Exkluzivní difrakční produkce Higgsova bosonu na ATLAS

Vojtěch Juránek

Fyzikální ústav AV ČR, v. v. i.

23. 1. 2009, ATLAS seminář, Praha

Vojtěch Juránek (FZÚ Praha) Exkluzivní difrakční produkce Higgsova bosonu na ATLAS

Difrakce

Nejčastější definice:

- Difrakce je reakce při vysokých energiích, kde nedochází k výměně žádných kvantových čísel mezi srážejícími se částicemi (resp. výměně kvantových čísel vakua).
- V koncovém stavu je přítomný tzv. "rapidity gap".

Příklad z experimentu H1

Centrální exkluzivní produkce (CEP)

- pp→p+gap+X+gap+p (při vysokých luminositách budou "rapidity gaps" zničeny diky přítomnosti pile-up).
- Oba protony zůstávají neporušeny, všechna energie ztracená protony je použita na vytvoření centrálního objektu.
- Jestliže je proton detekován v dopředném detektoru (FD), můžeme měřit relativní ztrátu energie protonu:

$$\xi = \mathbf{1} - \frac{|p'|}{|p|}.$$

 Pokud detekujeme oba protony, můžeme určit např. hmotu a rapiditu centrálního objektu:

$$\begin{split} M_X &\simeq \sqrt{\xi_1 \xi_2 s} \\ y_X &\simeq \frac{1}{2} \ln \frac{\xi_1}{\xi_2}. \end{split}$$

$H ightarrow bar{b}$

- Pro hmotu Higgse v okolí 120GeV je velmi zajímavý kanál $H \rightarrow b\bar{b}$.
- Pro M_H = 120GeV se H rozpadá převážně na bb
 (68%).
- "Standardní" $H \rightarrow b\bar{b}$ není možné měřit kvůli obrovskému $b\bar{b}$ pozadí.
- Pro M_H = 120GeV další možné "standardní" kanály jako τ⁺τ⁻ nebo γγ jsou vcelku obtížné každý další kanál (jako např. difrakční) je vítán.

Exkluzivní difrakční produkce Higgsova bosonu

Hlavní výhody:

- Přesné měření hmoty Higgse ($M_H \simeq \sqrt{\xi_1 \xi_2 s}$).
- Dobrý poměr signálu k pozadí (H→bb/gg→bb/gg→bb/je lepší v difrakčních procesech než v nedifrakčních).

Nevýhody:

- Malý účinný průřez (ExHuMe σ^(NLO)_{H→bb} = 1.9 fb, ale stále velké neurčitosti ve výpočtu účinného průřezu).
- Citlivé na pile-up (víc protonů v jednom FD z dalších difrakčních procesů, pocházejících převážně z měkké difrakce).

Modely exkluzivní difrakční produkce implementované v MC generátorech

- DpeMC Bialas-Landshoff model:
 - Formulován jako výměna dvou pomeronů pomeronový flux.
- ExHuMe KMR model:
 - Výměna dvou gluonů, jeden měkký, druhý tvrdý.
 - Partonové distribuční funkce.
 - NLO řád, implementace v LO a účinný průřez násoben K faktorem.
- CDF: ExHuMe popisuje exkluzivní dijet produkci lépe než DpeMC.

Exkluzivní a inkluzivní DPE pozadí

Exkluzivní:

- $gg \rightarrow b\bar{b}$ (ExHuMe: $\sigma_{p_T^{min}=30 \text{GeV}} = 270 \text{fb}$)
 - Víceméně stejné chování jako signál.
 - Hraje nejdůležitější roli při nízkých luminositách.
 - Oproti "standardnímu" QCD $gg \rightarrow b\bar{b}$ potlačeno faktorem $\frac{m_b^2}{M_j^2}$ ($J_z = 0$ výběrové pravidlo).
- $gg \rightarrow gg$ (ExHuMe: $\sigma_{p_T^{min}=30 \text{GeV}} = 714 \text{pb}$)
 - Pozadí přítomné díky gluonovým jetům nesprávně určených jako b-jety.
 - Očekávaná četnost označení gluonového jetu jako b-jet je 1.3% při 60% efektivitě b-taggingu.

Inkluzivní:

- $pp \rightarrow p + A + q\bar{q} + p$ ($\sigma = 880$ nb)
 - A je cokoli (zbytky pomeronů).
 - Víceméně zcela potlačeno cuty založenými na exkluzivitě procesu.
 - Silně závisí na pomeronových strukturních funkcích, které nejsou příliš dobře známé (zejména pro vysoká β).

Účinný průřez bb pozadí

- Nedávná studie (A. Shuvaev a KMR, arXiv:0806.1447), NLO korekce k $gg \rightarrow b\bar{b}$
- Doporučená volba (KMR) IR cutoffu k_{t0} = 5GeV (pro menší hodnoty je pozadí potlačeno více, ale stejně tak je pak potlačen i signál).

 Pro tuto volbu cutoffu účinný průřez CEP bb kolem M_{bb} = 120GeV je přibližně dvakrát menší(ve srovnání s LO, který je implementován v ExHuMe).

Pile-up pozadí

 Při srážce svazků (BC) může dojít (a bude docházet) k více než jedné interakci (typicky jeden tvrdý proces a několik měkkých procesů).

- Překrytí tří případů: nedifrakční QCD dijet a dvě single difrakce (které jsou zaznamenány v FD).
- Obecně tři typy:
 - [p][X][p]: dijet + dvě měkké difrakce,
 - [pX][p]: jedna tvrdá difrakce + jedna měkká difrakce,
 - [*pp*][X]: dvojitá difrakce + dijet.
- Při vysokých luminositách je nejzávažnější pozadí typu [p][X][p]:
 - [p][X][p] roste kvadraticky s luminositou (σ_{[p][X][p]} ≃ (N − 1)(N − 2)P₁P₂Qσ),
 - [pp][X] roste lineárně s luminositou,
 - [pX][p] potlačeno díky "gap survival probability" (ve srovnání s [p][X][p]).

- Použité verze Atheny: 11.0.4 a 12.0.5.
- ATLAS simulace: pouze rychlá simulace AtlFast(I).
- Simulace dopředných detektorů zatím neexistuje, použity dostupné odhady (viz další strana).
- Monte Carlo (DpeMC, ExHuMe) produkce pouze soukromá:
 - $1 \cdot 10^5 \text{ CEP } H \rightarrow b\bar{b} \text{ v ExHume i DpeMC}$
 - $1 \cdot 10^5$ CEP $b\bar{b}$ v ExHuMe i DpeMC
 - 1 · 10⁵ CEP gg v ExHuMe
 - $1 \cdot 10^5$ inkluzivní $b\bar{b}$ v DpeMC
 - 1 · 10⁶ nedifrakčních dijetů v Pythii a Herwigu + Jimmy
 - 1 · 10⁵ minimum bias procesy v Pythii (smíchány s nedifrakčními dijety simulace pile-up)
 - menší vzorek cc dijetů pro zjištění mylné identifikace c-jetu jako b-jetu.

Simulace transportu protonů a dopředných detektorů

- Simulaci transportu protonů provedl Peter Bussey s použitím programu FPTrack (použity jeho výsledky).
- Uvažovaná konfigurace dopředných detektorů: 220 FD 20σ (2mm) daleko od svazku, 420 FD 16σ (4mm) daleko od svazku.
- Rozlišení v ξ, protonů zachycených dopřednými detektory, je na obrázku vlevo.
- Akceptance dopředných detektorů na 220m a 420m jako funkce ξ a t je na obrázku vpravo.

Vojtěch Juránek (FZÚ Praha) Exkluzivní difrakční produkce Higgsova bosonu na ATLAS

Rychlý časový detektor

- Proton detekován na obou stranách dopřednými detektory.
- Lze spočíst z-ová souradnice vrcholu z doby letu protonu k detektoru:

$$z_{pp} = c \frac{t_L - t_R}{2}, \tag{1}$$

kde t_L resp. t_R doba letu k levému resp. pravému FD.

- Porovnáním polohy takto získané pozice z_{pp} z pozicí vrcholu z_{hard} můžeme významně potlačit pile-up pozadí.
- Událost je zamítnuta, pokud z_{pp} je mimo z_{hard} ± 1σ, kde σ je rozlišení v z časového detektoru.
- Pro tuto studii uvažováno, že pile-up pozadí bude časovým detektorem potlačeno faktorem 40, což odpovídá rozlišení ~ 5ps.
- Faktor potlačení je téměř nezávislý na okamžité luminozitě.

- Aspoň dva jety s $p_T^{bjet1} > 45 GeV$, $p_T^{bjet2} > 30 GeV$.
- Jety musí být centrální ($|\eta| < 2.5$).
- Oba jety musí být b-jety (efektivita b-taggingu je \sim 60% => dva b-jety \sim 36%).

 Jety musí být antiparalelní (170 < \phi_{bjet1, bjet2} < 180).

Cuty na exkluzivitu procesu

$R_j \ a \ R_{jj} \ cut:$

- $M_X \simeq \sqrt{\xi_1 \xi_2 s}$ hmota centrálního objektu.
- $R_{jj} = \frac{M_{dijet}}{M_X}$
- $R_j = \frac{2E_j^{pet1}}{M_X} cosh(\eta^{jet1} y_X), y_X \simeq \frac{1}{2} \ln \frac{\xi_1}{\xi_2}$
- R_j má faktor potlačení pozadí velmi podobný jako R_{jj}
 - $0.75 < R_j < 1.2$
 - $0.8 < R_{jj} < 1.2 \ (2\sigma \ {
 m cut})$
- Ve výsledné analýze použit R_j cut.
- Teoretické důvody: R_j méně citlivý na QCD bremsstrahlung, hadronizační efekty etc.

$\Delta\eta$ cut:

• $y_X \simeq \frac{1}{2} \ln \frac{\xi_1}{\xi_2}$ rapidita centrálního objektu,

•
$$\Delta\eta = (\eta_{bjet1} + \eta_{bjet2})/2 - y_X pprox 0.$$

• $|\Delta \eta| < 0.1$ (1 σ cut).

Další cuty (s použitím p_x a p_y) se ukázaly jako neúčelné, protože pozadí má velmi podobné rozdělení p_x a p_y jako signál.

- Cuty na počet nabitý částic jdoucích z primárního vrcholu (rapidity gap).
- N_C je počet nabitých částic mimo dijet (mimo kužel kolem osy jetu s daným poloměrem).
- N[⊥]_C je počet nabitých částic mimo dijet a kolmých na tento dijet.
- Za "kolmé na dijet" se považují dráhy s $\frac{\pi}{3} < |\phi_{track} \phi_{jet1}| < \frac{2\pi}{3}$ nebo $\frac{4\pi}{3} < |\phi_{track} \phi_{jet1}| < \frac{5\pi}{3}$.
- Byly uvažovány pouze dráhy z primárního vrcholu (velmi dobré rozlišení primárního vrcholu oproti velikosti svazku (bunche))
- Faktor potlačení pozadí je víceméně nezávislý na okamžité luminozitě.
- Velmi důležité je vyladění MC generátorů Pythie a Herwig + Jimmy dávají velmi rozdílné výsledky.

N_C a N_C^{\perp} cuty

Cuty:

- $N_C < 4 \wedge N_C^{\perp} < 3.$
- *p*^{Track} > 0.5GeV (rozlišení vnitřního detektoru).
- Počty případů s daným počtem drah mimo dijet:

Výběr R:

- Poloměr kužele R = 0.7.
- Cut je nicméně necitlivý na volbu R.

Počty případů s daným počtem drah mimo dijet pro různé R:

Acceptance factors for cut flow (3.5 int. v BC)

$CEP H \to b\bar{b}$	Kin.	B-jets	B-jets RP accept		back to back		Rj
Exhume	0.38	0.36	0.55		0.86		0.95
	η	$N_C \wedge N_C^{\perp}$		mass window			
	0.92	0.97		0.85			

CEP bb	Kin.	. E	3-jets	RP a	iccept	back to	back	Rj
Exhume	0.04	4 C).4	0.51		0.9		0.88
	1	1	N _C ∧	N_{C}^{\perp}	mass	window		
	().95	0.97		0.08			

CEP gg	Kin.	B-jets	RP	accept	back to	back	Rj
Exhume	0.04	0.0002	0.6		0.64		0.85
	η	N _C /	$\setminus N_C^{\perp}$	mass	window		
	0.8	33 0.88		0.1			

Pile-up	Kin.	B-	jets	RP ac	cept	back to b	ack	R_{j}
Pythia	0.21	0.3	32	0.005		0.53		0.11
Jimmy	0.21	0.0)74	0.005		0.37		0.12
	η		N _C	$\wedge N_C^{\perp}$	mas	s window		
	0.0	54	0.07	7	0.04			
	0.0	56	0.03	3	0			

Počty případů pro integrovanou luminositu $L = 30 \text{fb}^{-1}$

- Integrovaná lumonosita $L = 30 fb^{-1}$ odpovídá 3 rokům nabírání dat při $\mathcal{L} = 1 \cdot 10^{33} cm^{-2} s^{-1}$.
- Počty případů CEP H → bb, bb a gg jsou víceméně nezávislé na okamžité luminozitě.
- S rostoucí okamžitou luminozitou výrazně roste pouze pile-up pozadí.
- Počet případů v hmotovém okně 2σ (pro kombinaci 420+420 2,2 GeV, pro 220+420 5,2 GeV)

Proces	\mathcal{L}	420 + 420	420 + 220	Celkem
$H ightarrow bar{b}$	$1\cdot 10^{33}$	1.6	1.2	2.8
bb	$1 \cdot 10^{33}$	0.8	1.2	2.0
<i>99</i>	1 · 10 ³³	1.2	2.7	3.9
Inc. <i>b</i> b	$1 \cdot 10^{33}$	\sim 0	\sim 0	\sim 0
Pile-up	1 · 10 ³³	0.6	1.0	1.6
Pile-up	2 · 10 ³³	2.3	7.9	10.1
Pile-up	$5 \cdot 10^{33}$	25	56	81
Pozadí celkem	1 · 10 ³³	2.6	4.9 	< ≣7.5 ≣≻

Vojtěch Juránek (FZÚ Praha) Exkluzivní difrakční produkce Higgsova bosonu na ATLAS

18/22

$H ightarrow bar{b}, \, bar{b}, \, gg$ a pile-up pozadí

- Exkluzivní produkce Higgsova bosonu, bb a gg.
- Pile-up: 2 nedifrakční b-jety (Pythia DWT tune) + protony z minimum bias (Pythia), L = 1 · 10³³ cm⁻²s⁻¹.

- Při integrované luminositě 30*fb*⁻¹ můžeme v hmotovém okně 2σ očekávat přibližně 3 případy signálu a 8 případů pozadí při nízkých okamžitých luminositách (1 · 10³³cm⁻²s⁻¹).
- Cuty na exkluzivitu zabijí malou část signálu.
- Většina signálu je ztracena především díky akceptancím detektorů a b-taggingu.
- Velké rozdíly mezi generátory (Pythia, Jimmy, Herwig).
- Pro dobrou simulaci pozadí (zejména pile-up) je potřeba generátory vyladit na energie LHC (jsou potřeba první data z LHC).
- Pokusy vylepšit separaci signálu a pozadí pomocí neuronových sítí (M. Jiřina, F. Hakl) - ještě nejsou konečné výsledky.
- MSSM Higgs vypadá mnohem nadějněji.

ATL-PHYS-PUB-2006-000

January 22, 2009

Central Exclusive Diffractive production of Higgs boson in the $b\bar{b}$ and WW decay modes in the ATLAS

A. Brandt, V. Juránek, A. Pal and M. Taševský

Abstract

We present a feasibility study of the Standard Model/Higgs brown production in the Central Exclusive Diffractive processes with Higgs brown decyngs into the and WW. Rendls are based on events generated by Monte Carlo event generators only. Dedicated event genetators ruch as Exclusion and the standard and the standard and the standard and the diffraction processes. The effect of pile-up is studied using PYTHIA and HERWIG event generators. Acceptance and resolutions of proposed forward detectors to be pilcoid at 220 and 420 m from the interaction priori are used together with the response of the ATLAS detector obtained from the ATLAS for immulation. The predicted cross section for the signal process is low and therefore it detection regards at the highert instantaneous himmorities where the pile-up is an issue. Atter pilying a number of swere cut to reduce the background coming from the pile-up events, the signal event yield turns out to be rather moderate. however therefore there there there is no be rather at 2000.

- B. Cox, K. Loebinger, A. Piklington; arXiv:0709.3035 [hep-ph]
- V. Juránek; presentation at Diffraction at the LHC 2007 (http://indico.cern.ch/conferenceTimeTable.py?confId=22401)
- M. Taševský; presentation at Hera-LHC workshop 2007 (http://indico.cern.ch/conferenceDisplay.py?confId=11784)
- A. Pilkington; presentation at Hera-LHC workshop 2007 (http://indico.cern.ch/conferenceDisplay.py?confId=11784)
- V. Juránek; presentation at Low X meeting 2008
- V. Juránek, M. Taševský; Atlas note v přípravě