Lecture 10: Non-local response

Petr Kužel

Nonlocal response:

- in time (frequency dispersion)
 - Fourier transform
 - Causality, Kramers-Kronig relations
- in space (spatial dispersion)
 - Optical activity

phenomenological description connection to the spatial dispersion

Consecutive relations

In the first lecture we have discussed the consecutive relations:

 $D = \varepsilon E = \varepsilon_0 E + P$ $P = \varepsilon_0 \chi E$ $B = \mu H = \mu_0 H + M$

It is valid only if

- The electromagnetic wave is monochromatic
- The material shows no dispersion within spectrum of the wave
- The field vectors represent the spectral components of the wave:

$$D(\omega) = \varepsilon(\omega)E(\omega)$$
$$P(\omega) = \varepsilon_0 \chi(\omega)E(\omega)$$

Response non-local in time

Let us study the meaning of these relations in the time domain:

$$D(t) = \int_{-\infty}^{\infty} D(\omega) e^{i\omega t} d\omega = \int_{-\infty}^{\infty} \varepsilon(\omega) E(\omega) e^{i\omega t} d\omega$$
$$\varepsilon(t) = \int_{-\infty}^{\infty} \varepsilon(\omega) e^{i\omega t} d\omega$$
$$\varepsilon(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \varepsilon(t) e^{-i\omega t} dt$$

⇒ Fourier transform

The time-domain consecutive relation is a convolution of the field with the response function:

$$\boldsymbol{D}(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega \boldsymbol{E}(\omega) \int_{-\infty}^{\infty} \boldsymbol{\varepsilon}(t') e^{-i\omega(t'-t)} dt' = \frac{1}{2\pi} \int_{-\infty}^{\infty} dt' \boldsymbol{\varepsilon}(t') \int_{-\infty}^{\infty} d\omega \boldsymbol{E}(\omega) e^{-i\omega(t'-t)} = \frac{1}{2\pi} \int_{-\infty}^{\infty} dt' \boldsymbol{\varepsilon}(t') \boldsymbol{E}(t-t')$$

Fourier transform: definitions

The Fourier pairs of functions can have several possible definitions:

1. The natural conjugated variables are v and *t*:

$$F(\mathbf{v}) = \int_{-\infty}^{\infty} f(t) e^{-2\pi i \mathbf{v} t} dt \qquad f(t) = \int_{-\infty}^{\infty} F(\mathbf{v}) e^{2\pi i \mathbf{v} t} d\mathbf{v}$$

2. In optics we think usually in terms of the angular frequency $\omega = 2\pi v$:

$$F'(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t} dt \qquad f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F'(\omega)e^{i\omega t} d\omega$$

3. In order to work with the spectral density in ω , we substitute: $F''(\omega) = F'(\omega)/2\pi$:

$$F''(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt \qquad f(t) = \int_{-\infty}^{\infty} F''(\omega) e^{i\omega t} d\omega$$

Properties of Fourier transform

Properties of FT			
function	Fourier transform		
	Definition 1	Definition 2	Definition 3
f * g	$F(\mathbf{v}) \cdot G(\mathbf{v})$	$F'(\omega) \cdot G'(\omega)$	$2\pi F''(\omega) \cdot G''(\omega)$
$f\cdot g$	$F * G(\mathbf{v})$	$\frac{1}{2\pi}F'*G'(\omega)$	$F'' * G''(\omega)$
df/dt	$2\pi i v F(v)$	$i\omega F'(\omega)$	$i\omega F''(\omega)$
$\delta(t_0)$	$e^{-2\pi i v t_0}$	$e^{-\mathrm{i}\omega t_0}$	$e^{-\mathrm{i}\omega t_0}/2\pi$
$e^{-\alpha t^2}$	$\sqrt{\frac{\pi}{\alpha}} e^{-\frac{\pi^2 v^2}{\alpha}}$	$\sqrt{rac{\pi}{lpha}} e^{irac{\omega^2}{4lpha}}$	$\sqrt{\frac{1}{4\pilpha}} e^{-\frac{v^2}{4lpha}}$
vp 1/ <i>t</i>	$-\pi i \operatorname{sign}(v)$	$-\pi i \operatorname{sign}(\omega)$	$-\frac{i}{2}\operatorname{sign}(\omega)$
sign t	$-\frac{i}{\pi} \mathrm{vp}\frac{1}{\mathrm{v}}$	$-2i \operatorname{vp} \frac{1}{\omega}$	$-\frac{i}{\pi} vp\frac{1}{\omega}$

Fourier pair $vp(1/t) - sign(\omega)$

$$FT\left(\operatorname{vp}\frac{1}{t}\right) = \operatorname{vp}\int_{-\infty}^{\infty} \frac{e^{-2\pi i v t}}{t} dt = \dots$$

For v > 0 the following contour is used:

For v < 0 a similar contour with Im(t) > 0 is used.

One finds the result: πi

$$FT\left(vp\frac{1}{t}\right) = -\pi i \operatorname{sign}(v)$$

Causality

$$\boldsymbol{D}(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dt' \boldsymbol{\mathfrak{E}}(t') \boldsymbol{E}(t-t')$$

In a dispersive material $D(t_0)$ depends, in principle, on $E(t \le t_0)$, i.e. on all the previous values of the electric field.

D and P express the reaction of the matter to the applied field and should not depend on the future values of E:

$$\boldsymbol{D}(t) = \frac{1}{2\pi} \int_{0}^{\infty} dt' \boldsymbol{\varepsilon}(t') \boldsymbol{E}(t-t')$$

The above relations are equivalent if $\varepsilon(t < 0) = 0$: this relation will then automatically ensure the causality.

Causality: continued

Let us define:

Then we can decompose the time response into 2 parts:

 $\mathfrak{E}(t) = \mathfrak{E}_1(t) + 2\pi \mathfrak{E}_{\infty} \,\delta(0)$

The causality condition is then fulfilled just when

$$\mathfrak{E}_{1}(t) = \mathfrak{E}_{1}(t)\operatorname{sign}(t)$$

Finally:

$$\mathfrak{E}(t) = \mathfrak{E}_1(t)\operatorname{sign}(t) + 2\pi\mathfrak{E}_{\infty}\,\delta(0)$$

This is a general form of the response function which obeys the causality relation

Kramers-Kronig relations

The time-domain form of the response function

 $\mathfrak{E}(t) = \mathfrak{E}_1(t)\operatorname{sign}(t) + 2\pi\mathfrak{E}_{\infty}\,\delta(0)$

Leads to the Kramers-Kronig relations in the frequency domain:

$$\varepsilon(\omega_{0}) = (\varepsilon(\omega) - \varepsilon_{\infty}) * \left(-\frac{i}{\pi} \operatorname{vp} \frac{1}{\omega}\right) + \varepsilon_{\infty} = -\frac{i}{\pi} \operatorname{vp} \int_{-\infty}^{\infty} \frac{\varepsilon(\omega) - \varepsilon_{\infty}}{\omega_{0} - \omega} d\omega + \varepsilon_{\infty} =$$
$$= \varepsilon_{\infty} - \frac{i}{\pi} \operatorname{vp} \int_{-\infty}^{\infty} \frac{\varepsilon(\omega)}{\omega_{0} - \omega} d\omega$$

$$\varepsilon'(\omega_0) = \varepsilon_{\infty} - \frac{1}{\pi} \operatorname{vp} \int_{-\infty}^{\infty} \frac{\varepsilon''(\omega) d\omega}{\omega_0 - \omega}$$
$$\varepsilon''(\omega_0) = \frac{1}{\pi} \operatorname{vp} \int_{-\infty}^{\infty} \frac{\varepsilon'(\omega) d\omega}{\omega_0 - \omega}$$

$$n(\omega_0) = 1 - \frac{1}{\pi} \operatorname{vp} \int_{-\infty}^{\infty} \frac{\kappa(\omega) d\omega}{\omega_0 - \omega}$$
$$\kappa(\omega_0) = \frac{1}{\pi} \operatorname{vp} \int_{-\infty}^{\infty} \frac{n(\omega) d\omega}{\omega_0 - \omega}$$

Note

Which other physical phenomena are connected to vp — sign transformation?

Mathematicians thought useful to introduce so called Hilbert transformation which is closely related to that:

$$H(y) = y * \frac{i}{\pi} \operatorname{vp} \frac{1}{x}$$

 $-\infty$

E(t), e(v) is an electric field Fourier pair of an arbitrary waveform

$$e(\mathbf{v}) = \int_{-\infty}^{\infty} E(t) \exp(-2\pi i \mathbf{v} t) dt$$

Frequency components e(v) within the pulse bandwidth acquire a constant phase change θ [strictly speaking: $\theta \times \text{sign}(v)$ because $e(-v) = e^*(v)$]

$$E'(t) = \int_{-\infty}^{\infty} e(v) \exp(i\theta \operatorname{sign}(v)) \exp(2\pi i v t) dv$$

Note: continued

It means in the time domain: $E'(t) = E(t) * \left[\cos \theta \, \delta(t) - \frac{\sin \theta}{\pi} \operatorname{vp} \frac{1}{t} \right]$

In particular, for
$$\theta = \pi/2$$
: $E'(t) = -\frac{E(t)}{\pi} * vp \frac{2}{\pi}$

Monochromatic wave $[\cos(t) \text{ becomes } \sin(t)]$:

Half-cycle or single-cycle pulse:

Optical activity: description of the phenomenon

Experimental fact: rotation of the polarization plane in some materials (quartz). This rotation can be right- or left-handed.

Angle of the rotation is proportional to the length of the sample: a specific rotation angle (per unit length) can be defined

Direction of the rotation is related to the propagation direction: the total rotation for a propagation back and forth is zero.

Phenomenologically, it can be described as a circular birefringence Eigenmodes:

$$\boldsymbol{R} e^{i(\omega t - k_0 z n_R)} \qquad \boldsymbol{L} e^{i(\omega t - k_0 z n_L)}$$

R and L are the Jones vectors for the right and left circular polarizations

Optical activity: continued

At z = 0 (input face of the sample) the polarization of the beam is linear:

$$\frac{A}{\sqrt{2}}e^{i\omega t}(\mathbf{R}+\mathbf{L}) = \frac{A}{2}e^{i\omega t}\left[\begin{pmatrix}1\\i\end{pmatrix} + \begin{pmatrix}1\\-i\end{pmatrix}\right] = A e^{i\omega t}\begin{pmatrix}1\\0\end{pmatrix}$$

At z = d (output face of the sample) the polarization writes:

$$\frac{A}{\sqrt{2}} e^{i\omega t} \left(\mathbf{R} \ e^{-ik_0 d \ n_R} + \mathbf{L} \ e^{-ik_0 d \ n_L} \right) =$$
$$= A \ e^{i\omega t - ik_0 d \ (n_R + n_L)/2} \begin{pmatrix} \cos \beta \\ \sin \beta \end{pmatrix}$$

It is a linear polarization in the direction given by the angle β :

$$\beta = k_0 d \frac{n_R - n_L}{2} = \pi \frac{d}{\lambda} (n_R - n_L)$$

Quartz at 546 nm: $n_e - n_o = 0.009$, $|n_R - n_L| = 8 \times 10^{-5}$.

Response non-local in space

An electric field in one place can produce a polarization in the near vicinity

$$D(r) = \frac{1}{(2\pi)^3} \iiint \tilde{\epsilon}(r') E(r-r') dr'$$
$$P(r) = \frac{\varepsilon_0}{(2\pi)^3} \iiint \tilde{\chi}(r') E(r-r') dr'$$

The above response functions take the form of a Dirac δ in the local response approximation

In the reciprocal space the following relations are obtained

 $D(\omega, k) = \varepsilon(\omega, k) E(\omega, k)$ $P(\omega, k) = \varepsilon_0 \chi(\omega, k) E(\omega, k)$

Dependence on k (namely on its direction): spatial dispersion

In the following we will search for the consequences of the spatial dispersion

Spatial dispersion

We take a first-order Taylor development of $\varepsilon(k)$: the linear term does not vanish in the non-centrosymmetric materials

$$\boldsymbol{\varepsilon}_{ij}(\boldsymbol{k}) = \boldsymbol{\varepsilon}_{ij}^{0} + \boldsymbol{\varepsilon}_{0} \sum_{l=1}^{3} \boldsymbol{\gamma}_{ijl} \boldsymbol{k}_{l}$$

 γ_{ijl} is a 3rd-rank tensor. Its intrinsic symmetry properties can be derived from those of the dielectric constant:

$$\varepsilon_{ij} = \varepsilon_{ji}^*$$
 and $\varepsilon_{ij}(k) = \varepsilon_{ij}^*(-k)$

$$\begin{split} \gamma_{ijl} &= i \delta_{ijl} \qquad (\gamma_{ijl} \text{ is imaginary, } \delta_{ijl} \text{ is real}) \\ \gamma_{iil} &= 0 \\ \delta_{ijl} &= -\delta_{jil} \end{split}$$

An antisymmetric tensor g_{ii} can be defined:

$$g_{ij} = \delta_{ijl} k_l$$

Spatial dispersion: continued

$$g_{ij} = \delta_{ijl} k_l \qquad \qquad \mathbf{g} = \begin{pmatrix} 0 & g_{12} & g_{13} \\ -g_{12} & 0 & g_{23} \\ -g_{13} & -g_{23} & 0 \end{pmatrix}$$

One can also introduce the gyration vector:

$$G = (g_{23} - g_{13} - g_{12})$$

The electric induction is then equal to:

 $D_i = \varepsilon_{ij}^0 E_j + i\varepsilon_0 g_{ij} E_j \qquad \qquad \boldsymbol{D} = \varepsilon \boldsymbol{E} + i\varepsilon_0 \boldsymbol{G} \wedge \boldsymbol{E}$

<u>Note</u>: the tensor g is not characteristic for a medium, it is given for the medium and a specific wave vector. I.e. if we apply a symmetry operation (like a rotation or a mirror) on the tensor g the crystal sample turns consequently but the radiation wave vector turns as well!

Light waves in non-local media

We have to solve the wave equation:

$$s(s \cdot E) - E + \frac{1}{n^2} \varepsilon_r \cdot E = 0 \qquad (\text{ or } k(k \cdot E) - k^2 E + \omega^2 \mu_0 \varepsilon \cdot E = 0)$$

where the dielectric constant ε_r is replaced by:

$$\boldsymbol{\varepsilon} = \begin{pmatrix} \varepsilon_{xx}^{0} & ig_{12} & ig_{13} \\ -ig_{12} & \varepsilon_{yy}^{0} & ig_{23} \\ -ig_{13} & -ig_{23} & \varepsilon_{zz}^{0} \end{pmatrix}$$

Let us study the case of the **quartz** (uniaxial crystal) which allows to discuss the most important features. The quartz has only two independent components of the 3^{rd} -rank tensor δ .

$$\delta_{123} = -\delta_{213}; \ \delta_{231} = \delta_{312} = -\delta_{321} = -\delta_{132}$$

Propagation // optic axis (//z)

 $g_{13} = \delta_{123} k, g_{13} = 0, g_{23} = 0$ we define: $\Delta_3 = g_{12} c^2 / \omega^2$

Wave equation:

$$\begin{pmatrix} n_o^2 - n^2 & i\Delta_3 & 0 \\ -i\Delta_3 & n_o^2 - n^2 & 0 \\ 0 & 0 & n_e^2 \end{pmatrix} \begin{pmatrix} E_x \\ E_y \\ E_z \end{pmatrix} = 0$$

Eigenvalues (effective refractive index):

$$n_{I,II} \approx n_o \pm \frac{\Delta_3}{2n_o}$$

Eigenvectors (polarization of the waves):

$$\begin{pmatrix} 1 \\ -i \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ i \\ 0 \end{pmatrix}$$

Propagation \perp optic axis (//x)

$$g_{23} = \delta_{231} k, g_{13} = 0, g_{12} = 0$$

we define: $\Delta_1 = g_{23} c^2 / \omega^2$

Wave equation:

$$\begin{pmatrix} n_o^2 & 0 & 0 \\ 0 & n_o^2 - n^2 & i\Delta_1 \\ 0 & -i\Delta_1 & n_e^2 - n^2 \end{pmatrix} \begin{pmatrix} E_x \\ E_y \\ E_z \end{pmatrix} = 0$$

As the birefringence is usually larger than the optical activity, we can assume:

$$\left|n_o^2-n_e^2\right|\gg\Delta_1$$

Propagation \perp optic axis (//x): continued

Wave equation:

$$\begin{pmatrix} n_o^2 & 0 & 0 \\ 0 & n_o^2 - n^2 & i\Delta_1 \\ 0 & -i\Delta_1 & n_e^2 - n^2 \end{pmatrix} \begin{pmatrix} E_x \\ E_y \\ E_z \end{pmatrix} = 0$$

Eigenvalues:

Eigenvectors:

$$\begin{split} n_{I} \approx n_{o} + \frac{\Delta_{1}}{2n_{o}} \frac{\Delta_{1}}{n_{o}^{2} - n_{e}^{2}} & \begin{pmatrix} 0 \\ 1 \\ -i\Delta_{1} \\ n_{II} \approx n_{e} - \frac{\Delta_{1}}{2n_{e}} \frac{\Delta_{1}}{n_{o}^{2} - n_{e}^{2}} & \begin{pmatrix} 1 \\ -i\Delta_{1} \\ n_{o}^{2} - n_{e}^{2} \end{pmatrix}, & \begin{pmatrix} 0 \\ \frac{i\Delta_{1}}{n_{o}^{2} - n_{e}^{2}} \\ 1 \end{pmatrix} \end{split}$$