Lecture 10: Non-local response

Petr Kuzel

Nonlocal response:

* in time (frequency dispersion)




Consecutive relations

In the first lecture we have discussed the consecutive relations:

D=¢E=¢,E+P
P =¢,XE
B=pH =y, H+M




Response non-local In time

Let us study the meaning of these relations in the time domain:

D(t)= _}D(oo) e dw= }s(w)E(oo) e dw




Fourier transform: definitions

The Fourier pairs of functions can have several possible definitions:

1. The natural conjugated
variables are v and t;

2. In optics we think usually
in terms of the angular
frequency w = 21V

3. In order to work with the
spectral density In w, we
substitute: F"'(w) =F'(w) /21T

F(V)=_}f(t)e—2m'vt it f(t)=_}p(v)e2w'vt "

F'(w)= }f(t)e—iwt dt f(t):;_'r[j'F'(w)eiwt doo
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Properties of Fourler transform

Properties of FT
: Fourier transform
function . . .
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Fourier pair vp(1/t) — sign(w)
FTH/p H=v } o t

For v > 0 the following contour is used: A Im(t)

va

FTH/p Hz—ru5|gn (v)




Causality

D(t):;T_}dt"si(t’)E(t—t’)

In a dispersive material D(t,) depends, in principle, on E(t < t,), i.e. on all the
previous values of the electric field.

D and P express the reaction of the matter to the applied field and should not
depend on the future values of E:




Causality: continued

Let us define:

00

lim e(w)=¢, g (t)= _I(e(oo)—aoo)e"’“t doo

Then we can decompose the time response into 2 parts:
g(t)=&(t)+2ne, 50)
The causality condition is then fulfilled just when

&(t)=2(t)sign(t)
Finally:

g(t)=%(t)sign(t)+ 2me, 3(0)

This is a general form of the response function
which obeys the causality relation



Kramers-Kronig relations

The time-domain form of the response function
g(t)=2(t)sign(t)+ 2me, 3(0)

Leads to the Kramers-Kronig relations in the frequency domain:

e(wy )= DH— ! vpibe, = I(w)_a‘”dwﬂm =

0 wn _wooooo




Note

Which other physical phenomena are connected to vp — sign transformation?

Mathematicians thought useful to introduce so called Hilbert transformation
which is closely related to that:

I 1
H(y)=yO" vp
TU X

E(t), e(v) is an electric field Fourier pair of an arbitrary waveform

e(v):jE(t)exp(—ZT[ivt)dt

Frequency components e(v) within the pulse bandwidth acquire a constant
phase change 8 [strictly speaking: 8 x sign(v) because e(-v) = e*(v)]

E’(t)=}e(v)exp(iGsign(v))exp(ZT[ivt)dv



Note: continued

It means in the time domain:  E'(t)= E(t)D%ose 6(t)—SinevpiE
Tt
_ v E[)- 1
In particular, for 6=172: E'(t)= T DVIOt

Monochromatic wave [cos(t) becomes sin(t)]:
7 N\ NG 7N




Optical activity: description of
the phenomenon

Experimental fact: rotation of the polarization plane in some materials
(quartz). This rotation can be right- or left-handed.

Angle of the rotation is proportional to the length of the sample: a specific
rotation angle (per unit length) can be defined

Direction of the rotation is related to the propagation direction: the total
rotation for a propagation back and forth is zero.

Phenomenologically, it can be described as a circular birefringence
Eigenmodes:

R ei(oot—koz nR) I ei(oot—koz n)

R and L are the Jones vectors for the right and left circular polarizations



Optical activity: continued

At z = 0 (input face of the sample) the polarization of the beam is linear:

%eiwt(R.FL):?eiwt %% E‘li %: A %E

At z = d (output face of the sample) the polarization writes:

A g (R o-ikodnR 4 7 gikodnL ):

12




Response non-local in space

An electric field in one place can produce a polarization in the near vicinity

D(r)= (2111)3 [[[2()EG~r)ar
€0 IIIX(r')E(r —r')dr’

P(r)= (2m)’

The above response functions take the form of a Dirac o in the local
response approximation

In the reciprocal space the following relations are obtained
D(w k)=¢(w k)E(w k)
P(wk)=g,x(02 k) E(w k)

Dependence on &k (namely on its direction): spatial dispersion

In the following we will search for the consequences of the spatial
dispersion



Spatial dispersion

We take a first-order Taylor development of €(k): the linear term does not
vanish in the non-centrosymmetric materials

3
€ij (k)= Ei(} t& z Yiji ki
=

Y 1s a 3'd-rank tensor. Its intrinsic symmetry properties can be derived
from those of the dielectric constant:




Spatial dispersion: continued
H 0 O12 9135

K g=009, 0 050

jl
H‘ O3 —0; O H
One can also introduce the gyration vector:

G = (923 — 013 912)

The electric induction is then equal to:

gij = O

D, =&;E; +igg0; E; D =¢E +ig,GOE

Note: the tensor g is not characteristic for a medium, it is given for the
medium and a specific wave vector. l.e. if we apply a symmetry
operation (like a rotation or a mirror) on the tensor g the crystal sample
turns consequently but the radiation wave vector turns as well!



Light waves in non-local media

We have to solve the wave equation:
s(s(E)-E +12 e, [E=0  (or k(k[E)-k2E +w’,eE =0)
n

where the dielectric constant €, is replaced by:

H €0x 191, 1033 H
e=lrig, &) g0




Propagation // optic axis (//z)

U3 = 013K 013=0, 0y =0
we define: A, =g,,¢%/o’

Wave equation:

hi-n* in, 0 HrE-F

O-id;  ng-n® 00OF,F0




Propagation [ optic axis (//x)

Uy = 031K, 913=0,0,,=0
we define: A, =g,;¢°/

Wave equation:

the 0 0 HEEXH

00 n?-n* iA, OE,[FO




Propagation [ optic axis (//x):

continued
Wave equation:
Ehg 2 ’ 2 -0 EiEX H
(00 nj-n iA, UE, FO
%O —iA, nZ-n? ;%Z -
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