Dijets in Diffractive Photoproduction at HERA

Karel Černý

Institute of Particle and Nuclear Physics Charles University in Prague 06/03/2008

- 1) Introduction
- 2) Data and Event Selection
- 3) Control Plots
- 4) Cross Section Measurement
- 5) Systematic Uncertainties
- 6) Results
- 7) Conclusions

1

Introduction

Diffraction: interaction with vacuum quantum number exchange.

Dissociation into low mass states may occur: $M_{X,Y} << E_{CMS}$

Hard diffraction: hard scale present => QCD calculable final states in either of the dissociated states 2

Diffractive Deep Inelastic Scattering (DDIS) at HERA

- Hard diffraction in DIS was not expected to be interesting.
- ~10% of DIS events at low x is DDIS, however.
- Jets or vector mesons observed in the final states in DDIS.
- Due to colourless exchange the DDIS is manifested with a Large Rapidity Gap (LRG).

<u>Diffractive parton distribution functions (DPDF)</u>

- In order to be able to make predictions of the cross sections of hard diffractive processes the DPDFs need to be measured.
- They are extracted from inclusive DDIS (any final state & LRG & Q^2 the hard scale).
- QCD hard factorization theorem is then used for predictions.

$$\sigma \left(\gamma^* p \rightarrow X p \right) \ \approx \ f_{i/p}(z, Q^2, x_{IP}, t) \ x \ \sigma_{\gamma^* p}(z, Q^2)$$
Diffractive Parton Distribution
Function (DPDF)

Diffractive parton distributions measured at **HERA** fail to predict dijet rates at **Tevatron!** 4

HERA DPDFs were expected to be universal but ...

- Hard factorization is expected to hold in DDIS processes (Collins, 1998).
- Hard factorization **not expected** to hold in diffractive **h-h** scattering (Kaidalov et. al., 2003).

Diffractive Dijets in Photoproduction

• Photoproduction = $Q^2 \sim 0$ GeV², two leading order (LO) classes of photon interaction: **direct / resolved**.

• The resolved events resemble h-h scattering.

Recent Results on Diffractive Dijets in Photoproduction

- Published H1 results (96/97 ~ 18 pb⁻¹) conclude that an overall suppression factor of 0.5 is needed for NLO.
- Recent ZEUS results: NLOs agree with data with weaker suppression factors or within the uncertainties almost without suppression.
- Both experiments observe no special suppression of resolved w.r.t. direct.
- \bullet There may be an $\rm E_{_T}$ dependence of the suppression explaining the different H1 <-> ZEUS conlusions.
- \bullet The analysis is, therefore, carried out in two $E_{_{\rm T}}$ cut schemes:

```
· low E_{T} ... jets above 5 and 4 GeV in p_{T} (H1)
```

 $\cdot\,$ high $E_{_{\rm T}}...$ jets above 7.5 and 6.5 GeV in $p_{_{\rm T}}$ (ZEUS)

Data and Event Selection

- Analysis is based on 1999e+/2000 HERA data.
- Integrated luminosity ~ 54 pb⁻¹.
- Outgoing electron is tagged in the electron tagger (e-tag33m).
- Diffractive events selected by means of LRG method.

Kinematics of the events

Kinematics of the events

	low E _T		high E _T
	$E_{T}^{jet1} > 5 \text{ GeV}$		E_{T}^{jet1} > 7.5 GeV
	$E_{T}^{jet2} > 4 \text{ GeV}$		$E_{T}^{jet2} > 6.5 \text{ GeV}$
e-tagger limitation	-1 < $\eta^{(jet \ 1 \ and \ 2)}$ < 2		$-1.5 < \eta^{(\text{jet 1 and 2})} < 1.5$
	x _{IP} < 0.03		x _{IP} < 0.025
	$0.3 < y_e < 0.65$	different from ZEUS	$0.3 < y_{e} < 0.65$
	Q^2 < 0.01 GeV ²		Q^2 < 0.01 GeV ²
	$ t < 1 \text{ GeV}^2$		$ t < 1 \text{ GeV}^2$
	$M_{_{ m Y}}$ < 1.6 GeV		$M_{_{ m Y}}$ < 1.6 GeV

These cuts define the cross section measurement phase space 11

Control Plots

- Monte Carlo (MC) samples are generated and simulated
- Good description of the reconstructed level is needed.
- Rapgap 3.1 MC generator is used for signal events.
- Pythia 6.1 is used for background estimation.

Cross Section Measurement

• In each bin of given variable cross section is measured by means of following formula:

• Eventually, a factor [$C^{pdiss} = 0.94 +/-7\%(syst.)$] is applied accounting on proton dissociation correction into: $M_{_Y} < 1.6 \text{ GeV and } |t| < 1 \text{ GeV}^2$.

Systematic Uncertainties

SOURCE	ELEM. SHIFT	$\Delta \sigma$ low E_{T}	$\Delta \sigma$ high $E_{_{T}}$
	0.5%	0.00/	40.00/
HFS	2.5%	6.8%	12.3%
LRG	30.0%	8.1%	6.4%
TE	5.0%	5.0%	5.0%
Lumi	2.0%	2.0%	2.0%
p-diss	7.0%	7.0%	7.0%
FMD noise	0.6%	0.8%	0.8%
etag A	1.5%	1.5%	1.5%
bgd.	50.0%	2.7%	2.9%
y ^{gen} -shape	0.3	0.2%	0.9%
t ^{gen} -shape	2	4.2%	3.2%
p _T ^{hadr.jet1} -shape	0.4 (0.8 for high p _T)	1.0%	1.3%
x _{IP} ^{hadr} -shape	0.2 (0.4 for high p_T)	5.0%	9.7%
z _{IP} ^{hadr} -shape	0.3	3.0%	5.2%
	total =	~16%	~20%

Results

- Next-to-leading order (NLO) QCD calculations are used to predict the measured cross sections in both analyses.
- NLO program of Frixione et al. (FR) is used.
- NLO program of Kramer-Klasen (KK) is used.
- Both NLOs use the H1 2006 fit B parton distr. functions.
- Hadronization corrections are applied to the NLOs.

$$(1+\delta_{had})_i = (\frac{\sigma_{dijet}^{hadron}}{\sigma_{dijet}^{parton}})_i$$

low E₋

high E_{T}

• The suppression factors applied to NLO predictions are calculated from the total data and NLO cross sections.

$$f^{FR} = 0.54 \pm 0.01 (stat.) \pm 0.09 (syst.)^{+0.14}_{-0.13} (scale)$$

$$f^{KK} = 0.52 \pm 0.01 (stat.) \pm 0.08 (syst.)$$

$$f^{FR} = 0.62 \pm 0.04 (stat.) \pm 0.13 (syst.)^{+0.16}_{-0.14} (scale)$$

$$f^{KK} = 0.63 \pm 0.03 (stat.) \pm 0.13 (syst.)$$

Conclusions

• The NLO predictions overestimate measured cross section in both analyses – stronger suppression in the low E_{T} analysis.

 $\bullet~E_{_{\rm T}}$ dependence of the suppression observed in the low $E_{_{\rm T}}$ analysis.

• With respect to the larger uncertainties the E_{T} dependence of the suppression in the high E_{T} analysis is not excluded.

• New analyses might illuminate the issue:

• Photoproduction:
$$\sigma_{dijets}^{diffr.}$$
 / $\sigma_{dijets}^{incl.}$
• Photoproduction & DIS: $\frac{\sigma_{dijets}^{Php, data} / \sigma_{dijets}^{Php, NLO}}{\sigma_{dijets}^{DIS, data} / \sigma_{dijets}^{DIS, NLO}}$

Backup – cuts

!! the analysis is carried out in 2 cut schemes !!

- 1) cuts identical with previous H1 measurement
- 2) ZEUS-like analysis cuts (harder jets,...)

Backup – MC samples

• Rapgap 3.1 IP and IR exchange with H1 2006 fit b for DPDFs:

	IP	<u>IR</u>
BGF-c	870k	110k
BGF-uds	1.82M	190k
QCD Compton-uds	330k	140k
resolved-uds	12 M	2.5M

- GRV-G LO photon structure function
- Pythia 6.2 inclusive photoproduction sample for background

Backup – reconstruction of kinematics

rec. level <u>hadron. level (</u> GKI stable hadrons) <u>parton. level (</u> GKI partons)				
$y_e = 1 - \frac{E_{etag}}{E_e^{beam}}$	$y_e = 1 - \frac{E_e^{gen}}{E_e^{beam}}$	-//-		
$W = \sqrt{s.y_e}$	-//-	-//-		
$x_{y} = \frac{\sum_{j \text{ ets}} E_{i} - p_{z,i}}{\sum_{HFS} E_{i} - p_{z,i}}$	-//-	-//-		
$x_{IP} = \frac{\sum_{HFS} E_i + p_{z,i}}{2.E_P^{beam}}$	$x_{IP} = \frac{\sum_{hadrons}^{no \ elas.P} E_i + p_{z,i}}{2.E_P^{beam}}$	$x_{IP} = x_{IP}^{gen}$		
$z_{IP} = \frac{\sum_{jets} E_i + p_{z,i}}{2.x_{IP} \cdot E_P^{beam}}$	-//-	-//-		
$M_{12} = \sqrt{J_{1}^{\mu} J_{2,\nu}}$	-//-	-//-		
$M_X = \sqrt{s. y_e \cdot x_{IP}}$	$M_{X} = \sqrt{X^{\mu} \cdot X_{\mu}} \dots X^{\mu} = \sum_{hadrons}^{no \ elas.P} P_{i}^{\mu}$	$M_{X} = \sqrt{X^{\mu} \cdot X_{\mu}} \dots X^{\mu} = \sum_{partons} P_{i}^{\mu}$		

Backup – FR NLO settings

<u>resolved, IP</u>	
5	! # of flavours
4 1	! Hadron type
1001	! PDF set for the hadron, negative
for	
DPDFLib - $1150 = f$	it2
5003	PDF set for 1. particle
0.228E+00	! Lambda_5, 0 for default
'MS	! Scheme for hadron
direct, IP:	
5	! # of flavours
1	! Hadron type
1001	! PDF set for the hadron, negative
for	
DPDFLib - $1150 = fi$	t2
0.228E+00	! Lambda_5, 0 for default
'MS'	! Scheme for hadron
'DI'	! Scheme for photon