
Lecture 10: Non-local response

Petr Kužel

Nonlocal response:

• in time (frequency dispersion)

! Fourier transform

! Causality, Kramers-Kronig relations

• in space (spatial dispersion)

! Optical activity
phenomenological description
connection to the spatial dispersion



Consecutive relations

It is valid only if

• The electromagnetic wave is monochromatic

• The material shows no dispersion within spectrum of the wave

• The field vectors represent the spectral components of the wave:
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In the first lecture we have discussed the consecutive relations:
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Response non-local in time
Let us study the meaning of these relations in the time domain:
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The time-domain consecutive relation is a convolution of the field with the
response function:
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Fourier transform: definitions
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The Fourier pairs of functions can have several possible definitions:

1. The natural conjugated
variables are ν and t:

2. In optics we think usually
in terms of  the angular
frequency ω = 2πν:

3. In order to work with the
spectral density in ω, we
substitute: F''(ω) = F'(ω) /2π:



Properties of Fourier transform
Properties of FT

Fourier transform
function

Definition 1 Definition 2 Definition 3
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Re(t)

Im(t)
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Fourier pair vp(1/t) — sign(ω)
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For ν > 0 the following contour is used:
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For ν < 0 a similar contour with Im(t) > 0  is used.

One finds the result: πi
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Causality
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In a dispersive material D(t0) depends, in principle, on E(t ≤ t0), i.e. on all the
previous values of the electric field.

D and P express the reaction of the matter to the applied field and should not
depend on the future values of E:
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The above relations are equivalent if ε(t < 0) = 0: this relation will then
automatically ensure the causality.



Causality: continued
Let us define:
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Then we can decompose the time response into 2 parts:
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The causality condition is then fulfilled just when
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This is a general form of the response functionThis is a general form of the response function
 which obeys the causality relation which obeys the causality relation



Kramers-Kronig relations
The time-domain form of the response function
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Leads to the Kramers-Kronig relations in the frequency domain:
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Note
Which other physical phenomena are connected to vp — sign transformation?

Mathematicians thought useful to introduce so called Hilbert transformation
which is closely related to that:
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Frequency components e(ν) within the pulse bandwidth acquire a constant
phase change θ [strictly speaking: θ × sign(ν) because e(−ν) = e*(ν)]
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E(t), e(ν) is an electric field Fourier pair of an arbitrary waveform



Note: continued
It means in the time domain: ( ) ( ) ( ) 
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Monochromatic wave [cos(t) becomes sin(t)]:

Half-cycle or single-cycle pulse:



Optical activity: description of
the phenomenon

Experimental fact: rotation of the polarization plane in some materials
(quartz). This rotation can be right- or left-handed.

Angle of the rotation is proportional to the length of the sample: a specific
rotation angle (per unit length) can be defined

Direction of the rotation is related to the propagation direction: the total
rotation for a propagation back and forth is zero.

Phenomenologically, it can be described as a circular birefringence
Eigenmodes:
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R and L are the Jones vectors for the right and left circular polarizations



Optical activity: continued
At z = 0 (input face of the sample) the polarization of the beam is linear:
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At z = d (output face of the sample) the polarization writes:
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It is a linear polarization in the direction given by the angle β:
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Quartz at 546 nm: ne − no = 0.009, |nR − nL| = 8×10−5.



Response non-local in space
An electric field in one place can produce a polarization in the near vicinity
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The above response functions take the form of a Dirac δ in the local
response approximation

In the reciprocal space the following relations are obtained
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Dependence on k (namely on its direction): spatial dispersion

In the following we will search for the consequences of the spatial
dispersion



Spatial dispersion
We take a first-order Taylor development of ε(k): the linear term does not
vanish in the non-centrosymmetric materials
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γijl  is a 3rd-rank tensor. Its intrinsic symmetry properties can be derived
from those of the dielectric constant:
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Spatial dispersion: continued
lijlij kg δ=
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One can also introduce the gyration vector:
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The electric induction is then equal to:

jijjiji EgiED 0
0 ε+ε= EGED ∧ε+ε= 0i

Note: the tensor g is not characteristic for a medium, it is given for the
medium and a specific wave vector. I.e. if we apply a symmetry
operation (like a rotation or a mirror) on the tensor g the crystal sample
turns consequently but the radiation wave vector turns as well!



Light waves in non-local media
We have to solve the wave equation:

where the dielectric constant εr is replaced by:
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Let us study the case of the quartz (uniaxial crystal) which allows to
discuss the most important features. The quartz has only two independent
components of the 3rd-rank tensor δ.

δ123 = −δ213; δ231 = δ312 = −δ321 = −δ132



Propagation // optic axis (//z)
g13 = δ123 k, g13 = 0, g23 = 0

we define: 22
123 ω=∆ cg

Wave equation:
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Propagation ⊥  optic axis (//x)
g23 = δ231 k, g13 = 0, g12 = 0

we define: 22
231 ω=∆ cg

Wave equation:
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As the birefringence is usually larger than the optical activity, we can
assume:
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Propagation ⊥  optic axis (//x):
continued

Wave equation:
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