coronary 
heart disease 

 Association of LPCs with body mass 
index, C-reactive protein and with less 
evidence of subclinical CVD 

[7] 

Discovery cohort: n = 1,833 (57% female) 
Validation cohorts: n = 1,522  
Low walnut intake subcohort: n = 691 
High walnut intake subcohort: n = 467 

Participants at high cardiovascular risk  Plasma LC-MS  385 4-Hydroxy-3-methylacetophenone 
Cyclohexylamine 
Guanine 
Isocitric acid 
N-Acetylaspartic acid 
Piperine 
Serine 
Sorbitol 
Succinic acid 
Bilirubin 
Biliverdin 
CAR 10:2 
LPC 14:0 
LPC 16:1 
MG 22:1 
PC 36:4 
PE 36:5  
PS 40:6 
TG 54:6 

 Association of walnut consumption with 
a lower risk of incident T2D and CVD in a 
Mediterranean population at high 
cardiovascular risk 

[8] 

Study cohort: n = 1,057 Participants with symptomatic coronary artery 
disease 

Blood-
platelets 

LC-MS/MS 767 CAR 10:0 
CAR 14:0 
CAR 14:1 
CAR 16:0 
CAR 16:1 
FA 18:1 
FA 18:2 
FA 18:2;2O 
LPE 18:1|LPE 0:0/18:1 
LPE 18:1|LPE 18:1/0:0 
LPE 18:2|LPE 0:0/18:2 
LPE 18:2|LPE 18:2/0:0 
LPE 20:1|LPE 20:1/0:0 
LPE 20:3|LPE 0:0/20:3 
LPE 20:3|LPE 20:3/0:0 
LPE 20:4 
LPE 20:5 
LPE 22:4|LPE 0:0/22:4 
LPE 22:4|LPE 22:4/0:0 
LPE 22:5 

 Association of adverse cardiovascular 
events with alterations in the platelet 
lipidome 

[9] 
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Subjects (n) Cohort Matrix Platforms Reported 
metabolites (n) 

Markers Outcomes Ref. 

LPE 22:6 
LPS 18:1|LPS 0:0/18:1 
PC 34:2;O 
PE 34:3|PE 16:1_18:2;O 
PI 36:4|PI 16:0_20:4 
PI 38:5|PI 18:1_20:4 
TG 48:1|TG 14:0_16:0_18:1 
TG 48:2|TG 16:0_14:1_18:1 

Study cohort: n = 1,021 (48.3% female) Participants with T2D and were followed up 
for CVD over the subsequent 10 years 

Serum NMR 228 3-Hydroxybutyric acid 
Acetic acid 
Creatinine 
Glycine 
Lactic acid 
Leucine 
Phenylalanine 

 Association with 10-year cardiovascular 
risk in people with type 2 diabetes 

 Metabolite-based risk score created 

[10] 

Malmo Diet and Cancer-Cardiovascular 
cohort: n = 4,067 

General population followed up to 23 years 
and stratified into risk groups 

Plasma DI-MS/MS 184 Sum of lipid subclasses:  
Ceramide 
Cholesteryl ester 
Cholesterol 
Diacylglycerol 
Ether-phosphatidylcholine 
Ether-phosphatidylethanolamine 
Lysophosphatidylcholine 
Lysophosphatidylethanolamine 
Phosphatidylcholine 
Phosphatidylethanolamine 
Phosphatidylinositol 

 Possible identification of lipidomic risk 
before disease incidence (CVD and T2D) 

[11] 

Discovery cohort 1: n = 99 
Discovery cohort 2: n = 1,162 
Validation cohort: n = 2,140 

Sequential stable subjects without evidence 
of acute coronary syndrome undergoing 
elective diagnostic coronary angiography for 
evaluation of CAD with longitudinal (3–5 years) 
follow-up 

Plasma HILIC-MS/MS 
LC-MS/MS 

 Trimethyllysine 
Trimethylamine N-oxide 

 Association with CVD risks [12] 

Study cohort: n = 2,278 (50% female) Participants were followed up for CVD incident 
(almost 10 years) 

Plasma LC-MS/MS 790 (37) Dimethylglycine 
N-Acetylmethionine (top findings) 

 Association with CVD risks [13] 

Study cohort: n = 5,072 Participants with diabetes Plasma NMR 44 3-Hydroxybutyric acid 
Acetic acid 
Acetoacetatic acid 
Acetone 
Alanine 
Citric acid 
Creatinine 
Glucose 
Glutamine 
Glycine 
Histidine 
Isoleucine 
Lactic acid 
Leucine 
Phenylalanine 
Pyruvic acid 
Tyrosine 
Valine 

 Association of multiple healthy lifestyle 
factors with improved circulating 
metabolites from different pathways 

[14] 
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Subjects (n) Cohort Matrix Platforms Reported 
metabolites (n) 

Markers Outcomes Ref. 

Discovery cohort: n = 1,833 (57.6% female) 
Validation subcohort: n = 1,522 

Participants at high risk of CVD (1-year follow-
up) 

Plasma LC-MS/MS 382 1-Methylguanine 
γ-Aminobutyric acid (GABA) 
Aminoisobutyric acid 
Asparagine 
Cortisol 
Creatine 
Cytosine 
Glycodeoxycholic acid 
Hippuric acid 
Homoarginine 
Hypoxanthine 
Lactic acid 
Lysine 
N1-Acetylspermidine 
N-Acetylaspartic acid 
N-Acetylornithine 
N-Carbamoyl-β-alanine 
Piperine 
Pyroglutamic acid 
Sorbitol 
Sucrose 
Trimethylbenzene 
CAR 7:0 
CAR 18:2 
CAR 18:0 
DG 34:3 
DG 36:0 
LPC 16:1 
MG 22:1 
PC 34:3 
PC 36:4 
PC 38:4 
PE 32:0 
PE 38:6 
PE 40:7 
SM d34:2|SM d18:1/16:1 
TG 50:3 
TG 50:4 
TG 55:2 
TG 56:2 

 Association of legume consumption with 
T2D incidence, but not with CVD 
incidence risk 

[15] 

Study cohort: n1 = 5,991; n2 = 3,779 (38.9% 
female) 

Participants with an 8-year follow-up Plasma LC-MS/MS 342 CE 24:0 
LPI 18:2 
PC 38:5 
PC O-34:2 
PC O-36:1 
PC P-40:6 
PE 38:6 
PI 38:3 
SM d42:1 

 Association with future cardiovascular 
events and cardiovascular death 

[16] 

Discovery cohort: n = 1,162 
Validation cohort: n = 4,000 

Sequential stable subjects undergoing elective 
diagnostic cardiac evaluation with longitudinal 
(3 years) follow-up 

Plasma HILIC-MS 
LC-MS/MS 

5 (top-ranked) Phenylacetylglutamine  Association with cardiovascular disease 
and death in humans 

[17]  
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Subjects (n) Cohort Matrix Platforms Reported 
metabolites (n) 

Markers Outcomes Ref. 

Discovery cohort: n = 1,149 
Validation cohort: n = 3,954 

Participants with preserved kidney function 
undergoing elective diagnostic cardiac 
evaluation with longitudinal follow-up (5 
years) 

Plasma GC-MS 
LC-MS/MS 

N/A p-Cresol sulfate 
Indoxyl sulfate  

 Association with CVD risk and overall 
mortality 

[18] 

Study cohort: n = 2,627 Participants were invited to attend a health 
examination for additional tests and collection 
of 8–12 h fasting blood samples (mean 12.9 
years follow-up) 

Plasma HILIC-MS 
LC-MS/MS 

79 Hex2Cer d34:2|Hex2Cer d18:2/16:0 
HexCer d36:1|HexCer d18:1/18:0 
HexCer d34:1|HexCer d18:1/16:0 
HexCer d42:2|HexCer d18:2/24:0 
SM d34:1|SM d18:1/16:0 
SM d36:1|SM d18:1/18:0 
SM d36:2|SM d18:2/18:0 
SM d42:1|SM d18:1/24:0 

 Association with higher CVD risk [19] 

Study cohort: n1=50; n2=4,007 Healthy participants before and after  
the suppression of intestinal microbiota with 
oral broad-spectrum antibiotics underwent 
phosphatidylcholine challenge (ingestion of 
two hard-boiled eggs and deuterium [d9]-
labeled phosphatidylcholine) 
 
Participants undergoing elective diagnostic 
cardiac catheterization with no history of 
acute coronary syndrome 

Plasma 
 

LC-MS/MS 3 Betaine 
Choline 
Trimethylamine N-oxide 

 Association among intestinal 
microbiota-dependent metabolism of 
dietary phosphatidylcholine, TMAO 
levels, and adverse CVD events 

[20] 

Discovery cohort: n = 3,867 
Validation cohort: n = 3,569 

Participants were free of known CVD at 
baseline 

Serum NMR N/A 1,5-Anhydrosorbitol 
1-Methylhistidine 
3-Hydroxybutyric acid 
5-Oxoproline 
Acetaminophen + glucuronide 
Alanine  
Aspartic acid 
Citratic acid 
Glucose 
Glutamatic acid 
Glutamine 
Glycerol  
Glycine 
Histidine 
Lactic acid 
Lysine 
Mannose 
Methionine 
myo-Inositol 
Dimethylglycine 
Phenylalanine 
Glyceryl groups of lipids 
Lipids (CH2-CO) 
Lipids (CH2-CH2-C=, CH2-CH2-CO) 
Lipids (CH2-CH2-CH=CH) 
Lipids (CH3-CH2-R, (CH2)n) 
Lipids (CH3-CH2-R, CH3-CH2-C=) 

 Association with atherosclerosis and 
incident CVD 

[21] 

Discovery cohort: n = 50 
Validation cohort: n = 25 

Stable patients undergoing elective cardiac 
evaluation who subsequently experienced 
a heart attack, stroke or death over the 
ensuing three-year period vs. age- and gender-
matched subjects who did not 

Plasma LC-MS/MS 18 Betaine 
Choline 
Trimethylamine N-oxide 

 Identification of markers as predictors of 
CVD risk 

 Discovery of a relationship between gut-
flora-dependent metabolism of dietary 

[22] 
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Subjects (n) Cohort Matrix Platforms Reported 
metabolites (n) 

Markers Outcomes Ref. 

phosphatidylcholine and CVD 
pathogenesis 

Discovery cohort: n = 1,157 
Validation cohorts: n1 = 2,149; n2 = 833 
 

Stable subjects undergoing cardiac risk 
assessment 
 
Healthy volunteers (n = 8) 

Plasma GC-MS 
LC-MS/MS 

N/A Creatinine 
Erythritol 
Xylitol 

 Association with major adverse 
cardiovascular event 

[23] 

Discovery cohort: n = 1,157 
Validation cohort: n = 2,149 

Stable subjects undergoing elective diagnostic 
cardiac evaluations 
 
Healthy volunteers (n = 10) 

Plasma GC-MS 
LC-MS/MS 

N/A Creatinine 
Erythritol 
Xylitol 

 Association with major adverse 
cardiovascular event 

[24] 

Discovery cohort: n = 7,256 
Validation cohorts: n1 = 2,622; n2 = 3,563 

Participants were followed up for CVD incident 
(15 years) 

Serum NMR 68 3-Hydroxybutyric acid 
Acetic acid 
Acetoacetatic acid 
Alanine 
Citratic acid 
Glucose 
Glutamine 
Glycerol 
Glycine 
Histidine 
Isoleucine 
Lactic acid 
Leucine 
Phenylalanine 
Pyruvic acid 
Tyrosine 
Valine 
Docosahexaenoic acid (FA 22:6) 
Linoleic acid (FA 18:2) 
Monounsaturated FA 
Omega-3 FA 
Omega-6 FA 
Polyunsaturated FA 
Saturated FA 

 Association with incident CVD [25] 

Study cohort: n = 4,007 Participants undergoing elective diagnostic 
cardiac catheterization with no history of an 
acute coronary syndrome 

Plasma LC-MS/MS 18 Choline 
Trimethylamine 
Trimethylamine N-oxide 

 Discovery of increased levels of TMAO as 
a predictor of incident risk for 
thrombotic events 

 Association between specific dietary 
nutrients, gut microbes, platelet 
function, and thrombosis risk 

[26] 
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Table S2. Metabolomics and lipidomics cohort studies focused on type 1 and type 2 diabetes 

Subjects (n) Cohort Matrix Platforms Reported 
metabolites (n) 

Markers Outcomes Ref. 

Study cohort: n = 170 (48% female) Children with high genetic risk for T1D Plasma GC-MS 
LC-MS/MS 

91 γ-Aminobutyric acid (GABA) 
Glycine 
Tagatose 
Arabitol 
myo-Inositol 
Adipic acid 
Cer d38:1 
Cer d39:1 
LPC 18:3 
LPC 20:3 
LPC 20:5 
SM d41:2 

 Utilization of multi-omics data for the 
modeling of complex, multifactorial 
diseases, like T1D 

[27] 

Study cohort: n = 152 (47.4% female) Children with T1D (n=76) and healthy control 
children (n=76) 

Cord blood 
serum 

LC-MS/MS 106 PC 32:1 
PC 36:4 
PC 38:4 
PC 38:5 
PC 38:5 
PC 38:6 
PC 40:4 
PC 40:5 
PC 40:5 
PC 40:7 
PC 40:8 
PC sum  
PE 38:4 
PE 38:4 
PE 40:4 

 Cord-blood metabolic patterns may be 
a valuable measure of type 1 diabetes 
risk 

[28] 

Study cohort: n = 101 (37.6% female) Children who progressed to T1D (PT1D; n = 
30), children who developed at least one islet 
autoantibody but did not progress to T1D 
during the follow-up (P1Ab; n = 33), and their 
age-matched controls (CTR; n = 38) 

Cord blood 
plasma 

LC-MS/MS 232 lipid 
species 

CE 18:2 
TG 46:2 
TG 46:2 
TG 48:1 
TG 51:3 

 Identification of lipids that can be 
predictive of the risk of progression to 
T1D 

 Comparison of lipidomic profiles of all 
subcohorts 

[29] 

Study cohort: n = 120 Children progressed to T1D; children 
developed at least a single islet autoantibody 
but did not progress to T1D during the follow-
up; matched controls 

Plasma LC-MS/MS 45 CE 20:5 
PC 33:0 
TG 54:4|TG 18:2_18:1_18:1 
TG 56:5 

 Children who progress to T1D in the 
follow-up tend to have a distinct and 
persistently dysregulated lipid profile as 
compared to those who later progress 
to islet autoimmunity but not to T1D 

[30] 

Study cohort: n = 120 Progressors to T1D (n = 40); children tested 
positive for at least one antibody in a 
minimum of two consecutive samples but did 
not progress to clinical T1D during the follow-
up (n = 40); control children remained islet 
autoantibody-negative during the follow-up (n 
= 40) 

Plasma GC-MS  94 2-Ketoisocaproic acid 
3,4-Dihydroxybutanoic acid 
Aspartic acid 
Bisphenol A 
Glutamic acid 
Glycerol-2-phosphate 
Levoglucosan 
Malic acid 
Methionine 
Pyruvic acid 

 Association of unique metabolomic 
profile with T1D 

[31] 

Study cohort: n = 2,124  Children with high genetic risk for T1D Plasma GC-MS 
LC-MS/MS 

357 5-Methoxytryptamine 
Alanine 
Glutamic acid 
Isoleucine 
Leucine 

 Studying autoantibodies and 
metabolomic markers, which are 
associated with the risk of progression 
to T1D 

[32] 
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Subjects (n) Cohort Matrix Platforms Reported 
metabolites (n) 

Markers Outcomes Ref. 

Methionine 
Proline 
Valine 
Vitamin E 
α-Ketoglutaric acid 

Study cohort: n = 166 T1D patients (n = 85) and healthy controls (n = 
81). All patients had a stable dose of insulin 
usage for more than 3 months (dose change 
<10%) 

Serum 
Urine 

LC-MS/MS 54 (serum) 
45 (urine) 

4-(2-Aminophenyl)-2,4-dioxobutanoic acid 
4‑Pyridoxic acid 
5-Hydroxytryptophan 
5‑Methoxyindole-3-acetic acid 
Hypoxanthine 
Thromboxane B3 

 Identification of altered metabolic 
profiles in T1D individuals with different 
time in range (TIR) 

[33] 

Study cohort: n = 286 Infants later developed T1D (n=33); infants 
developed different numbers of islet 
autoantibodies during the follow-up (n=110); 
controls matched for sex, HLA-DQB1 genotype, 
city of birth, and period of birth (n=143) 

Cord blood 
serum 

LC-MS/MS 137 PC 32:0|PC 16:0_16:0  
PC 32:1|PC 16:0_16:1 
PC 34:1|PC 16:0_18:1  
PC 34:3|PC 16:0_18:3 
PC 36:1|PC 18:0_18:1 
PC 38:3|PC 18:0_20:3 
SM d34:1|SM d18:1/16:0 
SM d36:1|SM d18:1/18:0 
SM d38:0|SM d18:0/20:0 
SM d38:1|SM d18:1/20:0 
SM d42:1|SM d18:0/24:1 
SM d42:2|SM d18:1/24:1 
SM d42:2|SM d18:0/24:2 
SM d42:3|SM d18:2/24:1 

 Association with high risk for 
progression to T1D 

[34] 

Study cohort: n = 343 Children, who later developed type 1 diabetes 
(n=166), and random control children in the 
Norwegian Mother, Father, and Child cohort 
(n=177) 

Cord blood 
plasma 

LC-MS/MS 27 Aminoadipic acid 
Indoxyl sulfate 
Tryptophan 

 Association with T1D [35] 

Study cohort: n = 655 Children with high genetic risk for T1D Plasma GC-MS 139 Ascorbic acid  
Piperidone 

 Association with progression to T1D [36] 

Study cohort: n = 141 Children with T1D (n=76) and gender- and age-
matched healthy controls (n=65) 

Serum GC-MS 70 1,5‑Anhydroglucitol 
Adenine 
Fructose 
Glycerol-α-phosphate 
Inosine 
Levoglucosan  
Pyruvic acid 
Uridine 
Xylulose 

 Association with T1D and with the 
duration of the disease 

[37] 

Study cohort: n = 11,896 Participants from four prospective 
population-based cohorts in Finland (follow-up 
for 7.8–15 years) 

Serum NMR 229 3-Hydroxybutyric acid 
Acetatic acid 
Acetoacetatic acid 
Citratic acid 
Creatinine 
Glutamine 
Glycerol 
Glycine 
Histidine 
Isoleucine 
Lactic acid 
Leucine 
Phenylalanine 
Pyruvic acid 

 Association with risk of developing 
diabetes 

 Association with deterioration in post-
load glucose and insulin resistance than 
with future fasting hyperglycemia 

[38] 
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Subjects (n) Cohort Matrix Platforms Reported 
metabolites (n) 

Markers Outcomes Ref. 

Tyrosine 
Valine 

Study cohort: n = 1,016 General population Plasma NMR 49 3-Hydroxybutyric acid 
Acetatic acid 
Alanine 
Citratic acid 
Creatine 
Creatine phosphate 
Creatinine 
Cysteine 
Glutamine 
CH2CH2CO- 
CH2N- 
Isobutyratic acid 
Isopropanol 
Leucine 
N-Acetylglutamine 
O-Phosphoethanolamine 
Phenylpropionic acid 
Proline 
Pyruvic acid 

 Strong inverse association of healthy 
lifestyle with incident T2D 

[39] 

Study cohort: n = 1,138 Participants from four prospective 
population-based cohorts  

Plasma LC-MS/MS 70 2-Methylbutyroylcarnitine 
Cortisol 
Deoxycholic acid 
Tyrosine 
γ-Glutamyl-leucine 
Barogenin 
CerPE 38:2 
LPC 20:2 
MG 18:2 
PC 42:7 
SM d33:1 
SM d34:2 
SM d36:3|SM d18:2/18:1 

 Association with incident T2D [40] 

Study cohorts: n1 = 1,261; n2 = 2,580 Clinically healthy participants (follow-up for 3 
years) 

Plasma LC-MS/MS N/A 2-Hydroxybutyric acid 
LPC 18:2 

 Association with insulin resistance and 
glucose intolerance 

[41] 

Study cohort: n = 2,282 
Incident T2D cohort: n = 800 

General population Serum FI-MS 163 Glycine 
Hexose 
Phenylalanine 
LPC 18:2 
PC O-34:3 
PC O-40:6 
PC O-42:5 
PC O-44:4 
PC O-44:5 
PC O-32:1 
PC 36:1 
PC 38:3 
PC 40:5 
SM d34:2|SM d18:1/16:1 

 Association with increased or 
decreased risk of T2D 

[42] 

Study cohort: n1 = 1,813; n2 = 451 1,813 participants without any signs of T2D 
 
451 participants with newly diagnosed T2D 

Serum FI-MS 
LC-MS/MS 

134 Alanine/glycine  Association of analine/glycine ration 
with T2D 

[43] 
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Subjects (n) Cohort Matrix Platforms Reported 
metabolites (n) 

Markers Outcomes Ref. 

Study cohort: n = 5844 (90% female) Female and male nurses Plasma LC-MS/MS 186 1-Methylnicotinamide 
1-Methylguanosine 
Aminoisobutyric acid 
Caffeine 
CAR 2:0 
CAR 5:0 
CAR 5:0-DC 
Cortisone 
Dimethylglycine 
Guanidoacetic acid 
N2,N2-Dimethylguanosine 
N4-Acetylcytidine 
N-Acetylspermidine 
N-Acetyltryptophan 
N-Carbamoyl-β-alanine 
Piperine 
Ribothymidine 
Tryptophan 
Biliverdin 
Cer d34:1|Cer d18:1/16:0 
LPE 18:2 
PC 34:2 
PC P-34:4 
PC P-38:4 
PE 36:4 
PE P-36:2 
SM d38:1|SM d18:1/20:0 

 Association between  
inflammatory and insulinemic dietary 
patterns, plasma  
inflammatory/insulin biomarkers, 
plasma metabolomics and  
risk of type 2 diabetes. 

[44] 

Study cohort: n = 2240 T2D participants, prediabetes participants, and 
normal glucose tolerance participants 

Serum FI-MS 
LC-MS/MS 

123 Glycine 
CAR 16:0 
LPC 18:2 
PC O-36:0 

 Association with incident T2D [45] 

Study cohort: n = 4,442 (61% female)  Participants without diabetes at baseline Plasma LC-MS/MS 6 Betaine  
Carnitine  
Choline 
Crotonobetaine  
γ-Butyrobetaine  
Trimethylamine N-oxide 

 Association with incident T2D [46] 

Study cohort: n = 1571 Healthy participants (follow-up for 14 years) Plasma NMR 
LC-MS 

24 1,5-Anhydroglucitol 
2-Hydroxybutyric acid 
2-Oxoglutaric acid 
Glycerol 
Glycine betaine 
Isoleucine 
Lactic acid 
Methionine 
Pyruvic acid 
Tyrosine 
PC 34:2;O 
TG 48:0 
TG 48:1 
TG 50:5 

 Increase of the long-term prediction 
performance in combination with 
classical measurements 

[47] 



12 

Subjects (n) Cohort Matrix Platforms Reported 
metabolites (n) 

Markers Outcomes Ref. 

Discovery cohort: n = 3,821 
Validation cohort: n = 14,651 

Participants with normal glucose regulation Serum LC-MS/MS 667 (discovery 
cohort) 
250 (validation 
cohort) 

CE 14:0 
LPI 16:1 
PC 34:3 
PE 38:4|PE 18:0_20:4 
TG 48:1 (16:0) 
TG 48:1 (16:1) 
TG 48:2 (16:0) 
TG 48:2 (16:1) 
TG 48:2 (18:1) 
TG 48:3 (16:1) 
TG 50:0 (18:0) 
TG 50:1 (16:0) 
TG 50:1 (16:1) 
TG 50:1 (18:0) 
TG 50:2 (16:0) 
TG 50:2 (16:1) 
TG 50:2 (16:2) 
TG 50:2 (18:1) 
TG 50:3 (16:0) 
TG 50:3 (16:1) 
TG 50:3 (16:2) 
TG 51:0 (17:0) 
TG 51:2 (17:0) 
TG 51:3 (17:1) 
TG 53:2 (19:0) 
TG 53:3 (16:0) 
TG 54:3 (16:0) 
TG 54:4 (16:0) 
TG 54:4 (16:1) 
TG 54:5 (16:0) 
TG 54:5 (16:1) 
TG 54:6 (20:4) 
TG 54:7 (20:4) 
TG 54:7 (22:6) 
TG 55:6 (19:3) 
TG 56:5(18:1) 
TG 56:5(22:4) 
TG 56:6(22:5) 

 Association of biomarkers and lipid 
pathway dysregulation with T2D onset 

[48] 

Study cohort: n = 2,204 (100% female) Participants with T2D or impaired fasting 
glucose + normoglycemic control participants 

Plasma 
Urine 

LC-MS/MS 
GC-MS 

447 2-Hydroxybutyric acid 
1,5-Anhydroglucitol 
Arabinose 
Citrulline 
Dimethylarginine 
Erythritol 
Fructose 
Glucose 
Isoleucine 
Lactic acid 
Leucine 
Malic acid 
Mannose 
N-Acetylglycine 
Octanoylcarnitine 
Proline 

 Association with incident T2D and IFG [49] 



13 

Subjects (n) Cohort Matrix Platforms Reported 
metabolites (n) 

Markers Outcomes Ref. 

Uric acid 
Valine 
10-Heptadecenoic acid (FA 17:1n7) 
15-Methylpalmitic acid (FA iso-17:0) 
3-Methyl-2-oxobutanoic acid  
3-Methyl-2-oxovaleric acid 
4-Methyl-2-oxopentanoic acid 
5-Dodecenoic acid (FA 12:1n7) 
Adrenic acid (FA 22:4n6) 
Arachidonic acid (FA 20:4n6) 
Cholesterol 
Heptanoic acid  (FA 7:0) 
Myristic acid (FA 14:0) 
Myristoleic acid (FA 14:1n5) 
Palmitoleic acid (FA 16:1n7) 
SM d34:1|SM d18:1/16:0 
Pelargonic acid (FA 9:0) 
Pentadecanoic acid (FA 15:0) 

Study cohort: n = 1,150 Participants with normal fasting glucose 
(follow-up for 20 years) 

Plasma LC-MS/MS N/A 5-Hydroxyindoleacetic acid  
Glucose  
Glycine  
Isocitric acid  
Phenylalanine  
Taurine  
2-Aminodipic acid 
3-Methyladipic acid  
CE 20:3 
DG 36:1 
LPC 18:1 
LPC 18:2 
PC 36:4 
SM d42:1|SM d18:1/24:0 
TG 48:0 
TG 48:1 
TG 52:1 
TG 54:8  
TG 58:11 

 Association with improved prediction of 
T2D beyond conventional risk factors 

[50] 

Discovery cohort: n = 543 
Validation cohort: n = 1,044 

Non-diabetic participants (follow-up) Serum LC-MS/MS 
GC-MS 

568 2-Hydroxybutyric acid 
Bilirubin 
Glucose 
Glutamic acid 
Glutamine 
Histidine 
Isoleucine 
Mannose 
Trehalose 
Valine 
α-Tocopherol 

 Association with positive or negative 
impact on progression to T2D  

[51] 

Study cohort: n = 1,248 Participants with 6.5 years follow-up Plasma DMS-MS/MS 
GC-MS 

N/A Lipid classes containing species with FA 15:0 and 
FA 17:0: 
CE 15:0 
CE 17:0 
DG 15:0 
FA 15:0 

 Association with incident T2D [52] 
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Subjects (n) Cohort Matrix Platforms Reported 
metabolites (n) 

Markers Outcomes Ref. 

FA 17:0 
LPC 15:0 
LPC 17:0 
LPE 17:0 
MG 15:0 
MG 17:0 
PC 15:0 
PC 17:0 
PE 17:0 
PL-OCFA (phospholipid species containing odd-
chain fatty acids) 
TG 15:0 
TG 17:0 

Study cohorts: n1 = 1,039; n2 = 520 Participants with mean follow-ups: 4.61 and 
7.57 years 

Plasma LC-MS/MS 166 CE 16:1 
LPC 15:0 
LPC 18:2 
PC 33:3 
PC 35:3 
PC 40:7 
PC 43:6 
PC 44:1 
SM d34:2 
SM d41:2 
TG 46:1 (12:0) 
TG 48:1 (16:0) 
TG 48:2 (14:0) 
TG 49:7 (16:0) 
TG 50:1 (16:0) 
TG 50:2 (16:0) 
TG 50:3 (18:1) 
TG 51:7 (16:0) 
TG 52:5 (18:2) 
TG 52:6 (18:2) 
TG 54:3 (18:0) 
TG 54:4 (18:2) 
TG 54:5 (18:2) 
TG 54:6 (18:2) 
TG 54:7 (18:3) 
TG 56:5 (20:4) 

 Association with incident T2D [53] 

Study cohort: n = 2,939 Participants without diabetes prevalence  Serum LC-MS/MS 245 3-(4-Hydroxyphenyl)lactic acid 
Asparagine 
Erythritol 
Isoleucine 
Leucine 
Trehalose 
Valine 

 Association with incident T2D 
(protective biomarker of diabetes risk) 

[54] 
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Subjects (n) Cohort Matrix Platforms Reported 
metabolites (n) 

Markers Outcomes Ref. 

Study cohort: n = 2,103 Participants with a 6-year follow-up Plasma LC-MS/MS 34 Carnitine 
3-Dehydroxycarnitine 
3-Dehydrocarnitine 
CAR 2:0 
CAR 3:0 
CAR 3:0-DC 
CAR 4:0 
CAR 5:0 
CAR 5:0-OH 
CAR 5:1 
CAR 6:0 
CAR 6:0-OH 
CAR 6:0-DC 
CAR 7:0-DC 
CAR 8:0 
CAR 8:1 
CAR 10:0 
CAR 10:0-DC 
CAR 12:0 
CAR 12:0-OH 
CAR 12:1 
CAR 12:0-DC 
CAR 14:0 
CAR 14:0-OH 
CAR 14:1-OH 
CAR 16:0 
CAR 16:1 
CAR 16:2 
CAR 18:0 
CAR 18:0-OH 
CAR 18:1 
CAR 18:2 
CAR 20:0 
CAR 20:4 

 Association with improved predictive 
ability for type 2 diabetes beyond 
conventional risk factors 

[55] 

Study cohort: n = 3,234 Participants were assigned to 1) intensive 
lifestyle, 2) metformin, or 3) placebo (all 
followed up for 3.2 years) 

Plasma HILIC-MS/MS 84 Betaine 
Methionine sulfoxide 
Serine 

 Association with incident T2D [56] 
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Table S3. Metabolomics and lipidomics cohort studies focused on metabolic dysfunction-associated steatotic liver disease 

Subjects (n) Cohort Matrix Platforms Reported 
metabolites (n) 

Markers Outcomes Ref. 

Study cohort: n = 121,032 Participants with a mean 12.6-year follow-up Plasma NMR 170 3-Hydroxybutyric acid 
Acetic acid 
Acetoacetatic acid 
Acetone 
Alanine 
Citric acid 
Creatinine 
Glucose 
Glutamine 
Glycine 
Histidine 
Isoleucine 
Lactic acid 
Leucine 
Phenylalanine 
Pyruvic acid 
Tyrosine 
Valine 
Docosahexaenoic acid (FA 22:6) 
Linoleic acid (FA 18:2) 
Omega-3 FA 
Omega-6 FA 

 Positive and negative association with 
MASLD 

[57] 

Study cohort: n = 10,809 Participants with and without MASLD Plasma NMR 123 Tyrosine  Association with MASLD [58] 

Study cohort: n = 3,048 Participants have been followed up since birth, 
including questionnaires and clinical 
assessments starting from age 7 years 

Plasma NMR 154 3-Hydroxybutyric acid 
Acetic acid 
Acetoacetatic acid 
Alanine  
Creatinine 
Glutamine 
Histidine 
Isoleucine 
Leucine 
Phenylalanine 
Tyrosine 
Valine 

 Association with incident MASLD [59] 

Study cohort: n = 928 (67% female) Participants with and without MASLD Plasma CE-MS 94 4-Methyl-2-oxopentanoic acid 
Alanine 
Glutamic acid 
Isoleucine 
Leucine 
Proline 
Tryptophan 
Tyrosine 
Valine 
Glycerophosphorylcholine 

 Association with both MASLD and 
cardio-ankle vascular index (CAVI) 

[60] 

Study cohort: n = 1,479 
Study subcohort: n = 447 (known age) 

Participants were not treated for cancer or 
infectious disease or had undergone surgery in 
the previous year, and they had no history of 
cancer or an infectious disease. 

Serum LC-MS/MS N/A Oleic acid-hydroxy oleic acid (OAHOA) 
Sphingosine  
Uric acid 

 Association with MASLD [61] 

Study cohort: n = 997 (53% female) Participants free of prevalent myocardial  
infarction or congestive heart failure at the 
first examination cycle 

Plasma HILIC-MS/MS 179 Anandamide  Association with MASLD severity, the 
presence of nonalcoholic 
steatohepatitis, and fibrosis 

[62] 
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Subjects (n) Cohort Matrix Platforms Reported 
metabolites (n) 

Markers Outcomes Ref. 

Study cohort: n = 559 Participants with and without MASLD Plasma LC-MS/MS 11 Dihydrothymine 
Serine 
Tryptophan 
LPC 18:1 
LPE 20:0 

 Screening tool for MASLD [63] 

Study cohort: n = 1,154 (50% female) 
Control cohort: n = 350 

Participants with biopsy-proven MASLD and 
participants from the general population with 
similar gender and age to the cohort of 
patients with MASLD 

Serum LC-MS  
NMR 

105 PC 32:0|PC 16:0_16:0 
PC 32:2|PC 14:0_18:2 
PC 34:2|PC 16:0_18:2 
PC 36:1|PC 18:0_18:1 
PC 36:3 
PC 36:6|PC 18:3_18:3 
PC 37:5 
PC 38:2|PC 20:0_18:2 
PC 38:3|PC 18:0_20:3 
SM d32:1 
SM d39:1 
TG 48:3 

 Identification of three MASLD 
subgroups, independent of histological 
disease severity 

[64] 

Study cohort: n = 627 Histologically characterized participants. 
Participants include the full spectrum of 
disease, from histologically normal liver tissue 
through NAFL to NASH-F4 (cirrhosis) 

Serum LC-MS/MS 
GC-MS/MS 

211 Markers of fibrosis 0–1 vs. 2–4: 
2-Hydroxybutyric acid 
3-Hydroxybutyric acid 
LPC O-16:0 
LPC P-16:0 
LPC 18:2 
LPC 20:4 
Oleic acid 
PC 32:0|PC 16:0/16:0 
PC 32:1 
PC 37:4 
PC O-34:2 
PC O-34:3 
PE 16:0/18:1 
PE 34:2 
PE 38:6 
SM d42:1|SM d18:1/24:0 
SM d36:0 
SM d41:1 
TG 56:4 
TG 58:6 

 Identification of a key metabolic 
‘watershed’ in the progression of liver 
damage, separating severe disease 
from mild 

[65] 

Discovery cohort: n = 1,546 
Internal validation cohort: n = 377 
Prospective validation cohort: n = 749 

Participants with and without MASLD (4 years 
follow-up 

Feces LC-MS/MS 198 Taurocholic acid  Positive association with both a higher 
microbiome risk score and MASLD risk  

[66] 
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