Electromagnetism of Continuous Media — Optics

Petr Kužel

Course for 3rd year of University studies (Université Paris-Nord)

Series of 14 lectures in Department of Dielectrics, IOP

Topics of Interest

•	Layered systems and optical coatings:	in detail
•	Birefringence and polarization optics:	in detail
•	Dispersion and pulse propagation:	yes
•	Electro- and magneto-optics:	yes
•	Nonlinear optics:	basics
•	Waveguides and fibers:	basics
•	Inhomogeneous media:	basics
•	Coherence:	marginal
•	Diffraction, gaussian beams:	no

Electromagnetic Spectrum

Notation conventions

$curl \ E \equiv rot \ E \equiv \nabla \times E \equiv \nabla \wedge E$ $div \ E \equiv \nabla \cdot E$

Maxwell Equations

$$\nabla \wedge \boldsymbol{E} + \frac{\partial \boldsymbol{B}}{\partial t} = 0 \qquad \oint \boldsymbol{E} \cdot d\boldsymbol{l} = -\frac{\partial}{\partial t} \int \boldsymbol{B} \cdot d\boldsymbol{S} \qquad \boldsymbol{E}_{2t} - \boldsymbol{E}_{1t} = 0$$

$$\nabla \wedge \boldsymbol{H} - \frac{\partial \boldsymbol{D}}{\partial t} = \boldsymbol{j} \qquad \oint \boldsymbol{H} \cdot d\boldsymbol{l} = \frac{\partial}{\partial t} \int \boldsymbol{D} \cdot d\boldsymbol{S} + \boldsymbol{J} \qquad \boldsymbol{H}_{2t} - \boldsymbol{H}_{1t} = \boldsymbol{j}_{s}$$

$$\nabla \cdot \boldsymbol{D} = \rho \qquad \oint \boldsymbol{D} \cdot d\boldsymbol{S} = Q \qquad \boldsymbol{B}_{2n} - \boldsymbol{B}_{1n} = 0$$

$$\nabla \cdot \boldsymbol{B} = 0 \qquad \oint \boldsymbol{B} \cdot d\boldsymbol{S} = 0$$

$$D = \varepsilon E = \varepsilon_0 E + P$$
$$B = \mu H = \mu_0 H + M$$

Wave equation

$$\nabla^2 \boldsymbol{E} - \frac{N^2}{c^2} \frac{\partial^2 \boldsymbol{E}}{\partial t^2} = 0$$
$$\nabla^2 \boldsymbol{H} - \frac{N^2}{c^2} \frac{\partial^2 \boldsymbol{H}}{\partial t^2} = 0$$

$$\boldsymbol{E} = \boldsymbol{E}_0 e^{i(\boldsymbol{\omega} t - \boldsymbol{k} \cdot \boldsymbol{r})}$$
$$\boldsymbol{H} = \boldsymbol{H}_0 e^{i(\boldsymbol{\omega} t - \boldsymbol{k} \cdot \boldsymbol{r})}$$

Maxwell Equations

$$\nabla \wedge \boldsymbol{E} + \frac{\partial \boldsymbol{B}}{\partial t} = 0$$
$$\nabla \wedge \boldsymbol{H} - \frac{\partial \boldsymbol{D}}{\partial t} = \boldsymbol{j}$$
$$\nabla \cdot \boldsymbol{D} = \boldsymbol{\rho}$$
$$\nabla \cdot \boldsymbol{B} = 0$$

Faraday (induction) Ampère (induction) Coulomb (electric charges) No magnetic charges

 $\boldsymbol{E}_{2t} - \boldsymbol{E}_{1t} = 0$ $\boldsymbol{H}_{2t} - \boldsymbol{H}_{1t} = \boldsymbol{j}_s$ $\boldsymbol{D}_{2n} - \boldsymbol{D}_{1n} = \boldsymbol{\sigma}$ $\boldsymbol{B}_{2n} - \boldsymbol{B}_{1n} = 0$

$$D = \varepsilon E = \varepsilon_0 E + P$$
$$B = \mu H = \mu_0 H + M$$

Discontinuity at the interface

- Ideal conductor ($\sigma = \infty$)
- Real conductor ($\sigma < \infty$)

Time-resolved reflectivity

- Pump pulse: high density of free carriers (non-equilibrium state)
- Probe pulse: monitoring of the permittivity change

reflected probe delayed probe Inhomogeneous distribution

Properties of the permittivity

- dispersive $[\varepsilon = \varepsilon(\omega)]$ not dispersive (ε does not depend on ω)
- absorbing (ϵ is complex) not absorbing or transparent (ϵ is real)
- inhomogeneous $[\varepsilon = \varepsilon(r)]$ homogeneous (ε does not depend on r)
- anisotropic (ϵ is a second rank tensor) isotropic (ϵ is a scalar)
- nonlinear $[\varepsilon = \varepsilon(E, H)]$ linear (ε does not depend on the fields)

$$D(\omega) = \varepsilon(\omega) E(\omega) = \varepsilon_0 E(\omega) + P(\omega)$$
$$P(\omega) = \varepsilon_0 \chi(\omega) E(\omega)$$
$$\varepsilon(\omega) = \varepsilon_0 (1 + \chi(\omega))$$

Spectral decomposition

Real notation:

- Monochromatic wave $a(t) = |A| \cos(\omega t + \alpha) = \operatorname{Re}\left\{Ae^{i\omega t}\right\}$, with $A = |A|e^{i\alpha}$
- Polychromatic wave

$$a(t) = \sum_{k} |A_{k}| \cos(\omega_{k}t + \alpha_{k})$$
$$a(t) = \int_{0}^{\infty} |A(\omega)| \cos(\omega t + \alpha(\omega)) d\omega$$

Complex notation:

• Monochromatic wave $a(t) = Ae^{i\omega t}$ or $a(t) = \frac{1}{2} \left(Ae^{i\omega t} + A^* e^{-i\omega t} \right)$

a

$$f(t) = \int_{0}^{\infty} A(\omega) e^{i\omega t} d\omega$$
 or $a(t) = \frac{1}{2} \int_{-\infty}^{\infty} A(\omega) e^{i\omega t} d\omega$

Calculation of the field products

• If only mean values are needed (energy density and flow):

$$\langle a(t)b(t)\rangle = \frac{1}{T}\int_{0}^{T} |A|\cos(\omega t + \alpha)|B|\cos(\omega t + \beta) = \frac{1}{2}|AB|\cos(\alpha - \beta)$$

in complex notation: $\langle a(t)b(t)\rangle = \frac{1}{2}\operatorname{Re}\left\{AB^{*}\right\}$

• If instantaneous values are needed (nonlinear optics):

$$a(t) = \frac{1}{2} \left(A e^{i\omega\omega} + A^* e^{-i\omega\omega} \right) \qquad b(t) = \frac{1}{2} \left(B e^{i\omega t} + B^* e^{-i\omega t} \right)$$

Maxwell equations for the spectral components

Introduction of the generalized permittivity:

 $\nabla \wedge \boldsymbol{E} = -i\omega\boldsymbol{B}$ $\nabla \wedge \boldsymbol{H} = \boldsymbol{j} + i\omega\boldsymbol{D}$ $\nabla \cdot \boldsymbol{D} = \rho$ $\nabla \cdot \boldsymbol{B} = 0$

 $\nabla \wedge \boldsymbol{E} = -i\omega\boldsymbol{B}$ $\nabla \wedge \boldsymbol{H} = i\omega\boldsymbol{D}$ $\nabla \cdot \boldsymbol{D} = 0$ $\nabla \cdot \boldsymbol{B} = 0$

Total current (free + polarization charges):

$$\mathbf{j}_{TOT} = \mathbf{\sigma}\mathbf{E} + i\omega\mathbf{D} = i\omega\left(\varepsilon - \frac{i\mathbf{\sigma}}{\omega}\right)\mathbf{E} = i\omega\varepsilon\mathbf{E}$$

We define a new **D** which involves the free charges:

 $\hat{D} = \hat{\varepsilon}E$

Third Maxwell equation becomes:

$$\nabla \cdot \hat{\boldsymbol{D}} = \nabla \cdot (\varepsilon - i \, \sigma / \omega) \boldsymbol{E} = \rho + \frac{1}{i\omega} \nabla \cdot \boldsymbol{j} = 0$$

Conservation of energy

All conservation laws have the general form:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \boldsymbol{j} = \boldsymbol{P}$$

Work of the field per unit of time exerted on the charges (Lorentz force):

$$q(\boldsymbol{E} + \boldsymbol{v} \wedge \boldsymbol{B}) \cdot \boldsymbol{v} = q \, \boldsymbol{v} \cdot \boldsymbol{E} \rightarrow \boldsymbol{j} \cdot \boldsymbol{E}$$

From Maxwell equations:

$$\nabla \wedge E = -\frac{\partial B}{\partial t} \qquad /\cdot H \\ \nabla \wedge H = j + \frac{\partial D}{\partial t} \qquad /\cdot E \end{bmatrix} \qquad E \cdot \frac{\partial D}{\partial t} + H \cdot \frac{\partial B}{\partial t} + \nabla \cdot (E \wedge H) = -j \cdot E \\ \frac{\partial U}{\partial t} + \nabla \cdot S = -j \cdot E$$

Conservation of energy: continued

$$E \cdot \frac{\partial D}{\partial t} + H \cdot \frac{\partial B}{\partial t} + \nabla \cdot (E \wedge H) = -j \cdot E \iff \frac{\partial U}{\partial t} + \nabla \cdot S = -j \cdot E$$

Linear non-dispersive (and non-absorbing) media:

$$U = \frac{1}{2} \left(\boldsymbol{E} \cdot \boldsymbol{D} + \boldsymbol{H} \cdot \boldsymbol{B} \right)$$

<u>Absorbing medium</u>: for a monochromatic wave the energy change corresponds to the heat:

$$Q = \frac{\omega}{2} \operatorname{Im}(\varepsilon^*) E E^* = \omega \operatorname{Im}(\varepsilon^*) \langle E^2 \rangle$$

Medium with small dispersion: quasi-monochromatic wave:

$$\langle U \rangle = \frac{1}{4} \left(\frac{d(\omega \varepsilon)}{d\omega} \boldsymbol{E} \cdot \boldsymbol{E}^* + \mu_0 \boldsymbol{H} \cdot \boldsymbol{H}^* \right) = \frac{1}{2} \left(\frac{d(\omega \varepsilon)}{d\omega} \langle \boldsymbol{E}^2 \rangle + \mu_0 \langle \boldsymbol{H}^2 \rangle \right)$$