Měření longitudinální strukturní funkce protonu v difrakci na experimentu H1

David Šálek

Ústav částicové a jaderné fyziky MFF UK

21. 11. 2008

Úvod do difrakce na H1

Urychlovač HERA

- jediný *ep* urychlovač na světě
- od roku 1992
- nabírání dat skončilo v červenci 2007
- zatím není v plánu žádný další *ep* urychlovač

Experiment H1

H1 Collaboration at DESY, Notkestr.85, D-22607 Hamburg, Germany

- dráhové detektory
 - silikonové detektory
 - driftové komory
- kalorimetr
 - LAr, SPACAL
- mionové komory
- přední detektory
 - FMD, PRT
 - FPS, VFPS
- a další

Velká mezera v rapiditách

• rapidita

•

pseudorapidita

$$y = \frac{1}{2} \log \frac{E + p_z}{E - p_z} = \frac{1}{2} \log \frac{(E + p_z)^2}{m^2 + p_t^2}$$
$$\eta = y|_{m=0} = \log \frac{E + p_z}{p_t} = -\log \left(\tan \frac{\theta}{2} \right)$$

případ s velkou mezerou v rapiditách pozorovalo se přibližně 10% takových případů standardní DIS případ

Difrakce na H1

- difrakční procesy
 - mají velkou mezeru v rapiditách
 - vysvětlujeme ji pomocí výměny bezbarvého objektu s kvantovými čísly vakua - tzv. pomeron
 - přibližně 10% DIS případů na H1 je difrakčních

Kinematika difrakčních případů

- standardní DIS proměnné
 - Q^2
 - x = frakce hybnosti q/p
- difrakční proměnné
 - t = kvadrát přenesené 4-hybnosti protonu
 - *β* = frakce celkové předané hybnosti vstupující do tvrdého procesu
 - x_{IP} = frakce ztracené hybnosti protonu

Metody detekce difrakčních případů

- velká mezera v rapiditách
 - velká statistika
 - zahrnuje protonovou disociaci (měří případy s M_v < 1.6 GeV)
- římské hrnce
 - detekují odražený proton (žádná protonová disociace)
 - umožňují zrekonstruovat hybnost odraženého protonu
 - malá statistika

Velká mezera v rapiditách vs. římské hrnce Protonová disociace

 poměr měření s velkou mezerou v rapiditách a s užitím římských hrnců

 $\frac{\sigma(M_Y < 1.6 GeV)}{\sigma(Y = p)} = 1.23 \pm 0.03 (stat) \pm 0.16 (syst)$

- poměr nezávisí na kinematických proměnných (v rámci chyb)
- velká mezera v rapiditách nevyloučí protonovou disociaci

$$\sigma(ep \rightarrow eXY) \stackrel{M_{\gamma} < 1.6GeV}{|t| < 1.0GeV^2}$$

• římské hrnce

$$\sigma(\boldsymbol{e}\boldsymbol{p} \rightarrow \boldsymbol{e}\boldsymbol{X}\boldsymbol{p})$$

Měření strukturních funkcí

Měření účinného průřezu

 $N = \sigma L$

- počet případů je přímo úměrný luminositě
 - luminositu lze spočítat z vlastností svazků
- přesněji ji lze změřit pomocí nějakěho známého procesu
- Bethe-Heitler $ep \rightarrow ep\gamma$
 - spočitatlený v rámci QED
 - přesnost měření 1%

•

Strukturní funkce

• redukovaný účinný průřez Neutral Current procesů

$$\sigma^{\hat{N}C}(e^{\pm}p) = F_2 \mp \frac{Y_-}{Y_+} x F_3 - \frac{y^2}{Y} F_L$$
$$Y_{\pm} = \mathbf{1} \pm (\mathbf{1} - y)^2$$

- F_2 je dominantní ve většině fázového prostoru
- xF_3 přispívá ve vysokých Q^2
- F_{L} přispívá ve vysokých y
- vztah redukovaného a diferenciálního účinného průřezu

$$\sigma_r(x,Q^2,y) = \frac{d^2\sigma}{dx\,dQ^2} \cdot \frac{Q^4x}{2\pi\alpha^2Y_+}$$

Kinematické proměnné a jejich rekonstrukce

- kinematické proměnné Q^2 , x, y lze rekonstruovat několika způsoby
- elektronová metoda
 - využívá změřené parametry odraženého elektronu
 - nepřesná pro nízká y

- využívá se v případech, kdy není detekován odražený elektron (fotoprodukce)
- přesná pro nízká y
- double-angle metoda
 - kombinuje měření elektronu a měření HFS

21.

$$y_{DA} = \frac{\tan(\theta_h/2)}{\tan(\theta_e/2) + \tan(\theta_h/2)}$$
$$Q_{DA}^2 = 4E_e^2 \frac{\cot(\theta_e/2)}{\tan(\theta_e/2) + \tan(\theta_h/2)}$$

$$y_e = 1 - \frac{E_e}{E_e} \sin^2 \frac{\sigma_e}{2}$$
$$E^{\prime 2} \sin^2 \theta$$

E''

Ω

$$Q_{e}^{2} = \frac{E_{e}^{'2} \sin^{2} \theta_{e}}{1 - y_{e}}$$

Úrovně v Monte Carlu

- rekonstruovaná (detektorová) úroveň
 - simulace průchodu generovaných částic detektorem, odezva detektoru

Co měříme?

• obvykle nás zajímá redukovaný účinný průřez

$$\sigma_r(x,Q^2,y) = \frac{d^2\sigma}{dxdQ^2} \cdot \frac{Q^4x}{2\pi\alpha^2 Y_+} = F_2(x,Q^2) - \frac{y^2}{Y_+} \cdot F_L(x,Q^2)$$

- měříme diferenciální účinný průřez na detektorové úrovni
 - počet případů (opravený na luminositu) v jednotlivých částech fázového prostoru
 - fázový prostor rozdělen do intervalů v jednotlivých proměnných (zde x, Q^2)
 - velikost těchto binů volíme podle požadované přesnosti měření
- ke spočítání redukovaného účinného průřezu ale potřebujeme diferenciální účinný průřez na partonové úrovni
- přechod z detektorové na partonovou úroveň
 - Monte Carlo metoda
 - unfolding

$$\alpha = \frac{1}{137.036} \left(\frac{1}{1 - \frac{\log(Q^2/(0.511 \times 10^{-3})^2)}{3\pi 137.036}} \right)$$

Biny pro měření diferenciálního účinného průřezu

- $\sigma_r^D = F_2^D \frac{y^2}{Y_+}F_L^D$
- redukovaný účinný průřez lze vztáhnout k diferenciálnímu účinnému průřezu podle libovolných proměnných
- stačí spočítat příslušný jakobián
- difrakční diferenciální účinný průřez podle x_{IP} , Q^2 , x

$$x_{IP}\sigma_r^D(Q^2, x_{IP}, \beta) = \frac{d^3\sigma}{dx_{IP}dQ^2dx} \frac{Q^4x x_{IP}}{2\pi\alpha^2 Y_+}$$

• difrakční diferenciální účinný průřez podle x_{IP} , Q^2 , y

$$\begin{vmatrix} \frac{\delta x_{IP}}{\delta x_{IP}} & \frac{\delta x_{IP}}{\delta Q^2} & \frac{\delta x_{IP}}{\delta x} \\ \frac{\delta Q^2}{\delta x_{IP}} & \frac{\delta Q^2}{\delta Q^2} & \frac{\delta Q^2}{\delta x} \\ \frac{\delta y}{\delta x_{IP}} & \frac{\delta y}{\delta Q^2} & \frac{\delta y}{\delta x} \end{vmatrix} = -\frac{y}{x}$$

Přechod z detektorové na partonovou úroveň Monte Carlo metoda

- měříme diferenciální účinný průřez na detektorové úrovni v datech a v Monte Carlu
- známe redukovaný účinný průřez z teorie
- vycházíme z předpokladu, že poměr diferenciálního účinného průřezu na detektorové úrovni a redukovaného účinného průřezu je v datech i v Monte Carlu stejný

$$\sigma_{r}^{data} = \frac{\left(\frac{d^{2}\sigma}{dx dQ^{2}}\right)_{data}}{\left(\frac{d^{2}\sigma}{dx dQ^{2}}\right)_{MC}} * \sigma_{theory} = \frac{N_{data}}{N_{MC}} * \sigma_{theory}$$

Přechod z detektorové na partonovou úroveň Unfolding

- oprava měřeného (rekonstruovaná úroveň) účinného průřezu zpět na partonovou úroveň
- máme-li dobrý popis dat pomocí Monte Carla, můžeme říct, že v datech se odehrávají stejné procesy (na partonové úrovni) jako v Monte Carlu
- v Monte Carlu víme, co je generováno a jak to vypadá na rekonstruované úrovni

$$\sigma_{MC} = \sum_{i} \frac{N_{rec,i} - \gamma^{*} p_{i}}{L_{i} * A_{i} * \Delta} * BCC * Rad = \sum_{i} \frac{N_{gen,i}}{L_{i} * \Delta} * BCC * Rad$$

 v datech máme přístup pouze k rekonstruované úrovni

$$\sigma_{data} = \frac{N - \gamma^* p}{L * A * PDAC * \Delta} * BCC * Rad$$

N	signál
γ * p	pozadí
L	luminosita
A	acceptance correction
PDAC	oprava na protonovou disociaci
Δ	velikost binu
BCC	bin centre correction
Rad	radiative correction

Korekce

$$\sigma_{data} = \frac{N - \gamma^* p}{L * A * PDAC * \Delta} * BCC * Rad$$

- acceptance correction
 - opravuje rekonstruovanou úroveň zpět na generátorovou úroveň (při stejné metodě rekonstrukce kinematických proměnných) $A = \frac{N_{rec}(rec \ selection)}{N_{gen}(gen \ selection)}$
- bin centre correction
 - opravuje na chybějící fázový prostor, který není zahrnut v acceptance correction
 - nezávislé na metodě rekonstrukce kinematických proměnných

$$BCC = \frac{\sigma(bincentre)}{\int_{bin} \sigma dx_{IP} dQ^2 dx / \int_{bin} dx_{IP} dQ^2 dx}$$

- radiative correction
 - opravuje z generátorové úrovně (při zvolené metodě rekonstrukce kinematických proměnných) zpět na partonovou úroveň
 - opravuje závislost na zvolené metodě rekonstrukce kinematických proměnných

Difrakční strukturní funkce F2D(3)

• redukovaný difrakční účinný průřez v x_{IP} , Q^2 , β binech

$$\frac{d^3\sigma^D}{dx_P dQ^2 d\beta} = \frac{2\pi\alpha_{em}^2}{\beta Q^4} \left(1 - y + \frac{y^2}{2}\right) \sigma_r^D(x_P, Q^2, \beta)$$

Jak měřit longitudinální strukturní funkci?

- strukturní funkci protonu F₂ měříme z této rovnice (v nízkých y lze člen s F₁ zanedbat)
- strukturní funkce F₂ a F₁ nelze odseparovat, aniž bychom při pevném x a Q² měnili y
- pokud nemáme možnost změnit y, ani jednu strukturní funkci nemůžeme změřit přímo (takové měření jedné ze strukturních funkcí by bylo založené na předpokadech o té druhé)
- změna y při pevném x a Q² znamená změnu těžišťové energie

$$Q^2 = x y s$$

$$\frac{d^{2}\sigma}{dx dQ^{2}} = \frac{4\pi \alpha^{2}}{Q^{4} x} [F_{2}(1-y) + F_{1}y^{2}x]$$

$$F_{2} = vW_{2}$$

$$F_{1} = MW_{1}$$

$$R = \frac{F_2}{2xF_1} - 1 = \frac{W_2 v^2}{W_1 Q^2} - 1 = \frac{\sigma_L}{\sigma_T}$$
$$\frac{d^2 \sigma}{dx \, dQ^2} = \frac{4\pi \, \alpha^2 Y_+}{Q^4 x} [F_2(x, Q^2) - \frac{y^2}{Y_+} F_L(x, Q^2)]$$
$$Y_+ = 1 + (1 - y)^2$$

$$\frac{d^2\sigma}{dx\,dQ^2} = \Gamma(E, x, Q^2)[\sigma_T + \sigma_L \varepsilon(E, x, Q^2)]$$

Měření longitudinální strukturní funkce

$$\sigma_r(x,Q^2,y) = \frac{d^2\sigma}{dxdQ^2} \cdot \frac{Q^4x}{2\pi\alpha^2 Y_+} = F_2(x,Q^2) - \frac{y^2}{Y_+} \cdot F_L(x,Q^2)$$

• hodnotu změřeného redukovaného účinného průřezu při pevném x a Q^2 vynášíme pro všechny tři energie protonového svazku do stejného grafu jako funkci $\gamma^2/\gamma_{_{\uparrow}}$

Přesnost měření luminosity a FL

- přesnost měření luminosity v posledních nabraných datech na H1 je 5%
- ke změření F_L kombinujeme účinné průřezy změřené na třech různých vzorkách dat (tři různé těžišťové energie)
- pokud byhom ke všem třem hodnotám měli připsat 5% nekorelovanou chybu z měření luminosity, nebylo by možné změřit F, s dostatečnou přesností
- naštěstí známe F₂, která je pro všechny tři těžišťové energie stejná
- můžeme tedy využít oblasti nízkých y (kde F_L nepřispívá), kde nanormujeme účinné průřezy pro všechny tři těžišťové energie na sebe

Longitudinální strukturní funkce v difrakci

- F_{L}^{D} lze měřit podobně jako F_{L}
- při pevném x_{IP} , β , Q^2 je třeba měnit y

$$\frac{d^{3}\sigma^{ep \to eXY}}{dx_{IP}d\beta dQ^{2}} = \frac{2\pi\alpha^{2}}{\beta Q^{4}}Y_{+}\sigma_{r}^{D}(x_{IP},\beta,Q^{2})$$
$$\sigma_{r}^{D} = F_{2}^{D} - \frac{y^{2}}{Y_{+}}F_{L}^{D}$$
$$Y_{+} = 1 + (1 - y)^{2}$$

• to opět znamená měnit těžišťovou energii

$$Q^2 = x_{IP} \beta y s$$

FLD analýza

- změření strukturní funkce FL bylo hlavní motivací pro nabíraní dat s nižší těžíšťovou energií
- FL měření završuje HERA ep program, který byl z velké části zaměřen na pochopení systémů s velkou hustotou partonů, které jsou dominovány gluony
- stejně tak FLD završuje analýzy difrakčních strukturních funkcí
- jedná se o jediné přímé měření FLD
- ZEUS nemůže FLD změřit kvůli odlišné akceptanci detektoru
- očekávané výsledky na základě simulace jsou povzbudivé

Jednotlivé kroky FLD analýzy

- analýza na inkluzivní úrovni
 - přesný popis dat pomocí inkluzivního Monte Carla
 - odstranění fotoprodukčního pozadí
 - zreprodukování publikovaných výsledků F
- analýza na difrakční úrovni
 - přesný popis dat pomocí difrakčního Monte Carla
 - porozumění difrakčnímu Monte Carlu
 - porozumění předním detektorům
 - odstranění pozadí
 - inkluzivní procesy $\mbox{ ep} \rightarrow \mbox{ eX}$
 - QED-Compton $ep \rightarrow e\gamma X$
 - měření F_L^D
- analýza prováděna v C++ (prostředí H100 s nadstavbou H1Lt)

- poslední týdny nabírání dat z urychlovače HERA byly určeny pro změření longitudinální strukturní funkce
- nabralo se 12.4 pb⁻¹ dat s energií protonového svazku 460 GeV
- nabralo se 6.2 pb⁻¹ dat s energií protonového svazku 575 GeV
- pro měření longitudinálních strukturních funkcí jsou k dispozici tří různé těžišťové energie
- z dat vybíráme DIS případy pro F, analýzu
- pro F^D analýzu dále vybereme pouze difrakční případy

Monte Carlo modely

- inkluzivní analýza
 - inkluzivní Monte Carlo (generátor DJANGO)
- difrakční analýza
 - difrakční signál $ep \rightarrow epX$
 - RAPGAP
 - výměna pomeronu, kvarky u, d, s, c v koncovém stavu
 - výměna reggeonu
 - je potřeba přenásobit faktorem pro protonovou disociaci
 - DIFFVM
 - vektorové mezony rho, J/psi, phi, omega
 - jejich učinný průřez určíme pomocí SU(4) relací a porovnáním s daty
 - pozadí k difrakčním případům
 - nedifrakční případy ep \rightarrow eX (DJANGO)
 - QED-C procesy
- všechny zmíněné Monte Carlo modely předpokládají F₁ = 0 (F^D₁ = 0)
- Monte Carla generovaná pro všechny tři energie protonového svazku

Pozadí od fotoprodukce

- fotoprodukce
 - elektron se při srážce odchýlí tak málo, že ani nevletí do detektoru (opustí detekor elektronovou trubicí)
 - v některých takových případech lze v centrálním detekoru detekovat pion z koncového stavu srážky, který má podobnou energii a směr jako odražený elektron v DIS srážce
 - mylně se domníváme, že takový případ není fotoprodukční, ale DIS
 - takovéto falešné případy lze z DIS signálu odstranit
 - cuty proti fotoprodukci
 - pozadí s opačným nábojem

Výběr DIS případů

- primární vertex
- odražený elektron
- $12 < Q^2 < 90$
- potlačení fotoprodukce
 - $E p_z$
 - electron cluster radius
 - track-cluster link
 - length in CJC

Pozadí s opačným nábojem

- naměřené případy rozdělíme do dvou skupin podle náboje detekované částice, o které si myslíme, že je to odražený lepton
- případy, kdy je náboj takové častice opačný k náboji nalétajících leptonů, jsou nutně fotoprodukčním pozadím (přesnost určení náboje je vysoká)
 - nejedná se o odražený lepton, ale o pion z koncového stavu
- počet π^{+} a π^{-} je přibližně stejný
- asymetrii mezi π^+ a π^- lze měřit
 - použijeme zaroveň selekci na DIS případy a selekci na fotoprodukci
 - electron tagger detekuje elektrony odražené pod malými úhly, které nejsou vidět v centrálním detektoru
 - takto detekované případy jsou fotoprodukční a my se podíváme na počet π^+ a π^- detekovaných jako odražený lepton
 - asymetrie pro data = 0.946
 - asymetrie pro Monte Carlo = 0.960

Odstranění fotoprodukce

odečtení fotoprodukce pomocí pozadí s opačným nábojem $N_{signal} = N^+ - charge asymmetry * N^-$

Difrakční selekce, rekonstrukce difrakčních kinematických proměnných

- Difrakční selekce (velká mezera v rapiditách)
 - $\eta_{max} < 2.7$ ($\eta_{max} < 3.3$)
 - # FMD pairs in pre-toroid layers 1,2 < 2
 - # FMD pairs in pre-toroid layers 1,2,3 < 3
 - E_{plug} < 3 GeV
 - no hits in FTS 28m station
 - x_{IP} < 0.01
- rekonstrukce difrakčních kinematických proměnných

-
$$M_{\chi}^{2} = (E^{2} - p^{2}) \gamma_{\alpha\nu} / \gamma_{e}$$

$$- \beta = Q^2 / (Q^2 + M_{\chi}^2)$$

$$- x_{IP} = \times / \beta$$

Diffractive Control Plots

- data
- pomeron uds

•

- pomeron c —
- reggeon
- vektorové mezony —
- QED-Compton
- fotoprodukční pozadí
 (určeno na základě pozadí se špatným nábojem odraženého leptonu)
- inkluzivní procesy

920 Diffractive Control Plots

• elektronové veličiny

• difrakční veličiny

Účinný průřez z Monte Carla srovnaný s analytickou předpovědí

FLD Analýza

Účinný průřez

FLD Analýza

Výhled

- ukázat F^D_L na DIS 2009 konferenci
- publikace do konce roku 2010

backup

Longitudinální a transversální složka účinného průřezu

$$\begin{split} \sigma &= c \, \varepsilon^{\mu} \varepsilon^{\nu} W_{\mu\nu} \\ W_{\mu\nu} &= -W_{1}(p,q) g_{\mu\nu} + W_{2}(p,q) \frac{p_{\mu} p_{\nu}}{M^{2}} \\ & \varepsilon_{L} &= \frac{1}{\sqrt{Q^{2}}}(q_{3},0,0,q_{0}) & \varepsilon_{T} &= \frac{1}{\sqrt{2}}(0,1,0,0) \\ & \varepsilon_{L}^{2} &= 1 & \varepsilon_{T} &= \frac{1}{\sqrt{2}}(0,0,1,0) \\ & q_{3}^{2} - q_{0}^{2} = Q^{2} & \varepsilon_{T}^{2} &= -1 \\ & q_{3}^{2} = \nu^{2} + Q^{2} & p = (M,0,0,0) \\ & \sigma &= c \left(-W_{1} \varepsilon^{2} + W_{2} \frac{(\varepsilon \cdot p)^{2}}{M^{2}}\right) \\ & \sigma_{L} &= c \left(-W_{1} + W_{2} \frac{q_{3}^{2}}{Q^{2}}\right) = c \left(-W_{1} + W_{2} \frac{Q^{2} + \nu^{2}}{Q^{2}}\right) \rightarrow_{Q^{2} \ll \nu^{2}} c \left(-W_{1} + W_{2} \frac{\nu^{2}}{Q^{2}}\right) \\ & F_{2} = \nu W_{2} \\ & F_{1} = M W_{1} \end{split}$$

Teoretické předpovědi

FIG. 9. Predictions for $x_{\mathbb{P}}F_L^D$ (left) and $R^D = \frac{F_L^D}{F_2^D - F_L^D}$ as a function of β at $Q^2 = 30 \text{ GeV}^2$ and $x_{\mathbb{P}} = 10^{-3}$. We present predictions for BEKW as a full line, DGLAP fit as a dashed line, BFKL as a dotted line and GBW as a dashed-dotted line.