
PBS Professional 9.2

A division of

USER’S GUIDE

Altair®

UNIX®, Linux® and Windows®

PBS Professional™

9.2

User’s Guide

PBS Professional

TM

 User’s Guide
Altair

®

 PBS Professional

TM

 9.2, Updated: 5/19/08
Edited by: Anne Urban
Copyright © 2004-2008 Altair Engineering, Inc. All rights reserved.

Trademark Acknowledgements

: “PBS Professional”, “PBS Pro”, “Porta-
ble Batch System” and the PBS Juggler logo are trademarks of Altair Engi-
neering, Inc. All other trademarks are the property of their respective
owners.

For more information, copies of these books, and for product sales, contact
Altair at:
Web: www.altair.com www.pbspro.com
Email: sales@pbspro.com

Technical Support

This document is proprietary information of Altair Engineering, Inc.

Table 1:

Location Telephone e-mail

North America +1 248 614 2425 pbssupport@altair.com

China +86 (0)21 5393 0011 support@altair.com.cn

France +33 (0)1 4133 0990 francesupport@altair.com

Germany +49 (0)7031 6208 22 hwsupport@altair.de

India +91 80 658 8540
+91 80 658 8542

pbs-sup-
port@india.altair.com

Italy +39 0832 315573 +39
800 905595

support@altairtorino.it

Japan +81 3 5396 1341 pbs@altairjp.co.jp

Korea +82 31 728 8600 support@altair.co.kr

Scandinavia +46 (0)46 286 2050 support@altair.se

UK +44 (0) 2476 323 600 support@uk.altair.com

Table of Contents

Acknowledgements vii
Preface ix

1 Introduction 1
1.1 Book Organization . 1
1.2 Supported Platforms . 3
1.3 What is PBS Professional? . 3
1.4 History of PBS . 3
1.5 About the PBS Team . 4
1.6 About Altair Engineering . 5
1.7 Why Use PBS? . 5

2 Concepts and Terms 9
2.1 PBS Components . 10
2.2 Defining PBS Concepts and Terms 12

3 Getting Started With PBS 19
3.1 New Features in This Release 19
PBS Professional 9.2 User’s Guide iii

Table of Contents

3.2 New Features in Recent Releases 20
3.3 Deprecations. 20
3.4 Using PBS . 21
3.5 PBS Interfaces . 22
3.6 User’s PBS Environment . 23
3.7 Usernames Under PBS. 24
3.8 Setting Up Your UNIX/Linux Environment 24
3.9 Setting Up Your Windows Environment 26
3.10 Environment Variables . 29
3.11 Temporary Scratch Space: TMPDIR 30

4 Submitting a PBS Job 33
4.1 Vnodes: Virtual Nodes. 33
4.2 PBS Resources . 34
4.3 PBS Jobs . 42
4.4 Submitting a PBS Job . 44
4.5 Requesting Resources . 46
4.6 Placing Jobs on Vnodes . 56
4.7 Submitting Jobs Using Select & Place: Examples. . 60
4.8 Backward Compatibility . 65
4.9 How PBS Parses a Job Script. 68
4.10 A Sample PBS Job . 68
4.11 Changing the Job’s PBS Directive. 70
4.12 Windows Jobs . 71
4.13 Job Submission Options. 74
4.14 Job Attributes . 89

5 Using the xpbs GUI 97
5.1 Starting xpbs . 97
5.2 Using xpbs: Definitions of Terms 99
5.3 Introducing the xpbs Main Display 100
5.4 Setting xpbs Preferences . 106
5.5 Relationship Between PBS and xpbs 106
5.6 How to Submit a Job Using xpbs. 108
iv PBS Professional 9.2 User’s Guide

Table of Contents

5.7 Exiting xpbs . 111
5.8 The xpbs Configuration File. 111
5.9 xpbs Preferences . 111

6 Checking Job / System Status 115
6.1 The qstat Command . 115
6.2 Viewing Job / System Status with xpbs 128
6.3 The qselect Command . 129
6.4 Selecting Jobs Using xpbs 134
6.5 Using xpbs TrackJob Feature 135

7 Working With PBS Jobs 137
7.1 Modifying Job Attributes . 137
7.2 Holding and Releasing Jobs 141
7.3 Deleting Jobs . 143
7.4 Sending Messages to Jobs 144
7.5 Sending Signals to Jobs . 145
7.6 Changing Order of Jobs . 146
7.7 Moving Jobs Between Queues 148
7.8 Converting a Job into a Reservation Job 149

8 Advanced PBS Features 151
8.1 New Features . 151
8.2 UNIX Job Exit Status . 152
8.3 Changing UNIX Job umask 152
8.4 Requesting qsub Wait for Job Completion. 153
8.5 Specifying Job Dependencies 153
8.6 Delivery of Output Files . 157
8.7 Input/Output File Staging . 158
8.8 The pbsdsh Command . 171
8.9 Advance and Standing Reservation of Resources . 172
8.10 Dedicated Time. 196
8.11 Using Comprehensive System Accounting 197
8.12 Running PBS in a UNIX DCE Environment 198
PBS Professional 9.2 User’s Guide v

Table of Contents

8.13 Running PBS in a UNIX Kerberos Environment . 199
8.14 Support for Large Page Mode on AIX. 199

9 Job Arrays 201
9.1 Definitions . 201
9.2 qsub: Submitting a Job Array. 203
9.3 Job Array Attributes. 205
9.4 Job Array States . 206
9.5 PBS Environmental Variables 207
9.6 File Staging . 207
9.7 PBS Commands . 212
9.8 Other PBS Commands Supported for Job Arrays . 219
9.9 Job Arrays and xpbs. 220
9.10 More on Job Arrays . 220

10 Multiprocessor Jobs 223
10.1 Job Placement . 223
10.2 Submitting SMP Jobs. 224
10.3 Submitting MPI Jobs . 224
10.4 OpenMP Jobs with PBS. 226
10.5 Hybrid MPI-OpenMP Jobs 226
10.6 MPI Jobs with PBS . 228
10.7 MPI Jobs on the Altix . 258
10.8 PVM Jobs with PBS. 260
10.9 Checkpointing SGI MPI Jobs 261

11 Appendix A: PBS Environment Variables 263

12 Appendix B: Converting From NQS to PBS
267

13 Appendix C: License Agreement 269
Index 279
vi PBS Professional 9.2 User’s Guide

Acknowledgements

PBS Professional is the enhanced commercial version of the PBS software
originally developed for NASA. The NASA version had a number of cor-
porate and individual contributors over the years, for which the PBS devel-
opers and PBS community is most grateful. Below we provide formal legal
acknowledgements to corporate and government entities, then special
thanks to individuals.

The NASA version of PBS contained software developed by NASA Ames
Research Center, Lawrence Livermore National Laboratory, and MRJ
Technology Solutions. In addition, it included software developed by the
NetBSD Foundation, Inc., and its contributors as well as software devel-
oped by the University of California, Berkeley and its contributors.

Other contributors to the NASA version of PBS include Bruce Kelly and
Clark Streeter of NERSC; Kent Crispin and Terry Heidelberg of LLNL;
John Kochmar and Rob Pennington of Pittsburgh Supercomputing Center;
and Dirk Grunwald of University of Colorado, Boulder. The ports of PBS
PBS Professional 9.2 User’s Guide vii

to the Cray T3e and the IBM SP SMP were funded by DoD USAERDC; the
port of PBS to the Cray SV1 was funded by DoD MSIC.

No list of acknowledgements for PBS would possibly be complete without
special recognition of the first two beta test sites. Thomas Milliman of the
Space Sciences Center of the University of New Hampshire was the first
beta tester. Wendy Lin of Purdue University was the second beta tester and
holds the honor of submitting more problem reports than anyone else out-
side of NASA.
viii PBS Professional 9.2 User’s Guide

Preface
Intended Audience
PBS Professional is the professional workload management system from
Altair that provides a unified queuing and job management interface to a
set of computing resources. This document provides the user with the
information required to use PBS Professional, including creating, submit-
ting, and manipulating batch jobs; querying status of jobs, queues, and sys-
tems; and otherwise making effective use of the computer resources under
the control of PBS.

Related Documents
The following publications contain information that may also be useful to
the user of PBS:

PBS Professional Quick Start Guide: a short
overview of the installation of PBS Professional.

PBS Professional Installation & Upgrade
Guide: Contains administrator’s information on
installing and upgrading PBS Professional.
PBS Professional 9.2 User’s Guide ix

PBS Professional Administrator’s Guide: Con-
tains administrator’s information required to config-
ure and manage PBS, as well as a discussion of how
PBS components interoperate.

PBS Professional External Reference Specifica-
tion: discusses the PBS application programming
interface (API), security within PBS, and inter-dae-
mon/service communication.

Ordering Software and Publications
To order additional copies of this and other PBS publications, or to pur-
chase additional software licenses, contact an authorized reseller, or the
PBS Sales Department. Contact information is included on the copyright
page of this document.

Document Conventions
PBS documentation uses the following typographic conventions.

abbreviation If a PBS command can be abbreviated (such as sub-
commands to qmgr) the shortest acceptable abbrevi-
ation is underlined.

command This fixed-width font is used to denote literal com-
mands, filenames, error messages, and program out-
put.

input Literal user input is shown in this bold fixed-width
font.

manpage(x) Following UNIX tradition, manual page references
include the corresponding section number in paren-
theses appended to the man page name.

terms Words or terms being defined, as well as variable
names, are in italics.
x PBS Professional 9.2 User’s Guide

Chapter 1

Introduction

This book, the User’s Guide to PBS Professional is intended as your
knowledgeable companion to the PBS Professional software. The informa-
tion herein pertains to PBS in general, with specific information for PBS
Professional 9.2.

1.1 Book Organization

This book is organized into 10 chapters, plus two appendices. Depending
on your intended use of PBS, some chapters will be critical to you, and oth-
ers may be safely skipped.
PBS Professional 9.2 User’s Guide 1

Chapter 1

Introduction

Chapter 1 gives an overview of this book, PBS, and the PBS
team.

Chapter 2 discusses the various components of PBS and how
they interact, followed by definitions of terms used
in PBS and in distributed workload management.

Chapter 3 introduces PBS, describing both user interfaces and
suggested settings to the user’s environment.

Chapter 4 describes the structure and components of a PBS
job, and explains how to create and submit a PBS
job.

Chapter 5 introduces the xpbs graphical user interface, and
shows how to submit a PBS job using xpbs.

Chapter 6 describes how to check status of a job, and request
status of queues, vnodes, systems, or PBS Servers.

Chapter 7 discusses commonly used commands and features of
PBS, and explains how to use each one.

Chapter 8 describes and explains how to use the more
advanced features of PBS.

Chapter 9 describes and explains the job array features in PBS.

Chapter 10 explains how PBS interacts with multi-vnode and
parallel applications, and illustrates how to run such
applications under PBS.

Appendix A provides a quick reference summary of PBS envi-
ronment variables.

Appendix B includes information for converting from NQS/NQE
to PBS.
2 PBS Professional 9.2 User’s Guide

Introduction

Chapter 1

1.2 Supported Platforms

For a list of supported platforms, see the Release Notes.

1.3 What is PBS Professional?

PBS Professional is the professional version of the Portable Batch System
(PBS), a flexible workload management system, originally developed to
manage aerospace computing resources at NASA. PBS has since become
the leader in supercomputer workload management and the de facto stan-
dard on Linux clusters.

Today, growing enterprises often support hundreds of users running thou-
sands of jobs across different types of machines in different geographical
locations. In this distributed heterogeneous environment, it can be
extremely difficult for administrators to collect detailed, accurate usage
data, or to set system-wide resource priorities. As a result, many computing
resources are left under-utilized, while others are over-utilized. At the same
time, users are confronted with an ever expanding array of operating sys-
tems and platforms. Each year, scientists, engineers, designers, and ana-
lysts must waste countless hours learning the nuances of different
computing environments, rather than being able to focus on their core pri-
orities. PBS Professional addresses these problems for computing-inten-
sive industries such as science, engineering, finance, and entertainment.

Now you can use the power of PBS Professional to better control your
computing resources. This allows you to unlock the potential in the valu-
able assets you already have, while at the same time, reducing dependency
on system administrators and operators, freeing them to focus on other
actives. PBS Professional can also help you effectively manage growth by
tracking real usage levels across your systems and enhancing utilization of
future purchases.

1.4 History of PBS

In the past, UNIX systems were used in a completely interactive manner.
Background jobs were just processes with their input disconnected from
the terminal. However, as UNIX moved onto larger and larger machines,
PBS Professional 9.2 User’s Guide 3

Chapter 1

Introduction

the need to be able to schedule tasks based on available resources increased
in importance. The advent of networked compute servers, smaller general
systems, and workstations led to the requirement of a networked batch
scheduling capability. The first such UNIX-based system was the Network
Queueing System (NQS) funded by NASA Ames Research Center in 1986.
NQS quickly became the de facto standard for batch queueing.

Over time, distributed parallel systems began to emerge, and NQS was
inadequate to handle the complex scheduling requirements presented by
such systems. In addition, computer system managers wanted greater con-
trol over their compute resources, and users wanted a single interface to the
systems. In the early 1990’s NASA needed a solution to this problem, but
found nothing on the market that adequately addressed their needs. So
NASA led an international effort to gather requirements for a next-genera-
tion resource management system. The requirements and functional speci-
fication were later adopted as an IEEE POSIX standard (1003.2d). Next,
NASA funded the development of a new resource management system
compliant with the standard. Thus the Portable Batch System (PBS) was
born.

PBS was quickly adopted on distributed parallel systems and replaced
NQS on traditional supercomputers and server systems. Eventually the
entire industry evolved toward distributed parallel systems, taking the form
of both special purpose and commodity clusters. Managers of such systems
found that the capabilities of PBS mapped well onto cluster systems. (For
information on converting from NQS to PBS, see Appendix B.)

The PBS story continued when MRJ-Veridian (the R&D contractor that
developed PBS for NASA) released the Portable Batch System Profes-
sional Edition (PBS Pro), a commercial, enterprise-ready, workload man-
agement solution. Three years later, the MRJ-Veridian PBS Products
business unit was acquired by Altair Engineering, Inc. Altair set up the
PBS Products unit as a subsidiary company named Altair Grid Technolo-
gies focused on PBS Professional and related Grid software. This unit
then became part of Altair Engineering.

1.5 About the PBS Team

The PBS Professional product is developed by the same team that origi-
nally designed PBS for NASA. In addition to the core engineering team,
4 PBS Professional 9.2 User’s Guide

Introduction

Chapter 1

Altair Engineering includes individuals who have supported PBS on com-
puters around the world, including some of the largest supercomputers in
existence. The staff includes internationally-recognized experts in
resource-management and job-scheduling, supercomputer optimization,
message-passing programming, parallel computation, and distributed high-
performance computing. In addition, the PBS team includes co-architects
of the NASA Metacenter (the first full-production geographically distrib-
uted meta-computing grid), co-architects of the Department of Defense
MetaQueueing (prototype Grid) Project, co-architects of the NASA Infor-
mation Power Grid, and co-chair of the Global Grid Forum’s Scheduling
Group.

1.6 About Altair Engineering

Through engineering, consulting and high performance computing technol-
ogies, Altair Engineering increases innovation for more than 1,500 clients
around the globe. Founded in 1985, Altair's unparalleled knowledge and
expertise in product development and manufacturing extend throughout
North America, Europe and Asia. Altair specializes in the development of
high-end, open CAE software solutions for modeling, visualization, opti-
mization and process automation.

1.7 Why Use PBS?

PBS Professional provides many features and benefits to both the computer
system user and to companies as a whole. A few of the more important fea-
tures are listed below to give the reader both an indication of the power of
PBS, and an overview of the material that will be covered in later chapters
in this book.

Enterprise-wide Resource Sharing provides transparent job scheduling on
any PBS system by any authorized user. Jobs can be submitted from any
client system both local and remote, crossing domains where needed.

Multiple User Interfaces provides a graphical user interface for submitting
batch and interactive jobs; querying job, queue, and system status; and
monitoring job progress. PBS also provides a traditional command line
interface.
PBS Professional 9.2 User’s Guide 5

Chapter 1 Introduction
Security and Access Control Lists permit the administrator to allow or deny
access to PBS systems on the basis of username, group, host, and/or net-
work domain.
Job Accounting offers detailed logs of system activities for charge-back or
usage analysis per user, per group, per project, and per compute host.

Automatic File Staging provides users with the ability to specify any files
that need to be copied onto the execution host before the job runs, and any
that need to be copied off after the job completes. The job will be sched-
uled to run only after the required files have been successfully transferred.

Parallel Job Support works with parallel programming libraries such as
MPI, PVM and HPF. Applications can be scheduled to run within a single
multi-processor computer or across multiple systems.

System Monitoring includes a graphical user interface for system monitor-
ing. Displays vnode status, job placement, and resource utilization infor-
mation for both stand-alone systems and clusters.

Job-Interdependency enables the user to define a wide range of inter-
dependencies between jobs. Such dependencies include execution order,
and execution conditioned on the success or failure of another specific job
(or set of jobs).

Computational Grid Support provides an enabling technology for meta-
computing and computational grids.

Comprehensive API includes a complete Application Programming Inter-
face (API) for sites who desire to integrate PBS with other applications, or
who wish to support unique job scheduling requirements.

Automatic Load-Leveling provides numerous ways to distribute the work-
load across a cluster of machines, based on hardware configuration,
resource availability, keyboard activity, and local scheduling policy.

Distributed Clustering allows customers to utilize physically distributed
systems and clusters, even across wide-area networks.

Common User Environment offers users a common view of the job submis-
sion, job querying, system status, and job tracking over all systems.
6 PBS Professional 9.2 User’s Guide

Introduction Chapter 1
Cross-System Scheduling ensures that jobs do not have to be targeted to a
specific computer system. Users may submit their job, and have it run on
the first available system that meets their resource requirements.

Job Priority allows users the ability to specify the priority of their jobs;
defaults can be provided at both the queue and system level.

Username Mapping provides support for mapping user account names on
one system to the appropriate name on remote server systems. This allows
PBS to fully function in environments where users do not have a consistent
username across all hosts.

Fully Configurable. PBS was designed to be easily tailored to meet the
needs of different sites. Much of this flexibility is due to the unique design
of the scheduler module which permits significant customization.

Broad Platform Availability is achieved through support of Windows and
every major version of UNIX and Linux, from workstations and servers to
supercomputers. New platforms are being supported with each new
release.

System Integration allows PBS to take advantage of vendor-specific
enhancements on different systems (such as supporting cpusets on SGI sys-
tems).

Job Arrays are a mechanism for containerizing related work, making it pos-
sible to submit, query, modify and display a set of jobs as a single unit.
PBS Professional 9.2 User’s Guide 7

Chapter 1 Introduction
8 PBS Professional 9.2 User’s Guide

Chapter 2
Concepts and Terms

PBS is a distributed workload management system. As such, PBS handles
the management and monitoring of the computational workload on a set of
one or more computers. Modern workload management solutions like PBS
Professional include the features of traditional batch queueing but offer
greater flexibility and control than first generation batch systems (such as
NQS).

Workload management systems have three primary roles:

Queuing The collecting together of work or tasks to be
run on a computer. Users submit tasks or “jobs”
to the resource management system where they
are queued up until the system is ready to run
them.

Scheduling The process of selecting which jobs to run,
when, and where, according to a predetermined
PBS Professional 9.2 User’s Guide 9

Chapter 2 Concepts and Terms
policy. Sites balance competing needs and goals on
the system(s) to maximize efficient use of resources
(both computer time and people time).

Monitoring The act of tracking and reserving system resources
and enforcing usage policy. This includes both soft-
ware enforcement of usage limits and user or admin-
istrator monitoring of scheduling policies to see how
well they are meeting stated goals.

2.1 PBS Components

PBS consist of two major component types: user-level commands and sys-
tem daemons/services. A brief description of each is given here to help you
understand how the pieces fit together, and how they affect you.

Commands PBS supplies both command line programs that are
POSIX 1003.2d conforming and a graphical inter-
face. These are used to submit, monitor, modify, and
delete jobs. These client commands can be installed
on any system type supported by PBS and do not

Scheduler

MOM

Server
Jobs

 PBS
Commands

Kernel

Batch
 Job
10 PBS Professional 9.2 User’s Guide

Concepts and Terms Chapter 2
require the local presence of any of the other compo-
nents of PBS.

There are three command classifications: user com-
mands, which any authorized user can use, operator
commands, and manager (or administrator) com-
mands. Operator and manager commands which
require specific access privileges are discussed in
the PBS Professional Administrator’s Guide.

 Server The Job Server daemon/service is the central focus
for PBS. Within this document, it is generally
referred to as the Server or by the execution name
pbs_server. All commands and the other daemons/
services communicate with the Server via an Inter-
net Protocol (IP) network. The Server’s main func-
tion is to provide the basic batch services such as
receiving/creating a batch job, modifying the job,
and running the job. Normally, there is one Server
managing a given set of resources. However if the
Server Failover feature is enabled, there will be two
Servers.

Job Executor
(MOM)

The Job Executor or MOM is the daemon/service
which actually places the job into execution. This
process, pbs_mom, is informally called MOM as it is
the mother of all executing jobs. (MOM is a reverse-
engineered acronym that stands for Machine Ori-
ented Mini-server.) MOM places a job into execu-
tion when it receives a copy of the job from a Server.
MOM creates a new session that is as identical to a
user login session as is possible. (For example under
UNIX, if the user’s login shell is csh, then MOM
creates a session in which .login is run as well as
.cshrc.) MOM also has the responsibility for
returning the job’s output to the user when directed
to do so by the Server. One MOM runs on each com-
puter which will execute PBS jobs.

 Scheduler The Job Scheduler daemon/service, pbs_sched,
implements the site’s policy controlling when each
PBS Professional 9.2 User’s Guide 11

Chapter 2 Concepts and Terms
job is run and on which resources. The Scheduler
communicates with the various MOMs to query the
state of system resources and with the Server for
availability of jobs to execute. The interface to the
Server is through the same API as used by the client
commands. Note that the Scheduler interfaces with
the Server with the same privilege as the PBS man-
ager.

2.2 Defining PBS Concepts and Terms

The following section defines important terms and concepts of PBS. The
reader should review these definitions before beginning the planning pro-
cess prior to installation of PBS. The terms are defined in an order that best
allows the definitions to build on previous terms.

Node No longer used. A node to PBS is a computer sys-
tem with a single operating system (OS) image, a
unified virtual memory space, one or more CPUs
and one or more IP addresses. Frequently, the term
execution host is used for node. A computer such as
the SGI Origin 3000, which contains multiple CPUs
running under a single OS, is one node. Systems like
the IBM SP and Linux clusters, which contain sepa-
rate computational units each with their own OS, are
collections of nodes.

If a host has more than one virtual processor, the
VPs may be assigned to different jobs or used to sat-
isfy the requirements of a single job (exclusive).
This ability to temporarily allocate the entire host to
the exclusive use of a single job is important for
some multi-host parallel applications. Note that PBS
enforces a one-to-one allocation scheme of cluster
host VPs ensuring that the VPs are not over-allo-
cated or over-subscribed between multiple jobs.
(See also vnode and virtual processors.)
12 PBS Professional 9.2 User’s Guide

Concepts and Terms Chapter 2
Vnode A virtual node, or vnode, is an abstract object repre-
senting a set of resources which form a usable part
of a machine. This could be an entire host, or a
nodeboard or a blade. A single host can be made up
of multiple vnodes. Each vnode can be managed
and scheduled independently. Each vnode in a
complex must have a unique name. Vnodes can
share resources, such as node-locked licenses.

Host A machine with its own operating system, made up
of one or more vnodes. Also, all vnodes with the
same value for resources_available.host. A single
host can be made up of multiple vnodes.

Chunk A set of resources allocated as a unit to a job. Spec-
ified inside a selection directive. All pars of a chunk
come from the same host. In a typical MPI job,
there is one chunk per MPI process.

Cluster Generally, a very homogeneous set of systems that
are viewed as one unit. Typically, the word "cluster"
means "Linux cluster", although it is also being used
to mean "Windows cluster".

Complex A PBS complex consists of the machines running
one primary Server+Scheduler (plus, optionally, a
secondary backup Server+Scheduler) and all the
machines on which the MOMs (attached to this
Server+Scheduler) are running. In general, it can be
a very heterogeneous mix of system architectures,
operating systems, and can include several clusters.

Exclusive VP An exclusive VP is one that is used by one and only
one job at a time. A set of VPs is assigned exclu-
sively to a job for the duration of that job. This is
typically done to improve the performance of mes-
sage-passing programs.

Load Balance A policy wherein jobs are distributed across multi-
ple timeshared hosts to even out the workload on
each host. Being a policy, the distribution of jobs
PBS Professional 9.2 User’s Guide 13

Chapter 2 Concepts and Terms
across execution hosts is solely a function of the Job
Scheduler.

Queue A queue is a named container for jobs within a
Server. There are two types of queues defined by
PBS, routing and execution. A routing queue is a
queue used to move jobs to other queues including
those that exist on different PBS Servers. A job must
reside in an execution queue to be eligible to run and
remains in an execution queue during the time it is
running. In spite of the name, jobs in a queue need
not be processed in queue order (first-come first-
served or FIFO).

Vnode Attribute Vnodes have attributes associated with them that
provide control information. The attributes defined
for vnodes are: state, the list of jobs to which the
vnode is allocated, properties, max_running,
max_user_run, max_group_run, and both
assigned and available resources
(“resources_assigned” and
“resources_available”).

PBS Professional PBS consists of one Server (pbs_server), one
Scheduler (pbs_sched), and one or more MOMs
(pbs_mom). The PBS System can be set up to dis-
tribute the workload to one large system, multiple
systems, a cluster of hosts, or any combination of
these.

Virtual Processor
(VP)

A vnode may be declared to consist of one or more
virtual processors (VPs). The term virtual is used
because the number of VPs declared does not have
to equal the number of real processors (CPUs) on
the physical vnode. The default number of virtual
processors on a vnode is the number of currently
functioning physical processors; the PBS Manager
can change the number of VPs as required by local
policy.

The remainder of this chapter provides additional terms, listed in alphabet-
14 PBS Professional 9.2 User’s Guide

Concepts and Terms Chapter 2
ical order.

Account An account is arbitrary character string, which may
have meaning to one or more hosts in the batch sys-
tem. Frequently, account is used by sites for
accounting or charge-back purposes.

Administrator See Manager.
API PBS provides an Application Programming Inter-

face (API) which is used by the commands to com-
municate with the Server. This API is described in
the PBS Professional External Reference Specifi-
cation. A site may make use of the API to imple-
ment new commands if so desired.

Advance
Reservation

An advance reservation is a set of resources avail-
able for jobs for a specific amount of time in the
future. Both the amount of resources and the amount
of time are fixed for the life cycle of the reservation.
Advance reservations are created manually by a
user.

Attribute An attribute is a data item whose value affects the
operation or behavior of the object and can be set by
the owner of the object.

Batch or Batch
Processing

This refers to the capability of running jobs outside
of the interactive login environment.

Complex A complex is a collection of hosts managed by one
batch system. It may be made up of vnodes that are
allocated to only one job at a time or of vnodes that
have many jobs executing at once on each vnode or
a combination of these two scenarios.

Destination This is the location within PBS where a job is sent.
A destination may be a single queue at a single
Server or it may map into multiple possible loca-
tions, tried in turn until one accepts the job.

Destination
Identifier

This is a string that names the destination. It is com-
posed of two parts and has the format queue@server
where server is the name of a PBS Server and queue
is the string identifying a queue on that Server.
PBS Professional 9.2 User’s Guide 15

Chapter 2 Concepts and Terms
Directive A means by which the user specifies to PBS the
value of a variable such as number of CPUs, the
name of a job, etc. The default start of a directive is
“#PBS”. PBS directives either specify resource
requirements or attribute values. See page 69.

File Staging File staging is the movement of files between a
specified location and the execution host. See “Stage
In” and “Stage Out” below.

Group ID (GID) This unique number represents a specific group (see
Group).

Group Group refers to collection of system users (see
Users). A user must be a member of a group and
may be a member of more than one. Membership in
a group establishes one level of privilege, and is also
often used to control or limit access to system
resources.

Hold A restriction which prevents a job from being
selected for processing. There are three types of
holds. One is applied by the job owner, another is
applied by a PBS Operator, and a third applied by
the system itself or the PBS Manager. (See also
Operator and Manager in this glossary.)

Job or Batch Job The basic execution object managed by the batch
subsystem. A job is a collection of related processes
which is managed as a whole. A job can often be
thought of as a shell script running a set of tasks.

Manager A manager is authorized to use all capabilities of
PBS. The Manager may act upon the Server, queues,
or jobs. The Manager is also called the administra-
tor.

Occurrence of a
Standing

Reservation

An individual instance of a standing reservation.

Operator A person authorized to use some but not all of the
restricted capabilities of PBS is an operator.

Owner The user who submitted a specific job to PBS.
PBS_HOME Refers to the path under which PBS was installed on

the local system. Your local system administrator
can provide the specific location.

POSIX This acronym refers to the various standards devel-
oped by the “Technical Committee on Operating
16 PBS Professional 9.2 User’s Guide

Concepts and Terms Chapter 2
Systems and Application Environments of the IEEE
Computer Society” under standard P1003.

Requeue The process of stopping a running (executing) job
and putting it back into the queued (“Q”) state. This
includes placing the job as close as possible to its
former position in that queue.

Rerunnable If a PBS job can be terminated and its execution
restarted from the beginning without harmful side
effects, the job is rerunnable.

Stage In This process refers to moving a file or files to the
execution host prior to the PBS job beginning exe-
cution.

Stage Out This process refers to moving a file or files off of the
execution host after the PBS job completes execu-
tion.

Standing
Reservation

A recurring advance reservation where each occur-
rence has the same resource specification.

User Each system user is identified by a unique character
string (the user name) and by a unique number (the
user id).

Task Task is a POSIX session started by MOM on behalf
of a job.

User ID (UID) Privilege to access system resources and services is
typically established by the user id, which is a
numeric identifier uniquely assigned to each user
(see User).

Job Array A collection of jobs submitted under a single job id.
These jobs can be modified, queried and displayed
as a set.
PBS Professional 9.2 User’s Guide 17

Chapter 2 Concepts and Terms
18 PBS Professional 9.2 User’s Guide

Chapter 3
Getting Started With
PBS

This chapter introduces the user to PBS Professional. It describes new user-
level features in this release, explains the different user interfaces, intro-
duces the concept of a PBS “job”, and shows how to set up your environ-
ment for running batch jobs with PBS.

3.1 New Features in This Release

Permissions may be set on custom resources.
See section 4.5.14 “Resource Permissions” on
page 56.
PBS Professional 9.2 User’s Guide 19

Chapter 3 Getting Started With PBS
Job-specific staging and execution directories. See
section 8.7 “Input/Output File Staging” on page 158.

Wildcards are supported for file staging. See section
8.7.4.2 “Wildcards In File Staging” on page 164.

3.1.1 Job-Specific Staging and Execution Directories

PBS can now provide a staging and execution directory for each job. Jobs
have new attributes sandbox and jobdir, the MOM has a new option
$jobdir_root, and there is a new environment variable called
PBS_JOBDIR. If the job’s sandbox attribute is set to PRIVATE, PBS
creates a job-specific staging and execution directory. If the job’s sand-
box attribute is unset or is set to HOME, PBS uses the user’s home direc-
tory for staging and execution, which is how previous versions of PBS
behaved. See section 8.7 “Input/Output File Staging” on page 158.

3.1.2 Standing Reservations

PBS now provides a facility for making standing reservations. A standing
reservation is a series of advance reservations. The pbs_rsub command is
used to create both advance and standing reservations. See section 8.9
“Advance and Standing Reservation of Resources” on page 172.

3.2 New Features in Recent Releases

PBS Professional has new features. The sort_priority option to
job_sort_key is replaced with the job_priority option. The following is a
list of recent new features and changes in PBS Professional.

3.3 Deprecations

The sort_priority option to job_sort_key is deprecated and is replaced
with the job_priority option.
The -l nodes=nodespec form is replaced by the -l select= and -l place=
statements.
The nodes resource is no longer used.
The -l resource=rescspec form is replaced by the -l select= statement.
The time-shared node type is no longer used, and
20 PBS Professional 9.2 User’s Guide

Getting Started With PBS Chapter 3
the :ts suffix is obsolete.
The cluster node type is no longer used.
The resource arch is only used inside of a select statement.
The resource host is only used inside of a select statement.
The nodect resource is obsolete. The ncpus resource should be used
instead. Sites which currently have default values or limits based on
nodect should change them to be based on ncpus.
The neednodes resource is obsolete.
The ssinodes resource is obsolete.
Properties are replaced by boolean resources.
The ppn resource is deprecated.

3.4 Using PBS

From the user's perspective, a workload management system allows you to
make more efficient use of your time. You specify the tasks you need exe-
cuted. The system takes care of running these tasks and returning the
results to you. If the available computers are full, then the workload man-
agement system holds your work and runs it when the resources are avail-
able.

With PBS you create a batch job which you then submit to PBS. A batch
job is a file (a shell script under UNIX or a cmd batch file under Windows)
containing the set of commands you want to run on some set of execution
machines. It also contains directives which specify the characteristics
(attributes) of the job, and resource requirements (e.g. memory or CPU
time) that your job needs. Once you create your PBS job, you can reuse it if
you wish. Or, you can modify it for subsequent runs. For example, here is a
simple PBS batch job:

UNIX:
#!/bin/sh

#PBS -l walltime=1:00:00

#PBS -l mem=400mb,ncpus=4

./my_application
PBS Professional 9.2 User’s Guide 21

Chapter 3 Getting Started With PBS
Windows:
#PBS -l walltime=1:00:00

#PBS -l mem=400mb,ncpus=4

my_application

Don’t worry about the details just yet; the next chapter will explain how to
create a batch job of your own.

3.5 PBS Interfaces

PBS provides two user interfaces: a command line interface (CLI) and a
graphical user interface (GUI). The CLI lets you type commands at the sys-
tem prompt. The GUI is a graphical point-and-click interface. The “user
commands” are discussed in this book; the “administrator commands” are
discussed in the PBS Professional Administrator’s Guide. The subse-
quent chapters of this book will explain how to use both the CLI and GUI
versions of the user commands to create, submit, and manipulate PBS jobs.
.

Table 1: PBS Professional User and Manager Commands

User Commands Administrator Commands

Command Purpose Command Purpose

nqs2pbs Convert from NQS pbs-report Report job statis-
tics

pbs_rdel Delete a Reservation

pbs_rstat Status a Reservation pbs_hostn Report host
name(s)

pbs_
password

Update per user / per
server password1

pbs_migrate
_users

Migrate per user /
per server pass-
words 1

pbs_rsub Submit a Reserva-
tion

pbs_probe PBS diagnostic
tool

pbsdsh PBS distributed shell pbs_rcp File transfer tool
22 PBS Professional 9.2 User’s Guide

Getting Started With PBS Chapter 3
Notes:
1 Available on Windows only.

3.6 User’s PBS Environment

In order to have your system environment interact seamlessly with PBS,
there are several items that need to be checked. In many cases, your system

qalter Alter job pbs_tclsh TCL with PBS
API

qdel Delete job pbsfs Show fairshare
usage

qhold Hold a job pbsnodes Vnode manipula-
tion

qmove Move job printjob Report job details

qmsg Send message to job qdisable Disable a queue

qorder Reorder jobs qenable Enable a queue

qrls Release hold on job qmgr Manager inter-
face

qselect Select jobs by crite-
ria

qrerun Requeue running
job

qsig Send signal to job qrun Manually start a
job

qstat Status job, queue,
Server

qstart Start a queue

qsub Submit a job qstop Stop a queue

tracejob Report job history qterm Shutdown PBS

xpbs Graphical User
Interface

xpbsmon GUI monitoring
tool

Table 1: PBS Professional User and Manager Commands

User Commands Administrator Commands
PBS Professional 9.2 User’s Guide 23

Chapter 3 Getting Started With PBS
administrator will have already set up your environment to work with PBS.

In order to use PBS to run your work, the following are needed:

User must have access to the resources/hosts that the site has con-
figured for PBS

User must have a valid account (username and group) on the execu-
tion hosts

User must be able to transfer files between hosts (e.g. via rcp or
scp)

User’s time zone environment variable must be set correctly in
order to use

advance and standing reservations. See section 8.9.8.1 “Setting the
Submission Host’s Time Zone” on page 194.

The subsequent sections of this chapter discuss these requirements in
detail, and provide various setup procedures.

3.7 Usernames Under PBS

By default PBS will use your login identifier as the username under which
to run your job. This can be changed via the “-u” option to qsub. See
section 4.13.14 “Specifying Job User ID” on page 83. The user submitting
the job must be authorized to run the job under the execution user name
(whether explicitly specified or not).

Important: PBS enforces a maximum username length of 15
characters. If a job is submitted to run under a user-
name longer than this limit, the job will be rejected.

3.8 Setting Up Your UNIX/Linux Environment

A user's job may not run if the user's start-up files (i.e .cshrc, .login,
or .profile) contain commands which attempt to set terminal character-
istics. Any such command sequence within these files should be skipped by
testing for the environment variable PBS_ENVIRONMENT. This can be
24 PBS Professional 9.2 User’s Guide

Getting Started With PBS Chapter 3
done as shown in the following sample .login:

You should also be aware that commands in your startup files should not
generate output when run under PBS. As in the previous example, com-
mands that write to stdout should not be run for a PBS job. This can be
done as shown in the following sample .login:

setenv MANPATH \

 /usr/man:/usr/local/man:$MANPATH

if (! $?PBS_ENVIRONMENT) then

 do terminal settings here

 run command with output here

endif

When a PBS job runs, the “exit status” of the last command executed in the
job is reported by the job’s shell to PBS as the “exit status” of the job. (We
will see later that this is important for job dependencies and job chaining.)
However, the last command executed might not be the last command in
your job. This can happen if your job’s shell is csh on the execution host
and you have a .logout there. In that case, the last command executed is
from the .logout and not your job. To prevent this, you need to preserve
the job’s exit status in your .logout file, by saving it at the top, then
doing an explicit exit at the end, as shown below:

set EXITVAL = $status

previous contents of .logout here

exit $EXITVAL

Likewise, if the user’s login shell is csh the following message may
appear in the standard output of a job:

Warning: no access to tty, thus no job control in this shell

...
setenv MANPATH /usr/man:/usr/local/man:$MANPATH
if (! $?PBS_ENVIRONMENT) then
 do terminal settings here
endif
PBS Professional 9.2 User’s Guide 25

Chapter 3 Getting Started With PBS
This message is produced by many csh versions when the shell deter-
mines that its input is not a terminal. Short of modifying csh, there is no
way to eliminate the message. Fortunately, it is just an informative mes-
sage and has no effect on the job.

An interactive job comes complete with a pseudotty suitable for running
those commands that set terminal characteristics. But more importantly, it
does not caution the user that starting something in the background that
would persist after the user has exited from the interactive environment
might cause trouble for some moms. They could believe that once the inter-
active session terminates, all the user's processes are gone with it. For
example, applications like ssh-agent background themselves into a new
session and would prevent a CPU set-enabled mom from deleting the CPU
set for the job. This in turn might cause subsequent failed attempts to run
new jobs, resulting in them being placed in a held state.

3.8.1 Setting MANPATH on SGI Systems

The PBS “man pages” (UNIX manual entries) are installed on SGI systems
under /usr/bsd, or for the Altix, in /usr/pbs/man. In order to find
the PBS man pages, users will need to ensure that /usr/bsd is set within
their MANPATH. The following example illustrates this for the C shell:

setenv MANPATH \

 /usr/man:/usr/local/man:/usr/ \

 bsd:$MANPATH

3.9 Setting Up Your Windows Environment

This section discusses the setup steps needed for running PBS Professional
in a Microsoft Windows environment, including host and file access, pass-
words, and restrictions on home directories.

3.9.1 Windows User's HOMEDIR

Each Windows user is assumed to have a home directory (HOMEDIR)
where his/her PBS jobs are initially started.
26 PBS Professional 9.2 User’s Guide

Getting Started With PBS Chapter 3
If a user has not been explicitly assigned a home directory, then PBS will
use this Windows-assigned default as the base location for the user’s
default home directory. More specifically, the actual home path will be:

[PROFILE_PATH]\My Documents\PBS Pro

For instance, if a userA has not been assigned a home directory, it will
default to a local home directory of:

\Documents and Settings\userA\My

 Documents\PBS Pro

UserA’s job will use the above path as its working directory.

Note that Windows can return as PROFILE_PATH one of the following
forms:

\Documents and Settings\username

\Documents and Settings\username.local-host

 name

\Documents and Settings\username.local-host

 name.00N

where N is a number
\Documents and Settings\username.domain-name

3.9.2 Windows Usernames and Job Submission

A PBS job is run from a user account and the associated username string
must conform to the POSIX-1 standard for portability. That is, the user-
name must contain only alphanumeric characters, dot (.), underscore (_),
and/or hyphen “-”. The hyphen must not be the first letter of the username.
If “@” appears in the username, then it will assumed to be in the context of
a Windows domain account: username@domainname. An exception to
the above rule is the space character, which is allowed. If a space character
appears in a username string, then it will be displayed quoted and must be
specified in a quoted manner. The following example requests the job to
run under account “Bob Jones”.

PBS Professional 9.2 User’s Guide 27

Chapter 3 Getting Started With PBS
qsub -u “Bob Jones” my_job

3.9.3 Windows rhosts File

The Windows rhosts file is located in the user's [PROFILE_PATH], for
example: \Documents and Settings\username\.rhosts,
with the format:

hostname username

Important: Be sure the .rhosts file is owned by user or an
administrator-type group, and has write access
granted only to the owning user or an administrator
or group.

This file can also determine if a remote user is allowed to submit jobs to the
local PBS Server, if the mapped user is an Administrator account. For
example, the following entry in user susan’s .rhosts file on the server
would permit user susan to run jobs submitted from her workstation
wks031:

wks031 susan

Furthermore, in order for Susan’s output files from her job to be returned to
her automatically by PBS, she would need to add an entry to her .rhosts
file on her workstation naming the execution host Host1.

Host1 susan

If instead, Susan has access to several execution hosts, she would need to
add all of them to her .rhosts file:

Host1 susan

Host2 susan

Host3 susan

Note that Domain Name Service (DNS) on Windows may return different
permutations for a full hostname, thus it is important to list all the names
that a host may be known. For instance, if Host4 is known as "Host4",
"Host4.<subdomain>", or "Host4.<subdomain>.<domain>" you should list
28 PBS Professional 9.2 User’s Guide

Getting Started With PBS Chapter 3
all three in the .rhosts file.
Host4 susan

Host4.subdomain susan

Host4.subdomain.domain susan

As discussed in the previous section, usernames with embedded white
space must also be quoted if specified in any hosts.equiv or .rhosts
files, as shown below.

Host5.subdomain.domain “Bob Jones”

3.9.4 Windows Mapped Drives and PBS

In Windows XP, when you map a drive, it is mapped "locally" to your ses-
sion. The mapped drive cannot be seen by other processes outside of your
session. A drive mapped on one session cannot be un-mapped in another
session even if it's the same user. This has implications for running jobs
under PBS. Specifically if you map a drive, chdir to it, and submit a job
from that location, the vnode that executes the job may not be able to
deliver the files back to the same location from which you issued qsub.
The workaround is to use the “-o” or “-e” options to qsub and specify a
local (non-mapped) directory location for the job output and error files. For
details see section 4.13.2 “Redirecting Output and Error Files” on page 77.

3.10 Environment Variables

There are a number of environment variables provided to the PBS job.
Some are taken from the user’s environment and carried with the job. Oth-
ers are created by PBS. Still others can be explicitly created by the user for
exclusive use by PBS jobs. All PBS-provided environment variable names
start with the characters “PBS_”. Some are then followed by a capital O
(“PBS_O_”) indicating that the variable is from the job’s originating envi-
ronment (i.e. the user’s). Appendix A gives a full listing of all environment
variables provided to PBS jobs and their meaning. The following short
example lists some of the more useful variables, and typical values.

PBS_O_HOME=/u/user1
PBS_O_LOGNAME=user1
PBS_O_PATH=/usr/new/bin:/usr/local/bin:/bin
PBS_O_SHELL=/sbin/csh
PBS Professional 9.2 User’s Guide 29

Chapter 3 Getting Started With PBS
PBS_O_HOST=cray1
PBS_O_WORKDIR=/u/user1
PBS_O_QUEUE=submit
PBS_JOBID=16386.cray1
PBS_QUEUE=crayq
PBS_ENVIRONMENT=PBS_INTERACTIVE

There are a number of ways that you can use these environment variables
to make more efficient use of PBS. In the example above we see
PBS_ENVIRONMENT, which we used earlier in this chapter to test if we
were running under PBS. Another commonly used variable is
PBS_O_WORKDIR which contains the name of the directory from which
the user submitted the PBS job.

There are also two environment variables that you can set to affect the
behavior of PBS. The environment variable PBS_DEFAULT defines the
name of the default PBS Server. Typically, it corresponds to the system
name of the host on which the Server is running. If PBS_DEFAULT is not
set, the default is defined by an administrator established file (usually /
etc/pbs.conf on UNIX, and [PBS Destination
Folder]\pbs.conf on Windows).

The environment variable PBS_DPREFIX determines the prefix string
which identifies directives in the job script. The default prefix string is
“#PBS”; however the Windows user may wish to change this as discussed
in section 4.11 “Changing the Job’s PBS Directive” on page 70.

3.11 Temporary Scratch Space: TMPDIR

PBS creates an environment variable, TMPDIR, which contains the full
path name to a temporary “scratch” directory created for each PBS job. The
directory will be removed when the job terminates.

Under Windows, TMP will also be set to the value of %TMPDIR%. The tem-
porary directory will be created under either \winnt\temp or \win-
dows\temp, unless an alternative directory was specified by the
administrator in the MOM configuration file.

Users can access the job-specific temporary space, by changing directory
to it inside their job script. For example:
30 PBS Professional 9.2 User’s Guide

Getting Started With PBS Chapter 3
UNIX:
cd $TMPDIR

Windows:
cd %TMPDIR%
PBS Professional 9.2 User’s Guide 31

Chapter 3 Getting Started With PBS
32 PBS Professional 9.2 User’s Guide

Chapter 4
Submitting a PBS Job

This chapter describes virtual nodes, how to submit a PBS job, how to use
resources for jobs, how to place your job on vnodes, job attributes, and sev-
eral related areas.

4.1 Vnodes: Virtual Nodes

A virtual node, or vnode, is an abstract object representing a set of
resources which form a
usable part of a machine. This could be an entire host, or a nodeboard or a
blade. A single host can be made up of multiple vnodes. Each vnode can be
managed and scheduled independently. PBS views hosts as being com-
posed of one or more vnodes. Jobs run on one or more vnodes. See the
pbs_node_attributes(7B) man page.
PBS Professional 9.2 User’s Guide 33

Chapter 4 Submitting a PBS Job
4.1.1 Relationship Between Hosts, Nodes, and Vnodes

A host is any computer. Execution hosts used to be called nodes. However,
some machines such as the Altix can be treated as if they are made up of
separate pieces containing CPUs, memory, or both. Each piece is called a
vnode. Some hosts have a single vnode and some have multiple vnodes.
PBS treats all vnodes alike in most respects. Chunks cannot be split across
hosts, but they can be split across vnodes on the same host.

Resources that are defined at the host level are applied to vnodes. A host-
level resource is shared among the vnodes on that host. This sharing is
managed by the MOM.

4.1.2 Vnode Types

What were called nodes are now called vnodes. All vnodes are treated
alike, and are treated the same as what were called “time-shared nodes”.
The types “time-shared” and “cluster” are deprecated. The :ts suffix is
deprecated. It is silently ignored, and not preserved during rewrite. The
vnode attribute ntype is only used to distinguish between PBS and Glo-
bus vnodes. It is read-only.

4.2 PBS Resources

Resources can be available on the server and queues, and on vnodes. Jobs
can request resources. Resources are allocated to jobs, and some resources
such as memory are consumed by jobs. The scheduler matches requested
resources with available resources, according to rules defined by the
administrator. PBS can enforce limits on resource usage by jobs.

PBS provides built-in resources, and in addition, allows the administrator
to define custom resources. The administrator can specify which resources
are available on a given vnode, as well as at the server or queue level (e.g.
floating licenses.) Vnodes can share resources. The administrator can also
specify default arguments for qsub. These arguments can include
resources. See the qsub(1B) man page.

Resources made available by defining them via resources_available at the
server level are only used as job-wide resources. These resources (e.g.
walltime, server_dyn_res) are requested using -l RESOURCE=VALUE.
34 PBS Professional 9.2 User’s Guide

Submitting a PBS Job Chapter 4
Resources made available at the host (vnode) level are only used as chunk
resources, and can only be requested within chunks using -l
select=RESOURCE=VALUE. Resources such as mem and ncpus can only
be used at the vnode level.

Resources are allocated to jobs both by explicitly requesting them and by
applying specified defaults. Jobs explicitly request resources either at the
vnode level in chunks defined in a selection statement, or in job-wide
resource requests. See the pbs_resources(7B) manual page.

Jobs are assigned limits on the amount of resources they can use. These
limits apply to how much the job can use on each vnode (per-chunk limit)
and to how much the whole job can use (job-wide limit). Limits are derived
from both requested resources and applied default resources.

Each chunk's per-chunk limits determine how much of any resource can be
used in that chunk. Per-chunk resource usage limits are the amount of per-
chunk resources requested, both from explicit requests and from defaults.

Job resource limits set a limit for per-job resource usage. Job resource lim-
its are derived in this order from:

1 explicitly requested job-wide resources (e.g. -l resource=value)

2 the select specification (e.g. -l select =...)

3 the queue’s default_resources.RES

4 the server’s default_resources.RES

5 the queue’s resources_max.RES

6 the server’s resources_max.RES

The server’s default_chunk.RES does not affect job-wide limits.

The resources requested for chunks in the select specification are summed,
and this sum is used for a job-wide limit. Job resource limits from sums of
all chunks override those from job-wide defaults and resource requests.

Various limit checks are applied to jobs. If a job's job resource limit
exceeds queue or server restrictions, it will not be put in the queue or
accepted by the server. If, while running, a job exceeds its limit for a con-
sumable or time-based resource, it will be terminated.
PBS Professional 9.2 User’s Guide 35

Chapter 4 Submitting a PBS Job
A “consumable” resource is one that is reduced by being used, for exam-
ple, ncpus, licenses, or mem. A “non-consumable” resource is not reduced
through use, for example, walltime or a boolean resource.

Resources are tracked in server, queue, vnode and job attributes. Servers,
queues and vnodes have two attributes, resources_available.RESOURCE
and resources_assigned.RESOURCE. The
resources_available.RESOURCE attribute tracks the total amount of the
resource available at that server, queue or vnode, without regard to how
much is in use. The resources_assigned.RESOURCE attribute tracks how
much of that resource has been assigned to jobs at that server, queue or
vnode. Jobs have an attribute called resources_used.RESOURCE which
tracks the amount of that resource used by that job.

The administrator can set server and queue defaults for resources used in
chunks. See the PBS Professional Administrator’s Guide and the
pbs_server_attributes(7B) and pbs_queue_attributes(7B) manual pages.

4.2.0.1 Unset Resources

When job resource requests are being matched with available resources, a
numerical resource that is unset on a host is treated as if it were zero, and
an unset string cannot be matched. An unset Boolean resource is treated as
if it is set to “False”. An unset resource at the server or queue is treated as
if it were infinite.

4.2.0.2 Resource Names and Values

The resource name is any string made up of alphanumeric characters,
where the first character is alphabetic. Resource names must start with an
alphabetic character and can contain alphanumeric, underscore (“_”), and
dash (“-”) characters.

If a string resource value contains spaces or shell metacharacters, enclose
the string in quotes, or otherwise escape the space and metacharacters. Be
sure to use the correct quotes for your shell and the behavior you want. If
the string resource value contains commas, the string must be enclosed in
an additional set of quotes so that the command (e.g. qsub, qalter) will
parse it correctly. If the string resource value contains quotes, plus signs,
equal signs, colons or parentheses, the string resource value must be
36 PBS Professional 9.2 User’s Guide

Submitting a PBS Job Chapter 4
enclosed in yet another set of additional quotes.

4.2.1 Resource Types

Resources have the following data types:

boolean Boolean-valued resource. Should be defined only at
the vnode level, for manageability. Non-consum-
able. Name of resource is a string. Allowable
values (case insensitive): True|T|Y|1|False|F|N|0

 float Float. Allowable values: [+-] 0-9 [[0-9] ...][.][[0-9]
...]

 long Long integer. Allowable values: 0-9 [[0-9] ...]

size Number of bytes (default) or words. It is expressed
in the form integer[suffix]. The suffix is a
multiplier defined in the following table. The size of
a word is the word size on the execution host.

 string String. Non-consumable. Allowable values: Any
printable character, including the space character.,
except the tab or other white space and the amper-
sand (“&”) character. The first character must be
alphanumeric or underscore. Only one of the two

Table 1:

 b or w bytes or words.

kb or kw Kilo (210, 1024) bytes or words.

mb or mw Mega (220, 1,048,576) bytes or
words.

gb or gw Giga (230, 1,073,741,824) bytes or
words.

tb or tw Tera (240, or 1024 gigabytes) bytes
or words.
PBS Professional 9.2 User’s Guide 37

Chapter 4 Submitting a PBS Job
types of quote characters, " or ', may appear in any
given value.

Values:[_a-zA-Z0-9][[-_a-zA-Z0-9 ! " # $ % ́ () * +
, - . / : ; < = > ? @ [\] ^ _ ‘ { | } ~] ...]

 string array Comma-separated list of strings. Strings in string
arrays may not contain commas. Non-consum-
able. Resource request will succeed if request
matches one of the values. Resource request can
contain only one string.

time specifies a maximum time period the resource can
be used. Time is expressed in seconds as an integer,
or in the form:

[hours:]minutes:]seconds[.milli-
seconds]

4.2.2 Built-in Resources

The table below lists the built-in resources that can be requested by PBS
jobs on any system.

Table 2: PBS Resources

Resource Description

arch System architecture. Can be requested only inside of a
select statement. One architecture can be defined for a
vnode. One architecture can be requested per vnode.
Allowable values and effect on job placement are site-
dependent. Type: string.

cput Amount of CPU time used by the job for all processes on
all vnodes. Establishes a job resource limit. Can be
requested only outside of a select statement. Non-con-
sumable. Type: time.

file Size of any single file that may be created by the job.
Can be requested only outside of a select statement.
Type: size.
38 PBS Professional 9.2 User’s Guide

Submitting a PBS Job Chapter 4
host Name of execution host. Can be requested only inside of
a select statement. Automatically set to the short form of
the hostname in the Mom attribute. Cannot be changed.
Site-dependent. Type: string.

mem Amount of physical memory i.e. workingset allocated to
the job, either job-wide or vnode-level. Can be requested
only inside of a select statement. Consumable. Type:
size.

mpiprocs Number of MPI processes for this chunk. Defaults to 1
if ncpus > 0, 0 otherwise. Can be requested only inside of
a select statement. Type: integer.

The number of lines in PBS_NODEFILE is the sum of
the values of mpiprocs for all chunks requested by the
job. For each chunk with mpiprocs=P, the host name for
that chunk is written to the PBS_NODEFILE P times.

mpparch MPP compute node system type. Can be requested only
outside of a select statement. Allowable values: XT or
X2. Type: string.

mppdepth Depth (number of threads) of each processor. Specifies
the number of processors that each processing element
will use. Can be requested only outside of a select
statement. Default: 1. Type: integer.

mpphost MPP host. Can be requested only outside of a select
statement. Type: string.

Table 2: PBS Resources

Resource Description
PBS Professional 9.2 User’s Guide 39

Chapter 4 Submitting a PBS Job
mpplabels List of node labels. Runs the application only on those
nodes with the specified labels. Format: comma-sepa-
rated list of labels and/or a range of labels. Any lists
containing commas should be enclosed in quotes escaped
by backslashes. For example:

#PBS -l mpplabels=\"red,blue\"
or

qsub -l mpplabels=\"red,blue\"
Can be requested only outside of a select statement.
Type: string.

mppmem The maximum memory for all applications. The per-pro-
cessing-element maximum resident set size memory
limit. Can be requested only outside of a select state-
ment. Type: size.

mppnodes Manual placement list consisting of a comma-separated
list of nodes (node1,node2), a range of nodes (node1-
node2), or a combination of both formats. Node val-
ues are expressed as decimal numbers. The first number
in a range must be less than the second number (i.e.,
8-6 is invalid). A complete node list is required. Any
lists containing commas should be enclosed in quotes
escaped by backslashes. For example:

#PBS -l mppnodes=\"40-48,52-
60,84,86,88,90\"

or
qsub -l mppnodes=\"40-48,52-
60,84,86,88,90\"

Can be requested only outside of a select statement.
Type: integer.

mppnppn Number of processing elements (PEs) per node. Can be
requested only outside of a select statement. Type: inte-
ger.

Table 2: PBS Resources

Resource Description
40 PBS Professional 9.2 User’s Guide

Submitting a PBS Job Chapter 4
mppwidth Number of processing elements (PEs) for the job. Can
be requested only outside of a select statement. Type:
integer.

ncpus Number of processors requested. Cannot be shared
across vnodes. Can be requested only inside of a select
statement. Consumable. Type: integer.

nice Nice value under which the job is to be run. Host-depen-
dent. Can be requested only outside of a select statement.
Type: integer.

nodect Deprecated. Number of chunks in resource request
from selection directive, or number of hosts requested
from node specification. Otherwise defaults to value of
1. Can be requested only outside of a select statement.
Read-only. Type: integer.

ompthreads Number of OpenMP threads for this chunk. Defaults to
ncpus if not specified. Can be requested only inside of a
select statement. Type: integer.

For the MPI process with rank 0, the environment vari-
ables NCPUS and OMP_NUM_THREADS are set to the
value of ompthreads. For other MPI processes, behavior
is dependent on MPI implementation.

pcput Amount of CPU time allocated to any single process in
the job. Establishes a job resource limit. Non-consum-
able. Can be requested only outside of a select statement.
Type: time.

pmem Amount of physical memory (workingset) for use by any
single process of the job. Establishes a job resource limit.
Can be requested only outside of a select statement. Con-
sumable. Type: size

pvmem Amount of virtual memory for use by the job. Estab-
lishes a job resource limit. Can be requested only outside
of a select statement. Not consumable. Type: size.

Table 2: PBS Resources

Resource Description
PBS Professional 9.2 User’s Guide 41

Chapter 4 Submitting a PBS Job
4.3 PBS Jobs

4.3.1 Rules for Submitting Jobs

The "place" specification cannot be used without the "select" specifica-
tion. See section 4.6 “Placing Jobs on Vnodes” on page 56.

A "select" specification cannot be used with a "nodes" specification.

A "select" specification cannot be used with old-style resource requests
such as -lncpus, -lmem, -lvmem, -larch, -lhost.

The built-in resource "software" is not a vnode-level resource. See “PBS
Resources” on page 34.

A PBS job can be submitted at the command line or via xpbs.

software Site-specific software specification. Can be requested
only outside of a select statement. Allowable values and
effect on job placement are site-dependent. Type: string.

vmem Amount of virtual memory for use by all concurrent pro-
cesses in the job. Establishes a per-chunk limit. Can be
requested only inside of a select statement. Consumable.
Type: size.

vnode Name of virtual node (vnode) on which to execute. For
use inside chunks only. Site-dependent. Can be
requested only inside of a select statement. Type: string.
See the pbs_node_attributes(7B) man page.

walltime Actual elapsed (wall-clock, except during Daylight Sav-
ings transitions) time during which the job can run.
Establishes a job resource limit. Can be requested only
outside of a select statement. Non-consumable. Default:
5 years. Type: time.

Table 2: PBS Resources

Resource Description
42 PBS Professional 9.2 User’s Guide

Submitting a PBS Job Chapter 4
At the command line, the user can create a job script, and submit it. During
submission it is possible to override elements in the job script. Alterna-
tively, PBS will read from input typed at the command line.

4.3.2 PBS Job Script

A PBS job script consists of:
• An optional shell specification (UNIX)
• PBS directives
• Tasks -- programs or commands

To submit a PBS job, the user can type
qsub <name of script>

4.3.2.1 Specifying the Shell

UNIX Users: Since the job file under UNIX is a “shell script”, the
first line of the job file specifies which shell to use to
execute the script. The Bourne shell (sh) is the
default, but you can change this to your favorite
shell. This first line can be omitted if it is acceptable
for the job file to be interpreted using the Bourne
shell. The remainder of the examples in this manual
will assume these conditions are true. If this is not
true for your site, simply add the shell specifier.

Windows Users: Windows does not use a shell specification. This
line will not appear for a Windows job.

4.3.2.2 PBS Directives

PBS directives are at the top of the script file. They are used to request
resources or set attributes. A directive begins with the default string
“#PBS”. Attributes can also be set using options to the qsub command,
which will override directives.

4.3.2.3 The User’s Tasks

These can be programs or commands. This is where the user specifies an
application to be run.
PBS Professional 9.2 User’s Guide 43

Chapter 4 Submitting a PBS Job
Important: In Windows, if you use notepad to create a job
script, the last line does not automatically get new-
line-terminated. Be sure to put one explicitly, other-
wise, PBS job will get the following error message:

More?

when the Windows command interpreter tries to
execute that last line.

4.3.3 Setting Job Attributes

Job attributes can be set either by using directives or by giving options to
the qsub command. These two methods have the same functionality.
Options to the qsub command will override PBS directives, which override
defaults. Some job attributes have default values preset in PBS. Some job
attributes’ default values are set at the user’s site.

4.4 Submitting a PBS Job

There are a few ways to submit a PBS job using the command line. The
first is to create a job script and submit it using qsub.

4.4.1 Submitting a Job Script

For example, with job script “myjob”, the user can submit it by typing
qsub myjob

16387.foo.exampledomain

PBS returns a job identifier (e.g. “16387.foo.exampledomain” in
the example above.) Its format will be:

sequence-number.servername

or, for a job array,
sequence-number[].servername.domain

You’ll need the job identifier for any actions involving the job, such as
checking job status, modifying the job, tracking the job, or deleting the job.
44 PBS Professional 9.2 User’s Guide

Submitting a PBS Job Chapter 4
If “my_job” contains the following, the user is naming the job “testjob”,
and running a program called “myprogram”.

#!/bin/sh

#PBS -N testjob

./myprogram

The largest possible job ID is the 7-digit number 9,999,999. After this has
been reached, job IDs start again at zero.

4.4.1.1 Overriding Directives

PBS directives in a script can be overridden by using the equivalent options
to qsub. For example, to override the PBS directive naming the job, and
name it “newjob”, the user could type

qsub -N newjob my_job

4.4.1.2 Submitting a Simple Job

Jobs can also be submitted without specifying values for attributes. The
simplest way to submit a job is to type

qsub myjobscript <ret>

If myjobscript contains
#!/bin/sh

./myapplication

the user has simply told PBS to run myapplication.

4.4.1.3 Jobs Without a Job Script

It is possible to submit a job to PBS without first creating a job script file.
If you run the qsub command, with the resource requests on the command
line, and then press “enter” without naming a job file, PBS will read input
from the keyboard. (This is often referred to as a “here document”.) You
can direct qsub to stop reading input and submit the job by typing on a
line by itself a control-d (UNIX) or control-z, then enter (Win-
dows).
PBS Professional 9.2 User’s Guide 45

Chapter 4 Submitting a PBS Job
Note that, under UNIX, if you enter a control-c while qsub is reading
input, qsub will terminate the process and the job will not be submitted.
Under Windows, however, often the control-c sequence will, depend-
ing on the command prompt used, cause qsub to submit the job to PBS. In
such case, a control-break sequence will usually terminate the qsub
command.

qsub <ret>

[directives]

[tasks]

ctrl-D

4.4.1.4 Passing Arguments to Job Scripts

If you need to pass arguments to a job script, you can either use the -v
option to qsub, where you set and use environment variables, or use stan-
dard input. When using standard input, any #PBS directives in the job
script will be ignored. You can replace directives with the equivalent
options to qsub. To use standard input, you can either use this form:

echo "jobscript.sh -a foo -b bar" | qsub -l
select=...

or you can use this form:
qsub [option] [option] ... <ret>

./jobscript.sh foo <^d>

152.mymachine

With this form, you can type the #PBS directives on lines the name of the
job script. If you do not use the -n option to qsub, or specify it via a #PBS
directive (second form only), the job will be named STDIN.

4.5 Requesting Resources

PBS provides built-in resources, and allows the administrator to define cus-
tom resources. The administrator can specify which resources are avail-
able on a given vnode, as well as at the queue or server level (e.g. floating
licenses.) See “PBS Resources” on page 34 for a listing of built-in
resources.
46 PBS Professional 9.2 User’s Guide

Submitting a PBS Job Chapter 4
Resources defined at the queue or server level apply to an entire job. If
they are defined at the vnode level, they apply only to the part of the job
running on that vnode.

Jobs request resources, which are allocated to the job, along with any
defaults specified by the administrator.

Custom resources are used for application licenses, scratch space, etc., and
are defined by the administrator. See “Customizing PBS Resources” on
page 237 of the PBS Professional Administrator’s Guide. Custom
resources are used the same way built-in resources are used.

Jobs request resources in two ways. They can use the select statement to
define chunks and specify the quantity of each chunk. A chunk is a set of
resources that are to be allocated as a unit. Jobs can also use a job-wide
resource request, which uses resource=value pairs, outside of the
select statement.

The qsub, qalter and pbs_rsub commands are used to request resources.
However, custom resources which were created to be invisible or unre-
questable cannot be requested. See section 4.5.14 “Resource Permissions”
on page 56.

The -l nodes= form is deprecated, and if it is used, it will be converted
into a request for chunks and job-wide resources. Most jobs submitted
with "-lnodes" will continue to work as expected. These jobs will be auto-
matically converted to the new syntax. However, job tasks may execute in
an unexpected order, because vnodes may be assigned in a different order.
Jobs submitted with old syntax that ran successfully on versions of PBS
Professional prior to 8.0 can fail because a limit that was per-chunk is now
job-wide. This is an example of a job submitted using -l nodes=X -
lmem=M that would fail because the mem limit is now job-wide. If the
following conditions are true:

a. PBS Professional 9.0 or later using standard MPICH
b. The job is submitted with qsub -lnodes=5 -lmem=10GB
c. The master process of this job tries to use more than 2GB

The job will be killed, where in <= 7.0 the master process could use 10GB
before being killed. 10GB is now a job-wide limit, divided up into a 2GB
limit per chunk.

For more information see the qsub(1B), qalter(1B),
PBS Professional 9.2 User’s Guide 47

Chapter 4 Submitting a PBS Job
pbs_rsub(1B) and pbs_resources(7B) manual pages.

Do not use an old-style resource or node specification (“-lnodes=”) with “-
lselect” or “-lplace”. This will produce an error.

Each kind of resource plays a specific role, which is either inside chunks or
outside of them, but not both. Some resources, e.g. ncpus, can only be used
at the host (chunk) level. The rest, e.g. walltime, can only be used at the
job-wide level. Therefore, no resource can be requested both inside and
outside of a selection statement. Keep in mind that requesting, for exam-
ple, -lncpus is the old form, which cannot be mixed with the new form.

4.5.1 Allocation

Resources are allocated to jobs both because jobs explicitly request them
and because specified default resources are applied to jobs. Jobs explicitly
request resources either at the vnode level in chunks defined in a selection
statement, or in job-wide resource requests, outside of a selection state-
ment. An explicit resource request can appear in the following, in order of
precedence:

1 qalter

2 qsub

3 PBS job script directives

4.5.2 Requesting Resources in Chunks

A chunk declares the value of each resource in a set of resources which are
to be allocated as a unit to a job. It is the smallest set of resources that will
be allocated to a job. All of a chunk must be taken from a single host. A
chunk request is a vnode-level request. Chunks are described in a selec-
tion statement, which specifies how many of each kind of chunk. A selec-
tion statement has this form:

 -l select=[N:]chunk[+[N:]chunk ...]

If N is not specified, it is taken to be 1.

A chunk is one or more resource_name=value statements separated by a
colon, e.g.:
48 PBS Professional 9.2 User’s Guide

Submitting a PBS Job Chapter 4
ncpus=2:mem=10GB:host=Host1
ncpus=1:mem=20GB:arch=linux

Example of multiple chunks in a selection statement:

-l select=2:ncpus=1:mem=10GB+3:ncpus=2:mem=8GB:arch=solaris

Each job submission can have only one “-l select” statement.

Host-level resources can only be requested as part of a chunk. Server or
queue resources cannot be requested as part of a chunk. They must be
requested outside of the selection statement.

4.5.3 Requesting Job-wide Resources

A job-wide resource request is for resource(s) at the server or queue level.
Job-wide resources are requested outside of a selection statement, in this
form:

-l keyword=value[,keyword=value ...]

where keyword identifies either a consumable resource or a time-based
resource such as walltime.

Job-wide resources are used for requesting floating licenses or other
resources not tied to specific vnodes, such as cput and walltime.

Job-wide resources can only be requested outside of chunks.

4.5.4 Boolean Resources

A resource request can specify whether a boolean resource should be
true or false. For example, if some vnodes have green=true and some are
red=true, a selection statement for two vnodes, each with one CPU, all
green and no red, would be:

-l select=2:green=true:red=false:ncpus=1

The next example Windows script shows a job-wide request for walltime
and a chunk request for ncpus and memory.
PBS Professional 9.2 User’s Guide 49

Chapter 4 Submitting a PBS Job
#PBS -l walltime=1:00:00

#PBS -l select=ncpus=4:mem=400mb

#PBS -j oe

date /t

.\my_application

date /t

Keep in mind the difference between requesting a vnode-level boolean and
a job-wide boolean.

qsub -l select=1:green=True
will request a vnode with green set to True. However,

qsub -l green=True
will request green set to True on the server and/or queue.

4.5.5 Default Resources

Jobs get default resources, both job-wide and per-chunk, with the follow-
ing order of precedence, from

1 Default qsub arguments

2 Default queue resources

3 Default server resources

For each chunk in the job's selection statement, first queue chunk defaults
are applied, then server chunk defaults are applied. If the chunk request
does not specify a resource listed in the defaults, the default is added. For a
resource RESOURCE, a chunk default is called
"default_chunk.RESOURCE".

For example, if the queue in which the job is enqueued has the following
defaults defined:

default_chunk.ncpus=1
default_chunk.mem=2gb
50 PBS Professional 9.2 User’s Guide

Submitting a PBS Job Chapter 4
a job submitted with this selection statement:
select=2:ncpus=4+1:mem=9gb

will have this specification after the default_chunk elements are applied:
select=2:ncpus=4:mem=2gb+1:ncpus=1:mem=9gb.

In the above, mem=2gb and ncpus=1 are inherited from default_chunk.

The job-wide resource request is checked against queue resource defaults,
then against server resource defaults. If a default resource is defined which
is not specified in the resource request, it is added to the resource request.

4.5.6 Requesting Application Licenses

Application licenses are set up as resources defined by the administrator.
PBS doesn't actually check out the licenses, the application being run
inside the job's session does that.

4.5.6.1 Floating Licenses

PBS queries the license server to find out how many floating licenses are
available at the beginning of each scheduling cycle. If you wish to request
a site-wide floating license, it will typically have been set up as a server-
level (job-wide) resource. To request an application license called AppF,
use:

qsub -l AppF=<number of licenses> <other qsub

 arguments>

If only certain hosts can run the application, they will typically have a host-
level boolean resource set to True. To request the application license and
the vnodes on which to run the application, use:

qsub -l AppF=<number of licenses>

 <other qsub arguments>

 -l select=haveAppF=True

PBS doesn't actually check out the licenses, the application being run
inside the job's session does that.
PBS Professional 9.2 User’s Guide 51

Chapter 4 Submitting a PBS Job
4.5.6.2 Node-locked Licenses

Per-host node-locked licenses are typically set up as either a boolean
resource on the vnode(s) that are licensed for the application. The resource
request should include one license for each host. To request a host with a
per-host node-locked license for AppA in one chunk:

qsub -l select=1:runsAppA=1 <jobscript>

Per-use node-locked licenses are typically set up so that the host(s) that run
the application have the number of licenses that can be used at one time.
The number of licenses the job requests should be the same as the number
of instances of the application that will be run. To request a host with a
per-use node-locked license for AppB, where you’ll run one instance of
AppB on two CPUs in one chunk:

qsub -l select=1:ncpus=2:AppB=1

Per-CPU node-locked licenses are set up so that the host has one license for
each licensed CPU. You must request one license for each CPU. To
request a host with a node-locked license for AppC, where you’ll run a job
using two CPUs in one chunk:

qsub -l select=1:ncpus=2:AppC=2

4.5.7 Requesting Scratch Space

Scratch space on a machine is set up as a host-level dynamic resource. The
resource will have a name such as “dynscratch”. To request 10MB of
scratch space in one chunk, a resource request would include:

-l select=1:ncpus=N:dynscratch=10MB

4.5.8 Note About Submitting Jobs

The default for walltime is 5 years. The scheduler uses walltime to predict
when resources will become available. Therefore it is useful to request a
reasonable walltime for each job.

4.5.9 Submitting Jobs with Resource Specification (Old Syntax)

If neither a node specification nor a selection directive is specified, then a
selection directive will be created requesting 1 chunk with resources speci-
fied by the job, and with those from the queue or server default resource
52 PBS Professional 9.2 User’s Guide

Submitting a PBS Job Chapter 4
list. These are: ncpus, mem, arch, host, and software, as well as any other
default resources specified by the administrator.

For example, a job submitted with
qsub -l ncpus=4:mem=123mb:arch=linux

will have the following selection directive created:
select=1:ncpus=4:mem=123mb:arch=linux

Do not mix old style resource or node specification with the select and
place statements. Do not use one in a job script and the other on the com-
mand line. This will result in an error.

4.5.10 Moving Jobs From One Queue to Another

If the job is moved from the current queue to a new queue, any default
resources in the job's resource list that were contributed by the current
queue are removed. This includes a select specification and place directive
generated by the rules for conversion from the old syntax. If a job's
resource is unset (undefined) and there exists a default value at the new
queue or server, that default value is applied to the job's resource list. If
either select or place is missing from the job's new resource list, it will be
automatically generated, using any newly inherited default values.

Example:

Given the following set of queue and server default values:

Server
resources_default.ncpus=1

Queue QA
resources_default.ncpus=2
default_chunk.mem=2gb

Queue QB
default_chunk.mem=1gb
no default for ncpus

The following illustrate the equivalent select specification for jobs submit-
PBS Professional 9.2 User’s Guide 53

Chapter 4 Submitting a PBS Job
ted into queue QA and then moved to (or submitted directly to) queue QB:

qsub -l ncpus=1 -lmem=4gb
In QA: select=1:ncpus=1:mem=4gb

- No defaults need be applied
In QB: select=1:ncpus=1:mem=4gb

- No defaults need be applied

qsub -l ncpus=1
In QA: select=1:ncpus=1:mem=2gb

- Picks up 2gb from queue default chunk and 1 ncpus from
qsub

In QB: select=1:ncpus=1:mem=1gb
- Picks up 1gb from queue default chunk and 1 ncpus from
qsub

qsub -lmem=4gb
In QA: select=1:ncpus=2:mem=4gb

- Picks up 2 ncpus from queue level job-wide resource default
 and 4gb mem from qsub

In QB: select=1:ncpus=1:mem=4gb
- Picks up 1 ncpus from server level job-wide default and 4gb
mem from qsub

qsub -l nodes=4
In QA: select=4:ncpus=1:mem=2gb

- Picks up a queue level default memory chunk of 2gb.
 (This is not 4:ncpus=2 because in prior versions, "nodes=x"
 implied 1 CPU per node unless otherwise explicitly stated.)

In QB: select=4:ncpus=1:mem=1gb
 (In prior versions, "nodes=x" implied 1 CPU per node unless
 otherwise explicitly stated, so the ncpus=1 is not inherited
 from the server default.)

qsub -l mem=16gb -l nodes=4
In QA: select=4:ncpus=1:mem=4gb

 (This is not 4:ncpus=2 because in prior versions, "nodes=x"
 implied 1 CPU per node unless otherwise explicitly stated.)

In QB: select=4:ncpus=1:mem=4gb
 (In prior versions, "nodes=x" implied 1 CPU per node unless
54 PBS Professional 9.2 User’s Guide

Submitting a PBS Job Chapter 4
 otherwise explicitly stated, so the ncpus=1 is not inherited
 from the server default.)

4.5.11 Resource Request Conversion Dependent on Where Resources
are Defined

A job’s resource request is converted from old-style to new according to
various rules, one of which is that the conversion is dependent upon where
resources are defined. For example: The boolean resource “Red” is
defined on the server, and the boolean resource “Blue” is defined at the
host level. A job requests “qsub -l Blue=True”. This looks like an old-
style resource request, and PBS checks to see where Blue is defined. Since
Blue is defined at the host level, the request is converted into “-l
select=1:Blue=True”. However, if a job requests “qsub -l Red=True”,
while this looks like an old-style resource request, PBS does not convert it
to a chunk request because Red is defined at the server.

4.5.12 Jobs Submitted with Undefined Resources

Any job submitted with undefined resources, specified either with "-l
select" or with "-l nodes", will not be rejected at submission. The job will
be aborted upon being enqueued in an execution queue if the resources are
still undefined. This preserves backward compatibility.

4.5.13 Limits on Resource Usage

Each chunk's per-chunk limits determine how much of any resource can be
used in that chunk. Per-chunk resource usage limits are established by per-
chunk resources, both from explicit requests and from defaults.

Job resource limits set a limit for per-job resource usage. Job resource lim-
its are established both by requesting job-wide resources and by summing
per-chunk consumable resources. Job resource limits from sums of all
chunks, including defaults, override those from job-wide defaults. Limits
include both explicitly requested resources and default resources.

If a job's job resource limit exceeds queue or server restrictions, it will not
be put in the queue or accepted by the server. If, while running, a job
exceeds its limit for a consumable or time-based resource, it will be termi-
nated. See The PBS Professional Administrator's Guide.
PBS Professional 9.2 User’s Guide 55

Chapter 4 Submitting a PBS Job
Job limits are created from the directive for each consumable resource.

For example,
qsub -lselect=2:ncpus=3:mem=4gb:arch=linux

will have the following job limits set:

ncpus=6 and mem=8gb

4.5.14 Resource Permissions

Custom resources can be created so that they are invisible, or cannot be
requested or altered. If a resource is invisible it also cannot be requested or
altered. The function of some PBS commands depends upon whether a
resource can be viewed, requested or altered. These commands are those
which view or request resources or modify resource requests:

pbsnodes Users cannot view restricted host-level custom
resources.

pbs_rstat Users cannot view restricted reservation resources.

pbs_rsub Users cannot request restricted custom resources for
reservations.

qalter Users cannot alter a restricted resource.

qmgr Users cannot print or list a restricted resource.

qselect Users cannot specify restricted resources via -l
resource_list.

qsub Users cannot request a restricted resource.

qstat Users cannot view a restricted resource.

4.6 Placing Jobs on Vnodes

The place statement controls how the job is placed on the vnodes from
which resources may be allocated for the job. The place statement can be
56 PBS Professional 9.2 User’s Guide

Submitting a PBS Job Chapter 4
specified, in order of precedence, via:

1 Explicit placement request in qalter

2 Explicit placement request in qsub

3 Explicit placement request in PBS job script directives

4 Default qsub place statement

5 Queue default placement rules

6 Server default placement rules

7 Built-in default conversion and placement rules

The place statement may be not be used without the select statement.
The place statement has this form:

-l place=[arrangement][: sharing][: grouping]
where

arrangement is one of free | pack | scatter
sharing is one of excl | shared
grouping can have only one instance of group=resource

and where

Table 3: Placement Modifiers

Modifier Meaning

free Place job on any vnode(s).

pack All chunks will be taken from one host.

scatter Only one chunk will be taken from a host.

exclusive Only this job uses the vnodes chosen.

shared This job can share the vnodes chosen.

group=resource Chunks will be grouped according to a resource. All
vnodes in the group must have a common value for
the resource, which can be either the built-in resource
host or a site-defined vnode-level resource.
PBS Professional 9.2 User’s Guide 57

Chapter 4 Submitting a PBS Job
Note that vnodes can have sharing attributes that override job placement
requests. See the pbs_node_attributes(7B) man page.

Grouping by resource name will override node_group_key. To run a
job on a single host, use “-lplace=pack”.

4.6.1 Vnodes Allocated to a Job

The nodes file contains the names of the vnodes allocated to a job. The
nodes file's name is given by the environment variable PBS_NODEFILE.
The order in which hosts appear in the file is the order in which chunks are
specified in the selection directive. The order in which hostnames appear
in the file is hostA X times, hostB Y times, where X is the number of MPI
processes on hostA, Y is the number of MPI processes on hostB, etc. See
the definition of the resources “mpiprocs” and “ompthreads” in “PBS
Resources” on page 34. See also “The mpiprocs Resource” on page 225.

4.6.2 PBS_NODEFILE

The file containing the vnodes allocated to a job lists vnode names. This
file's name is given by the environment variable PBS_NODEFILE. For
jobs which request vnodes via the -lselect= option, the nodes file will con-
tain the names of the allocated vnodes with each name repeated M times,
where M is the number of mpiprocs specified for that vnode. For example,

qsub -l select=3:ncpus=2 -lplace=scatter
will result in this PBS_NODEFILE:

vnodeA

vnodeB

vnodeC
And

qsub -l select=3:ncpus=2:mpiprocs=2
will result in this PBS_NODEFILE:

vnodeA

vnodeA

vnodeB

vnodeB

vnodeC

vnodeC
58 PBS Professional 9.2 User’s Guide

Submitting a PBS Job Chapter 4
For jobs which requested a set of nodes via the -lnodes=nodespec option to
qsub, each vnode allocated to the job will be listed N times, where N is the
total number of CPUs allocated from the vnode divided by the number of
threads requested. For example, qsub -lnodes=4:ncpus=3:ppn=2 will result
in each of the four vnodes being written twice (6 CPUs divided by 3 from
ncpus.) The file will contain the name of the first vnode twice, followed by
the second vnode twice, etc.

4.6.3 Resources Allocated from a Vnode

The resources allocated from a vnode are only those specified in the job’s
schedselect. This job attribute is created internally by starting with the
select specification and applying any server and queue default_chunk
resource defaults that are missing from the select statement. The schedse-
lect job attribute contains only vnode-level resources. The exec_vnode job
attribute shows which resources are allocated from which vnodes.

4.6.3.1 Resources Assigned to a Job

The Resource_List attribute is the list of resources requested via qsub, with
job-wide defaults applied. Vnode-level resources from Resource_List are
used in the converted select when the user doesn’t specify a select state-
ment. The converted select statement is used to fill in gaps in schedselect.

Values for ncpus or mem in the job's Resource_List come from three
places:

(1) Resources specified via qsub,
(2) the sum of the values in the select specification (not including

default_chunk), or
(3) resources inherited from queue and/or server resources_default.

Case 3 applies only when the user does not specify -l select, but uses -
lnodes or -lncpus instead.

The Resource_List.mem is a job-wide memory limit which, if memory
enforcement is enabled, the entire job (the sum of all of the job’s usage)
cannot exceed.
PBS Professional 9.2 User’s Guide 59

Chapter 4 Submitting a PBS Job
Examples:

The queue has the following:
resources_default.mem=200mb
default_chunk.mem=100mb

A job requesting -l select=2:ncpus=1:mem=345mb will take 345mb from
each of two vnodes and have a job-wide limit of 690mb (2 * 345). The
job's Resource_List.mem will show 690mb.

A job requesting -l select=2:ncpus=2 will take 100mb (default_chunk)
value from each vnode and have a job wide limit of 200mb (2 * 100mb).
The job's Resource_List.mem will show 200mb.

A job requesting -l ncpus=2 will take 200mb (inherited from
resources_default and used to create the select spec) from one vnode and a
job-wide limit of 200mb. The job's Resource_List.mem will show
200mb.

A job requesting -l nodes=2 will inherit the 200mb from
resources_default.mem which will be the job-wide limit. The memory
will be taken from the two vnodes, half (100mb) from each. The gener-
ated select spec is 2:ncpus=1:mem=100mb. The job's
Resource_List.mem will show 200mb.

4.7 Submitting Jobs Using Select & Place: Examples

Unless otherwise specified, the vnodes allocated to the job will be allocated
as shared or exclusive based on the setting of the vnode’s sharing attribute.
Each of the following shows how you would use -l select= and -l place=.

1 A job that will fit in a single host such as an Altix but not in any of the
vnodes, packed into the fewest vnodes:

-l select=1:ncpus=10:mem=20gb
-l place=pack
In earlier versions, this would have been:
-lncpus=10,mem=20gb

2 Request four chunks, each with 1 CPU and 4GB of memory taken from
anywhere.
60 PBS Professional 9.2 User’s Guide

Submitting a PBS Job Chapter 4
-l select=4:ncpus=1:mem=4GB
-l place=free

3 Allocate 4 chunks, each with 1 CPU and 2GB of memory from between
 one and four vnodes which have an arch of “linux”.

-l select=4:ncpus=1:mem=2GB:arch=linux -l place=free

4 Allocate four chunks on 1 to 4 vnodes where each vnode must have 1
CPU, 3GB of memory and 1 node-locked dyna license available for
each chunk.

-l select=4:dyna=1:ncpus=1:mem=3GB -l place=free

5 Allocate four chunks on 1 to 4 vnodes, and 4 floating dyna licenses.
This assumes “dyna” is specified as a server dynamic resource.

-l dyna=4 -l select=4:ncpus=1:mem=3GB -l place=free

6 This selects exactly 4 vnodes where the arch is linux, and each vnode
will be on a separate host. Each vnode will have 1 CPU and 2GB of
memory allocated to the job.

-lselect=4:mem=2GB:ncpus=1:arch=linux -lplace=scatter

7 This will allocate 3 chunks, each with 1 CPU and 10GB of memory.
This will also reserve 100mb of scratch space if scratch is to be
accounted . Scratch is assumed to be on a file system common to all
hosts. The value of “place” depends on the default which is
“place=free”.

-l scratch=100mb -l select=3:ncpus=1:mem=10GB

8 This will allocate 2 CPUs and 50GB of memory on a host named zool-
and. The value of “place” depends on the default which defaults to
“place=free”:

-l select=1:ncpus=2:mem=50gb:host=zooland

9 This will allocate 1 CPU and 6GB of memory and one host-locked
swlicense from each of two hosts:

-l select=2:ncpus=1:mem=6gb:swlicense=1
-lplace=scatter

10 Request free placement of 10 CPUs across hosts:
-l select=10:ncpus=1
-l place=free

11 Here is an odd-sized job that will fit on a single Altix, but not on any
one node-board. We request an odd number of CPUs that are not
shared, so they must be “rounded up”:
PBS Professional 9.2 User’s Guide 61

Chapter 4 Submitting a PBS Job
-l select=1:ncpus=3:mem=6gb
-l place=pack:excl

12 Here is an odd-sized job that will fit on a single Altix, but not on any
one node-board. We are asking for small number of CPUs but a large
amount of memory:

-l select=1:ncpus=1:mem=25gb
-l place=pack:excl

13 Here is a job that may be run across multiple Altix systems, packed into
the fewest vnodes:

-l select=2:ncpus=10:mem=12gb
-l place=free

14 Submit a job that must be run across multiple Altix systems, packed
into the fewest vnodes:

-l select=2:ncpus=10:mem=12gb
-l place=scatter

15 Request free placement across nodeboards within a single host:
-l select=1:ncpus=10:mem=10gb
-l place=group=host

16 Request free placement across vnodes on multiple Altixes:
-l select=10:ncpus=1:mem=1gb
-l place=free

17 Here is a small job that uses a shared cpuset:
-l select=1:ncpus=1:mem=512kb
-l place=pack:shared

18 Request a special resource available on a limited set of nodeboards,
such as a graphics card:

-l select=1:ncpus=2:mem=2gb:graphics=True
+ 1:ncpus=20:mem=20gb:graphics=False

-l place=pack:excl

19 Align SMP jobs on c-brick boundaries:
-l select=1:ncpus=4:mem=6gb
-l place=pack:group=cbrick

20 Align a large job within one router, if it fits within a router:
-l select=1:ncpus=100:mem=200gb
-l place=pack:group=router
62 PBS Professional 9.2 User’s Guide

Submitting a PBS Job Chapter 4
21 Fit large jobs that do not fit within a single router into as few available
routers as possible. Here, RES is the resource used for node grouping:

-l select=1:ncpus=300:mem=300gb
-l place=pack:group=<RES>

22 To submit an MPI job, specify one chunk per MPI task. For a 10-way
MPI job with 2gb of memory per MPI task:

-l select=10:ncpus=1:mem=2gb

23 To submit a non-MPI job (including a 1-CPU job or an OpenMP or
shared memory) job, use a single chunk. For a 2-CPU job requiring
10gb of memory:

-l select=1:ncpus=2:mem=10gb

4.7.1 Examples Using Old Syntax

1 Request CPUs and memory on a single host using old syntax:
-l ncpus=5,mem=10gb
will be converted into the equivalent:
-l select=1:ncpus=5:mem=10gb
-l place=pack

2 Request CPUs and memory on a named host along with custom
resources including a floating license using old syntax:

-l ncpus=1,mem=5mb,host=sunny,opti=1,arch=solaris
is converted to the equivalent:
-l select=1:ncpus=1:mem=5gb:host=sunny:arch=solaris
-l place=pack
-l opti=1

3 Request one host with a certain property using old syntax:
 -lnodes=1:property

is converted to the equivalent:
-l select=1:ncpus=1:property=True
-l place=scatter

4 Request 2 CPUs on each of four hosts with a given property using old
syntax:

-lnodes=4:property:ncpus=2
is converted to the equivalent:
-l select=4: ncpus=2:property=True
-l place=scatter
PBS Professional 9.2 User’s Guide 63

Chapter 4 Submitting a PBS Job
5 Request 1 CPU on each of 14 hosts asking for certain software, licenses
and a job limit amount of memory using old syntax:

-lnodes=14:mpi-fluent:ncpus=1 -lfluent=1,fluent-all=1,
fluent-par=13

-l mem=280mb
is converted to the equivalent:
-l select=14:ncpus=1:mem=20mb:mpi_fluent=True
-l place=scatter
-l fluent=1,fluent-all=1,fluent-par=13

6 Requesting licenses using old syntax:
-lnodes=3:dyna-mpi-Linux:ncpus=2 -ldyna=6,mem=100mb,

software=dyna
is converted to the equivalent:
-l select=3:ncpus=2:mem=33mb: dyna-mpi-Linux=True
-l place=scatter
-l software=dyna
-l dyna=6

7 Requesting licenses using old syntax:
 -l ncpus=2,app_lic=6,mem=200mb -l software=app
is converted to the equivalent:
-l select=1:ncpus=2:mem=200mb
-l place=pack
-l software=app
-l app_lic=6

8 Additional example using old syntax:
-lnodes=1:fserver+15:noserver
is converted to the equivalent:
-l select=1:ncpus=1:fserver=True + 15:ncpus=1:noserver=True
-l place=scatter
but could also be more easily specified with something like:
-l select=1:ncpus=1:fserver=True + 15:ncpus=1:fserver=False
-l place=scatter

9 Allocate 4 vnodes, each with 6 CPUs with 3 MPI processes per vnode,
with each vnode on a separate host. The memory allocated would be
one-fourth of the memory specified by the queue or server default if
one existed. This results in a different placement of the job from ver-
sion 5.4:
64 PBS Professional 9.2 User’s Guide

Submitting a PBS Job Chapter 4
-l nodes=4:ppn=3:ncpus=2
is converted to:
-l select=4:ncpus=6:mpiprocs=3 -l place=scatter

10 Allocate 4 vnodes, from 4 separate hosts, with the property blue. The
amount of memory allocated from each vnode is 2560MB (= 10GB /
4) rather than 10GB from each vnode.

-l nodes=4:blue:ncpus=2 -l mem=10GB
is converted to:
-l select=4:blue=True:ncpus=2:mem=2560mb \
-lplace=scatter

4.8 Backward Compatibility

For backward compatibility, a legal node specification or resource specifi-
cation will be converted into selection and placement directives. Specify-
ing “cpp” is part of the old syntax, and should be replaced with “ncpus”.
Do not mix old style resource or node specification syntax with select and
place statements. If a job is submitted using -l select on the command line,
and it contains an old-style specification in the job script, that will result in
an error.

When a nodespec is converted into a select statement, the job will have the
environment variables NCPUS and OMP_NUM_THREADS set to the
value of ncpus in the first piece of the nodespec. This may produce incom-
patibilities with prior versions when a complex node specification using
different values of ncpus and ppn in different pieces is converted.

4.8.1 Node Specification Conversion

Node specification format:

-lnodes=[N:spec_list | spec_list]
[[+N:spec_list | +spec_list] ...]
[#suffix ...][-lncpus=Z]

where:

spec_list has syntax: spec[:spec ...]
spec is any of: hostname | property | ncpus=X | cpp=X | ppn=P
PBS Professional 9.2 User’s Guide 65

Chapter 4 Submitting a PBS Job
suffix is any of: property | excl | shared
N and P are positive integers
X and Z are non-negative integers

The node specification is converted into selection and placement directives
as follows:

Each spec_list is converted into one chunk, so that N:spec_list is converted
into N chunks.

If spec is hostname :
The chunk will include host=hostname

If spec matches any vnode's resources_available.host value:
The chunk will include host=hostname

If spec is property :
The chunk will include property=true
Property must be a site-defined vnode-level boolean resource.

If spec is ncpus=X or cpp=X :
The chunk will include ncpus=X

If no spec is ncpus=X and no spec is cpp=X :
The chunk will include ncpus=P

If spec is ppn=P :
The chunk will include mpiprocs=P

If the nodespec is
-lnodes=N:ppn=P

It is converted to
-lselect=N:ncpus=P:mpiprocs=P

Example:

-lnodes=4:ppn=2

is converted into

-lselect=4:ncpus=2:mpiprocs=2
66 PBS Professional 9.2 User’s Guide

Submitting a PBS Job Chapter 4
If -lncpus=Z is specified and no spec contains ncpus=X and no spec is
cpp=X :

Every chunk will include ncpus=W,
where W is Z divided by the total number of chunks.
(Note: W must be an integer; Z must be evenly divisible by the
number of chunks.)

If property is a suffix :
All chunks will include property=true

If excl is a suffix :
The placement directive will be -lplace=scatter:excl

If shared is a suffix :
The placement directive will be -lplace=scatter:shared

If neither excl nor shared is a suffix :
The placement directive will be -lplace=scatter

Example:

-l nodes=3:green:ncpus=2:ppn=2+2:red

is converted to:

-l select=3:green=true:ncpus=4:mpiprocs=2+2 \
:red=true:ncpus=1
-l place=scatter

Node specification syntax for requesting properties is deprecated. The
boolean resource syntax "property=true" is only accepted in a selection
directive. It is erroneous to mix old and new syntax.

4.8.2 Resource Specification Conversion

The resource specification is converted to select and place statements after
any defaults have been applied.

Resource specification format:
PBS Professional 9.2 User’s Guide 67

Chapter 4 Submitting a PBS Job
-lresource=value[:resource=value ...]

The resource specification is converted to:

-lselect=1[:resource=value ...]
-lplace=pack

with one instance of resource=value for each of the following vnode-level
resources in the resource request:

built-in resources: ncpus | mem | vmem | arch | host

site-defined vnode-level resources l

4.9 How PBS Parses a Job Script

The qsub command scans the lines of the script file for directives. Scan-
ning will continue until the first executable line, that is, a line that is not
blank, not a directive line, nor a line whose first non white space character
is “#”. If directives occur on subsequent lines, they will be ignored.

A line in the script file will be processed as a directive to qsub if and only
if the string of characters starting with the first non white space character
on the line and of the same length as the directive prefix matches the direc-
tive prefix (i.e. “#PBS”). The remainder of the directive line consists of the
options to qsub in the same syntax as they appear on the command line.
The option character is to be preceded with the “-” character.

If an option is present in both a directive and on the command line, that
option and its argument, if any, will be ignored in the directive. The com-
mand line takes precedence. If an option is present in a directive and not on
the command line, that option and its argument, if any, will be taken from
there.

4.10 A Sample PBS Job

Let’s look at an example PBS job in detail:

UNIX:
68 PBS Professional 9.2 User’s Guide

Submitting a PBS Job Chapter 4
#!/bin/sh

#PBS -l walltime=1:00:00

#PBS -l select=mem=400mb

#PBS -j oe

date

./my_application

date

Windows:

#PBS -l walltime=1:00:00

#PBS -l select=mem=400mb

#PBS -j oe

date /t

my_application

date /t

On line one in the example above Windows does not show a shell directive.
(The default on Windows is the batch command language.) Also note that it
is possible under both Windows and UNIX to specify to PBS the scripting
language to use to interpret the job script (see the “-S” option to qsub in
section 4.13.9 “Specifying Scripting Language to Use” on page 80). The
Windows script will be a .exe or .bat file.

Lines 2-8 of both files are almost identical. The primary differences will be
in file and directory path specification (such as the use of drive letters and
slash vs. backslash as the path separator).

Lines 2-4 are PBS directives. PBS reads down the shell script until it finds
the first line that is not a valid PBS directive, then stops. It assumes the rest
of the script is the list of commands or tasks that the user wishes to run. In
this case, PBS sees lines 6-8 as being user commands.

The section “Job Submission Options” on page 74 describes how to use the
PBS Professional 9.2 User’s Guide 69

Chapter 4 Submitting a PBS Job
qsub command to submit PBS jobs. Any option that you specify to the
qsub command line (except “-I”) can also be provided as a PBS directive
inside the PBS script. PBS directives come in two types: resource require-
ments and attribute settings.

In our example above, lines 2-3 specify the “-l” resource list option, fol-
lowed by a specific resource request. Specifically, lines 2-3 request 1 hour
of wall-clock time as a job-wide request, and 400 megabytes (MB) of
memory in a chunk. .

Line 4 requests that PBS join the stdout and stderr output streams of
the job into a single stream.

Finally lines 6-8 are the command lines for executing the program(s) we
wish to run. You can specify as many programs, tasks, or job steps as you
need.

4.11 Changing the Job’s PBS Directive

By default, the text string “#PBS” is used by PBS to determine which lines
in the job file are PBS directives. The leading “#” symbol was chosen
because it is a comment delimiter to all shell scripting languages in com-
mon use on UNIX systems. Because directives look like comments, the
scripting language ignores them.

Under Windows, however, the command interpreter does not recognize the
‘#’ symbol as a comment, and will generate a benign, non-fatal warning
when it encounters each “#PBS” string. While it does not cause a problem
for the batch job, it can be annoying or disconcerting to the user. Therefore
Windows users may wish to specify a different PBS directive, via either the
PBS_DPREFIX environment variable, or the “-C” option to qsub. For
example, we can direct PBS to use the string “REM PBS” instead of
70 PBS Professional 9.2 User’s Guide

Submitting a PBS Job Chapter 4
“#PBS” and use this directive string in our job script:

Given the above job script, we can submit it to PBS in one of two ways:

set PBS_DPREFIX=REM PBS
qsub my_job_script

or
qsub -C “REM PBS” my_job_script

For additional details on the “-C” option to qsub, see section 4.13 “Job
Submission Options” on page 74.

4.12 Windows Jobs

4.12.1 Submitting Windows Jobs

Any .bat files that are to be executed within a PBS job script have to be
prefixed with "call" as in:

---[job_b.bat]----------
@echo off

call E:\step1.bat

call E:\step2.bat

Without the "call", only the first .bat file gets executed and it doesn't return
control to the calling interpreter.

An example:

A job script that contains:

REM PBS -l walltime=1:00:00
REM PBS -l select=mem=400mb
REM PBS -j oe

date /t
.\my_application
date /t
PBS Professional 9.2 User’s Guide 71

Chapter 4 Submitting a PBS Job
--[job_a.bat]---------
@echo off

E:\step1.bat

E:\step2.bat

should now be:

--[job_a.bat]---------
@echo off

call E:\step1.bat

call E:\step2.bat

Under Windows, comments in the job script must be in ASCII characters.

4.12.2 Passwords

When running PBS in a password-protected Windows environment, you
will need to specify to PBS the password needed in order to run your jobs.
There are two methods of doing this: (1) by providing PBS with a pass-
word once to be used for all jobs (“single signon method”), or (2) by speci-
fying the password for each job when submitted (“per job method”). Check
with your system administrator to see which method was configured at
your site.

4.12.2.1 Single-Signon Password Method

To provide PBS with a password to be used for all your PBS jobs, use the
pbs_password command. This command can be used whether or not
you have jobs enqueued in PBS. The command usage syntax is:

pbs_password [-s server] [-r] [-d] [user]

When no options are given to pbs_password, the password credential on
the default PBS server for the current user, i.e. the user who executes the
command, is updated to the prompted password. Any user jobs previously
held due to an invalid password are not released.

The available options to pbs_password are:
72 PBS Professional 9.2 User’s Guide

Submitting a PBS Job Chapter 4
-r Any user jobs previously held due to an invalid
password are released.

-s server Allows user to specify server where password will
be changed.

-d Deletes the password.

user The password credential of user user is updated to
the prompted password. If user is not the current
user, this action is only allowed if:

1. The current user is root or admin.

2. User user has given the current user explicit
access via
 the ruserok() mechanism:
 a. The hostname of the machine from which
the current
 user is logged in appears in the server's
hosts.equiv
 file, or
 b. The current user has an entry in user's
 HOMEDIR\.rhosts file.

Note that pbs_password encrypts the password obtained from the user
before sending it to the PBS Server. The pbs_password command
does not change the user's password on the current host, only the password
that is cached in PBS.

4.12.2.2 Per-job Password Method

If you are running in a password-protected Windows environment, but the
single-signon method has not been configured at your site, then you will
need to supply a password with the submission of each job. You can do this
via the qsub command, with the -Wpwd option, and supply the password
when prompted.

qsub -Wpwd=”<password>” job.script

The password specified will be shown on screen and will be passed onto
PBS Professional 9.2 User’s Guide 73

Chapter 4 Submitting a PBS Job
the program, which will then encrypt it and save it securely for use by the
job. The password should be enclosed in double quotes. If you only type
the pair of double quotes, you will be prompted for the password.

The password can also be specified in xpbs using the “SUBMIT-PASS-
WORD” entry box in the Submit window. The password you type in will not
be shown on the screen.

Important: Both the -Wpwd option to qsub, and the xpbs
SUBMIT-PASSWORD entry box can only be used
when submitting jobs to Windows. The UNIX qsub
does not support the -Wpwd option; and if you type
a password into the xpbs SUBMIT-PASSWORD
entry box under UNIX, the job will be rejected.

Keep in mind that in a multi-host job, the password supplied will be propa-
gated to all the sister hosts. This requires that the password be the same on
the user's accounts on all the hosts. The use of domain accounts for a multi-
host job will be ideal in this case.

Important: Because of enhanced security features found in Win-
dows 2003 Server, you may not be able to run non-
passworded jobs.

Accessing network share drives/resources within a job session also
requires that you submit the job with a password via qsub -W pwd="" or
the “SUBMIT-PASSWORD” entry box in xpbs.

Furthermore, if the job is submitted without a password, do not use the
native rcp command from within the job script, as it will generate the
error: “unable to get user name”. Instead, please use pbs_rcp.

4.13 Job Submission Options

There are many options to the qsub command. The table below gives a
quick summary of the available options; the rest of this chapter explains
74 PBS Professional 9.2 User’s Guide

Submitting a PBS Job Chapter 4
how to use each one.

Table 4: Options to the qsub Command

Option Function and Page Reference

-A account_string “Specifying a Local Account” on page 86

-a date_time “Deferring Execution” on page 81

-C “DPREFIX” “Changing the Job’s PBS Directive” on page 70

-c interval “Specifying Job Checkpoint Interval” on
page 82

-e path “Redirecting Output and Error Files” on
page 77

-h “Holding a Job (Delaying Execution)” on
page 82

-I “Interactive-batch Jobs” on page 87

-J X-Y[:Z] “Job Array” on page 201

-j join “Merging Output and Error Files” on page 86

-k keep “Retaining Output and Error Files on Execution
Host” on page 86

-l resource_list section 4.3.1 “Rules for Submitting Jobs” on
page 42

-M user_list “Setting Email Recipient List” on page 79

-m MailOptions “Specifying Email Notification” on page 79

-N name “Specifying a Job Name” on page 80

-o path “Redirecting Output and Error Files” on
page 77

-p priority “Setting a Job’s Priority” on page 81

-q destination “Specifying Queue and/or Server” on page 76

-r value “Marking a Job as “Rerunnable” or Not” on
page 80
PBS Professional 9.2 User’s Guide 75

Chapter 4 Submitting a PBS Job
4.13.1 Specifying Queue and/or Server

The “-q destination” option to qsub allows you to specify a partic-
ular destination to which you want the job submitted. The destination
names a queue, a Server, or a queue at a Server. The qsub command will
submit the script to the Server defined by the destination argument. If the
destination is a routing queue, the job may be routed by the Server to a new
destination. If the -q option is not specified, the qsub command will sub-
mit the script to the default queue at the default Server. (See also the dis-
cussion of PBS_DEFAULT in “Environment Variables” on page 29.) The

-S path_list “Specifying Scripting Language to Use” on
page 80

-u user_list “Specifying Job User ID” on page 83

-V “Exporting Environment Variables” on page 78

-v variable_list “Expanding Environment Variables” on
page 79

-W depend=list “Specifying Job Dependencies” on page 153

-W group_list=list “Specifying Job Group ID” on page 85

-W stagein=list “Input/Output File Staging” on page 158

-W stageout=list “Input/Output File Staging” on page 158

-W cred=dce “Running PBS in a UNIX DCE Environment”
on page 198

-W block=opt “Requesting qsub Wait for Job Completion” on
page 153

-W pwd=”password” “Per-job Password Method” on page 73 and
“Running PBS in a UNIX DCE Environment”
on page 198

-W umask=nnn “Changing UNIX Job umask” on page 152

-z “Suppressing Job Identifier” on page 87

Table 4: Options to the qsub Command

Option Function and Page Reference
76 PBS Professional 9.2 User’s Guide

Submitting a PBS Job Chapter 4
destination specification takes the following form:

-q [queue[@host]]

Examples:
qsub -q queue my_job

qsub -q @server my_job

#PBS -q queueName

qsub -q queueName@serverName my_job

qsub -q queueName@serverName.domain.com
my_job

4.13.2 Redirecting Output and Error Files

PBS, by default, always copies the standard output (stdout) and standard
error (stderr) files back to $PBS_O_WORKDIR on the submission host
when a job finishes. When qsub is run, it sets $PBS_O_WORKDIR to the
current working directory where the qsub command is executed.

The “-o path” and “-e path” options to qsub allows you to specify
the name of the files to which the stdout and the stderr file streams should
be written. The path argument is of the form: [host-
name:]path_name where hostname is the name of a host to which the
file will be returned and path_name is the path name on that host. You may
specify relative or absolute paths. If you specify only a file name, it is
assumed to be relative to your home directory. Do not use variables in the
path. The following examples illustrate these various options.
PBS Professional 9.2 User’s Guide 77

Chapter 4 Submitting a PBS Job
#PBS -o /u/user1/myOutputFile

#PBS -e /u/user1/myErrorFile

qsub -o myOutputFile my_job

qsub -o /u/user1/myOutputFile my_job

qsub -o myWorkstation:/u/user1/myOutputFile
my_job

qsub -e myErrorFile my_job

qsub -e /u/user1/myErrorFile my_job

qsub -e myWorkstation:/u/user1/myErrorFile
my_job

Note that if the PBS client commands are used on a Windows host, then
special characters like spaces, backslashes (\), and colons (:) can be used in
command line arguments such as for specifying pathnames, as well as
drive letter specifications. The following are allowed:
qsub -o \temp\my_out job.scr

qsub -e "host:e:\Documents and

Settings\user\Desktop\output"

The error output of the above job is to be copied onto the e: drive on
host using the path "\Documents and Settings\user\Desk-
top\output". The quote marks are required when arguments to qsub
contain spaces.

4.13.3 Exporting Environment Variables

The “-V” option declares that all environment variables in the qsub com-
mand’s environment are to be exported to the batch job.

qsub -V my_job

#PBS -V
78 PBS Professional 9.2 User’s Guide

Submitting a PBS Job Chapter 4
4.13.4 Expanding Environment Variables

The “-v variable_list” option to qsub allows you to specify addi-
tional environment variables to be exported to the job. variable_list names
environment variables from the qsub command environment which are
made available to the job when it executes. The variable_list is a comma
separated list of strings of the form variable or variable=value.
These variables and their values are passed to the job.

qsub -v DISPLAY,myvariable=32 my_job

4.13.5 Specifying Email Notification

The “-m MailOptions” defines the set of conditions under which the
execution server will send a mail message about the job. The MailOptions
argument is a string which consists of either the single character “n”, or
one or more of the characters “a”, “b”, and “e”. If no email notification is
specified, the default behavior will be the same as for “-m a” .

a send mail when job is aborted by batch system
b send mail when job begins execution
e send mail when job ends execution
n do not send mail

Examples:
qsub -m ae my_job

#PBS -m b

4.13.6 Setting Email Recipient List

The “-M user_list” option declares the list of users to whom mail is
sent by the execution server when it sends mail about the job. The user_list
argument is of the form:

user[@host][,user[@host],...]

If unset, the list defaults to the submitting user at the qsub host, i.e. the job
owner.

qsub -M user1@mydomain.com my_job
PBS Professional 9.2 User’s Guide 79

Chapter 4 Submitting a PBS Job
Important: PBS on Windows can only send email to addresses
that specify an actual hostname that accepts port 25
(sendmail) requests. For the above example on Win-
dows you will need to specify:

qsub -M user1@host.mydomain.com

where "host.mydomain.com" accepts port 25
connections.

4.13.7 Specifying a Job Name

The “-N name” option declares a name for the job. The name specified
may be up to and including 15 characters in length. It must consist of print-
able, non-whitespace characters with the first character alphabetic, and
contain no “special characters”. If the -N option is not specified, the job
name will be the base name of the job script file specified on the command
line. If no script file name was specified and the script was read from the
standard input, then the job name will be set to STDIN.

qsub -N myName my_job

#PBS -N myName

4.13.8 Marking a Job as “Rerunnable” or Not

The “-r y|n” option declares whether the job is rerunnable. To rerun a
job is to terminate the job and requeue it in the execution queue in which
the job currently resides. The value argument is a single character, either
“y” or “n”. If the argument is “y”, the job is rerunnable. If the argument is
“n”, the job is not rerunnable. The default value is “y”, rerunnable.

qsub -r n my_job

#PBS -r n

4.13.9 Specifying Scripting Language to Use

The “-S path_list” option declares the path and name of the scripting
language to be used in interpreting the job script. The option argument
path_list is in the form: path[@host][,path[@host],...] Only
80 PBS Professional 9.2 User’s Guide

Submitting a PBS Job Chapter 4
one path may be specified for any host named, and only one path may be
specified without the corresponding host name. The path selected will be
the one with the host name that matched the name of the execution host. If
no matching host is found, then the path specified without a host will be
selected, if present. If the -S option is not specified, the option argument is
the null string, or no entry from the path_list is selected, then PBS will use
the user’s login shell on the execution host.

#PBS -S /bin/bash@mars,/usr/bin/bash@jupiter

Important: Using this option under Windows is more compli-
cated because if you change from the default shell of
cmd, then a valid PATH is not automatically set.
Thus if you use the “-S” option under Windows,
you must explicitly set a valid PATH as the first line
of your job script.

4.13.10 Setting a Job’s Priority

The “-p priority” option defines the priority of the job. The priority
argument must be an integer between -1024 (lowest priority) and +1023
(highest priority) inclusive. The default is no priority which is equivalent to
a priority of zero.

This option allows the user to specify a priority for their jobs. However,
this option is dependant upon the local scheduling policy. By default the
“sort jobs by job-priority” feature is disabled. If your local PBS administra-
tor has enabled it, then all queued jobs will be sorted based on the user-
specified priority. (If you need an absolute ordering of your own jobs, see
“Specifying Job Dependencies” on page 153.)

qsub -p 120 my_job

#PBS -p -300

4.13.11 Deferring Execution

The “-a date_time” option declares the time after which the job is eli-
gible for execution. The date_time argument is in the form:
[[[[CC]YY]MM]DD]hhmm[.SS] where CC is the first two digits of the
year (the century), YY is the second two digits of the year, MM is the two
PBS Professional 9.2 User’s Guide 81

Chapter 4 Submitting a PBS Job
digits for the month, DD is the day of the month, hh is the hour, mm is the
minute, and the optional SS is the seconds. If the month, MM, is not speci-
fied, it will default to the current month if the specified day DD, is in the
future. Otherwise, the month will be set to next month. Likewise, if the day,
DD, is not specified, it will default to today if the time hhmm is in the
future. Otherwise, the day will be set to tomorrow. For example, if you sub-
mit a job at 11:15am with a time of “1110”, the job will be eligible to run
at 11:10am tomorrow. Other examples include:

qsub -a 0700 my_job

#PBS -a 10220700

4.13.12 Holding a Job (Delaying Execution)

The “-h” option specifies that a user hold be applied to the job at submis-
sion time. The job will be submitted, then placed in a hold state. The job
will remain ineligible to run until the hold is released. (For details on
releasing a held job see “Holding and Releasing Jobs” on page 141.)

qsub -h my_job

#PBS -h

4.13.13 Specifying Job Checkpoint Interval

4.13.13.1 Checkpointable Jobs

A job is checkpointable if either of the following is true:
• its application supports checkpointing and there are checkpoint scripts
• the OS supports checkpointing.
Checkpoint scripts are set up by the local system administrator.

4.13.13.2 Checkpoint Interval

The “-c interval” option defines the interval (in minutes) at which the
job will be checkpointed, if the job is checkpointable. If the job is not
checkpointable, this option is ignored.
82 PBS Professional 9.2 User’s Guide

Submitting a PBS Job Chapter 4
 The interval argument is specified as:

n No checkpointing is to be performed.

s Checkpointing is to be performed only when the
Server executing the job is shutdown.

c Checkpointing is to be performed at the default min-
imum time for the MOM executing the job.

c=minutes Checkpointing is to be performed at an interval of
minutes, which is the integer number of minutes of
CPU time used by the job. This value must be
greater than zero. The MOM’s polling cycle con-
trols the minimum frequency for checkpointing.

u Checkpointing is unspecified, thus resulting in the
same behavior as “s”.

If “-c” is not specified, the checkpoint attribute is set to the value “u”.
qsub -c c my_job

#PBS -c c=10

Checkpointing is not supported for job arrays.

4.13.14 Specifying Job User ID

PBS requires that a user’s name be consistent across a server and its execu-
tion hosts, but not across a submission host and a server. A user may have
access to more than one server, and may have a different username on each
server. In this environment, if a user wishes to submit a job to any of the
available servers, the username for each server is specified. The wildcard
username will be used if the job ends up at yet another server not specified,
but only if that wildcard username is valid.

For example, our user is UserS on the submission host HostS, UserA on
server ServerA, and UserB on server ServerB, and is UserC everywhere
else. Note that this user must be UserA on all ExecutionA and UserB on
all ExecutionB machines. Then our user can use “qsub -u UserA@Serv-
PBS Professional 9.2 User’s Guide 83

Chapter 4 Submitting a PBS Job
erA,UserB@ServerB,UserC” for the job. The job owner will always be
UserS.

4.13.14.1 qsub -u: User ID with UNIX

The server’s flatuid attribute determines whether it assumes that identical
usernames mean identical users. If true, it assumes that if UserS exists on
both the submission host and the server host, then UserS can run jobs on
that server. If not true, the server calls ruserok() which uses /etc/
hosts.equiv and .rhosts to authorize UserS to run as UserS.

Note that if different names are listed via the -u option, then they are
checked regardless of the value of flatuid.

4.13.14.2 qsub -u: User ID with Windows

Under Windows, if a user has a non-admin account, the server’s
hosts.equiv file is used to determine whether that user can run a job on a
given server. For an admin account, [PROFILE_PATH].\rhosts is used,
and the server’s acl_roots attribute must be set to allow job submissions.
Usernames containing spaces are allowed as long as the username length is
no more than 15 characters, and the usernames are quoted when used in the
command line.

Table 5: UNIX User ID and flatuid

Value of
flatuid Submission host username/server host username

Same: UserS/UserS Different: UserS/UserA

True Server assumes user has
permission to run job

Server checks whether UserS
can run job as UserA

Not true Server checks whether
UserS can run job as UserS

Server checks whether UserS
can run job as UserA
84 PBS Professional 9.2 User’s Guide

Submitting a PBS Job Chapter 4
4.13.15 Specifying Job Group ID

The “-W group_list=g_list” option defines the group name under
which the job is to run on the execution system. The g_list argument is of
the form:

group[@host][,group[@host],...]

Only one group name may be given per specified host. Only one of the
group specifications may be supplied without the corresponding host spec-
ification. That group name will used for execution on any host not named
in the argument list. If not set, the group_list defaults to the primary group
of the user under which the job will be run. Under Windows, the primary
group is the first group found for the user by PBS when querying the
accounts database.

qsub -W group_list=grpA,grpB@jupiter my_job

Table 6: Requirements for Admin User to Submit Job

Location/Action Submission host username/Server host username

Same: UserS/UserS Different: UserS/
UserA

[PROFILE_PATH]\
.rhosts contains

For UserS on ServerA,
add <HostS> UserS

For UserA on Serv-
erA,
add <HostS> UserS

set ServerA’s
acl_roots attribute

qmgr> set server
acl_roots=UserS

qmgr> set server
acl_roots=UserA

Table 7: Requirements for Non-admin User to Submit Job

File Submission host username/Server host
username

Same: UserS/UserS Different: UserS/UserA

hosts.equiv on Serv-
erA

<HostS> <HostS> UserS
PBS Professional 9.2 User’s Guide 85

Chapter 4 Submitting a PBS Job
4.13.16 Specifying a Local Account

The “-A account_string” option defines the account string associ-
ated with the job. The account_string is an opaque string of characters and
is not interpreted by the Server which executes the job. This value is often
used by sites to track usage by locally defined account names.

Important: Under Unicos, if the Account string is specified, it
must be a valid account as defined in the system
“User Data Base”, UDB.

qsub -A Math312 my_job

#PBS -A accountNumber

4.13.17 Merging Output and Error Files

The “-j join” option declares if the standard error stream of the job will
be merged with the standard output stream of the job. A join argument
value of oe directs that the two streams will be merged, intermixed, as
standard output. A join argument value of eo directs that the two streams
will be merged, intermixed, as standard error. If the join argument is n or
the option is not specified, the two streams will be two separate files.

qsub -j oe my_job

#PBS -j eo

4.13.18 Retaining Output and Error Files on Execution Host

The “-k keep” option defines which (if either) of standard output (STD-
OUT) or standard error (STDERR) of the job will be retained in the job’s
staging and execution directory on the primary execution host. If set, this
option overrides the path name for the corresponding file. If not set, neither
file is retained on the execution host. The argument is either the single let-
ter “e” or “o”, or the letters “e” and “o” combined in either order. Or the
argument is the letter “n”. If “-k” is not specified, neither file is retained.

e The standard error file is to be retained in the job’s
staging and execution directory on the primary exe-
cution host. The job’s name will be the default file
86 PBS Professional 9.2 User’s Guide

Submitting a PBS Job Chapter 4
name given by: job_name.esequence where
job_name is the name specified for the job, and
sequence is the sequence number component of
the job identifier.

o The standard output file is to be retained in the job’s
staging and execution directory on the primary exe-
cution host. The file name will be the default file
name given by: job_name.osequence where
job_name is the name specified for the job, and
sequence is the sequence number component of
the job identifier.

eo, oe Both standard output and standard streams are
retained on the primary execution host, in the job's
staging and execution directory.

n Neither file is retained.

qsub -k oe my_job

#PBS -k eo

4.13.19 Suppressing Job Identifier

The “-z” option directs the qsub command to not write the job identifier
assigned to the job to the command’s standard output.

qsub -z my_job

#PBS -z

4.13.20 Interactive-batch Jobs

PBS provides a special kind of batch job called interactive-batch. An inter-
active-batch job is treated just like a regular batch job (in that it is queued
up, and has to wait for resources to become available before it can run).
Once it is started, however, the user's terminal input and output are con-
nected to the job in a matter similar to a login session. It appears that the
user is logged into one of the available execution machines, and the
resources requested by the job are reserved for that job. Many users find
PBS Professional 9.2 User’s Guide 87

Chapter 4 Submitting a PBS Job
this useful for debugging their applications or for computational steering.
The “-I” option declares that the job is an interactive-batch job.

Important: Interactive-batch jobs are not supported on Win-
dows.

Important: Interactive-batch jobs do not support job arrays.

If the -I option is specified on the command line, the job is an interactive
job. If a script is given, it will be processed for directives, but any execut-
able commands will be discarded. When the job begins execution, all input
to the job is from the terminal session in which qsub is running. The -I
option is ignored in a script directive.

When an interactive job is submitted, the qsub command will not termi-
nate when the job is submitted. qsub will remain running until the job ter-
minates, is aborted, or the user interrupts qsub with a SIGINT (the
control-C key). If qsub is interrupted prior to job start, it will query if the
user wishes to exit. If the user responds “yes”, qsub exits and the job is
aborted.

Once the interactive job has started execution, input to and output from the
job pass through qsub. Keyboard-generated interrupts are passed to the
job. Lines entered that begin with the tilde ('~') character and contain spe-
cial sequences are interpreted by qsub itself. The recognized special
sequences are:

~. qsub terminates execution. The batch job is also
terminated.

~susp If running under the UNIX C shell, suspends the
qsub program. “susp” is the suspend character, usu-
ally CNTL-Z.

~asusp If running under the UNIX C shell, suspends the
input half of qsub (terminal to job), but allows out-
put to continue to be displayed. “asusp” is the auxil-
iary suspend character, usually control-Y.
88 PBS Professional 9.2 User’s Guide

Submitting a PBS Job Chapter 4
4.14 Job Attributes

A PBS job has the following attributes, which may be set by the various
options to qsub (for details see section 4.13 “Job Submission Options” on
page 74).

Account_Name Reserved for local site accounting. If specified
(using the -A option to qsub) this value is carried
within the job for its duration, and is included in the
job accounting records.

block When true, specifies that qsub will wait for the
job to complete, and return the exit value of the job.
Default: false. Set via the -W block option to qsub.
If qsub receives one of the signals: SIGHUP, SIG-
INT, SIGQUIT or SIGTERM, it will print the fol-
lowing message on stderr: qsub: wait for
job <jobid> interrupted by signal
<signal>

Checkpoint If the job is checkpointable, the checkpoint attribute
determines when checkpointing will be performed.
The legal values for checkpoint are described under
the qalter and qsub commands. See section
4.13.13.1 “Checkpointable Jobs” on page 82.

depend The type of inter-job dependencies specified by the
job owner.

Error_Path The final path name for the file containing the job’s
standard error stream. See the qsub and qalter
command description for more detail.

Execution_Time
The time after which the job may execute. The time
is maintained in seconds since Epoch. If this time
has not yet been reached, the job will not be sched-
PBS Professional 9.2 User’s Guide 89

Chapter 4 Submitting a PBS Job
uled for execution and the job is said to be in wait
state.

group_list A list of group_names@hosts which determines the
group under which the job is run on a given host.
When a job is to be placed into execution, the Server
will select a group name according to the rules spec-
ified for use of the qsub command.

Hold_Types The set of holds currently applied to the job. If the
set is not null, the job will not be scheduled for exe-
cution and is said to be in the hold state. Note, the
hold state takes precedence over the wait state.
n no hold
o other hold
p bad password
s system hold
u user hold

Job_Name The name assigned to the job by the qsub or
qalter command.

Join_Path If the Join_Path attribute is oe, then the job’s
standard error stream will be merged, inter-mixed,
with the job’s standard output stream and placed in
the file determined by the Output_Path attribute.
The Error_Path attribute is maintained, but
ignored. However, if the Join_Path attribute is
eo, then the job’s standard output stream will be
merged, inter-mixed, with the job’s standard error
stream and placed in the file determined by the
Error_Path attribute, and the Output_Path
attribute will be ignored.

Keep_Files If Keep_Files contains the values “o”
KEEP_OUTPUT and/or “e” KEEP_ERROR the cor-
responding streams of the batch job will be retained
on the execution host upon job termination.
Keep_Files overrides the Output_Path and
Error_Path attributes.
90 PBS Professional 9.2 User’s Guide

Submitting a PBS Job Chapter 4
Mail_Points Identifies when the Server will send email about the
job.

Mail_Users The set of users to whom mail may be sent when the
job makes certain state changes.

no_stdio_sockets
Flag to indicate whether a multi-host job should
have the standard output and standard error streams
of tasks running on other hosts returned to mother
superior via sockets. These sockets may cause a job
to be not checkpointable. Default: false (sockets are
created.)

Output_Path The final path name for the file containing the job’s
standard output stream. See the qsub and qalter
command description for more detail.

Priority The job scheduling priority assigned by the user.

Rerunnable The rerunnable flag given by the user.

Resource_List
The resource list is a set of resources required by the
job. The value also establishes the limit of usage of
that resource. If not set, the value for a resource may
be determined by a queue or Server default estab-
lished by the administrator.

sandbox When set to PRIVATE, PBS creates job-specific
staging and execution directories under the directory
specified in the $jobdir_root MOM configuration
option. When set to HOME or not set, PBS will use
the job owner's home directory for staging and exe-
cution. User-settable via
 qsub -Wsandbox=<value> or via a PBS directive.
Not set by default. See the $jobdir_root MOM con-
figuration option in pbs_mom.8B.

Shell_Path_List
PBS Professional 9.2 User’s Guide 91

Chapter 4 Submitting a PBS Job
A set of absolute paths of the program to process the
job’s script file.

stagein The list of files to be staged in prior to job execution.
Format: local_path@remote_host:remote_path

stageout The list of files to be staged out after job execution.
Format: local_path@remote_host:remote_path

umask The initial umask of the job is set to the value of
this attribute when the job is created. This may be
changed by umask commands in the shell initializa-
tion files such as .profile or .cshrc. Default value:
077

User_List The list of user@host which determines the user-
name under which the job is run on a given host.

Variable_List
This is the list of environment variables passed with
the Queue Job batch request.

comment An attribute for displaying comments about the job
from the system. Visible to any client. Under Win-
dows, comments can contain only ASCII characters.

The following attributes are read-only, they are established by the Server
and are visible to the user but cannot be set or changed by a user.

accounting_id
Accounting ID for tracking accounting data not pro-
duced by PBS.

alt_id For a few systems, the session id is insufficient to
track which processes belong to the job. Where a
different identifier is required, it is recorded in this
attribute. If set, it will also be recorded in the end-of-
job accounting record.

array boolean; true if applied to a job array
92 PBS Professional 9.2 User’s Guide

Submitting a PBS Job Chapter 4
array_id string; applies to subjob; job array identifier for
given subjob

array_index string; applies to subjob; index number of given sub-
job

array_indices_remaining
string; applies to job array; list of indices of subjobs
still queued. Range or list of ranges

array_indices_submitted
string; applies to job array; complete list of indices
of subjobs given at submission time. Given as a
range.

array_state_count
string; applies to job array; lists number of subjobs
in each state

ctime The time that the job was created.

eligible_time
The amount of wall clock wait time a job has
accrued because the job is blocked waiting for
resources. For a job currently accruing
eligible_time, if we were to add enough of the
right type of resources, the job would start immedi-
ately. Viewable via qstat -f by job owner, Manager
and Operator. Settable by Operator or Manager.

etime The time that the job became eligible to run, i.e. in a
queued state while residing in an execution queue.

exec_host If the job is running, string set to the name of each
vnode on which the job is executing, along with the
vnode-level, consumable resources allocated from
that vnode.
Format:
”(vnode:ncpus=N:mem=M+vnode:ncpus=N:mem=
M[+...])”, where vnode is the name of a vnode, N is
the number of CPUs on that vnode allocated to the
PBS Professional 9.2 User’s Guide 93

Chapter 4 Submitting a PBS Job
job and M is the amount of memory on that vnode
allocated to the job. Other resources may show up
as well.

exec_vnode If the job is running, this is set to the name of each
node used by the job with the node-level, consum-
able resources allocated from that node. Each
chunk's worth of nodes is enclosed in parentheses,
and chunks are connected by plus signs. So for a job
which requested two chunks that were satisfied by
resources from three nodes, exec_vnode could
look like

(vnodeA:ncpus=N:mem=X)+(nodeB:ncpus=P:mem
=Y+nodeC:mem=Z).

egroup If the job is queued in an execution queue, this
attribute is set to the group name under which the
job is to be run. [This attribute is available only to
the batch administrator.]

euser If the job is queued in an execution queue, this
attribute is set to the user name under which the job
is to be run. [This attribute is available only to the
batch administrator.]

hashname The name used as a basename for various files, such
as the job file, script file, and the standard output
and error of the job. [This attribute is available only
to the batch administrator.]

interactive True if the job is an interactive PBS job.

jobdir Path of the job's staging and execution directory on
the primary execution host. Viewable via qstat -f.

Job_Owner The login name on the submitting host of the user
who submitted the batch job.

job_state The state of the job.
94 PBS Professional 9.2 User’s Guide

Submitting a PBS Job Chapter 4
mtime The time that the job was last modified, changed
state, or changed locations.

qtime The time that the job entered the current queue.

queue The name of the queue in which the job currently
resides.

queue_rank The job’s position in the queue. Set by server.
Read-only. Requires operator or administrator privi-
lege to view. Integer.

resources_used
The amount of resources used by the job. This is
provided as part of job status information if the job
is running.

server The name of the server which is currently managing
the job.

session_id If the job is running, this is set to the session id of
the first executing task.

stime The time when the job started execution. Set by the
server. Displayed in date/time format.
PBS Professional 9.2 User’s Guide 95

Chapter 4 Submitting a PBS Job
96 PBS Professional 9.2 User’s Guide

Chapter 5
Using the xpbs GUI

The PBS graphical user interface is called xpbs, and provides a user-
friendly, point and click interface to the PBS commands. xpbs utilizes the
tcl/tk graphics tool suite, while providing the user with most of the same
functionality as the PBS CLI commands. In this chapter we introduce
xpbs, and show how to create a PBS job using xpbs.

5.1 Starting xpbs

If PBS is installed on your local workstation, or if you are running under
Windows, you can launch xpbs by double-clicking on the xpbs icon on
the desktop. You can also start xpbs from the command line with the fol-
lowing command.

UNIX:
xpbs &
PBS Professional 9.2 User’s Guide 97

Chapter 5 Using the xpbs GUI
Windows:
xpbs.exe

Doing so will bring up the main xpbs window, as shown below.

5.1.1 Running xpbs Under UNIX

Before running xpbs for the first time under UNIX, you may need to con-
figure your workstation for it. Depending on how PBS is installed at your
site, you may need to allow xpbs to be displayed on your workstation.
However, if the PBS client commands are installed locally on your work-
station, you can skip this step. (Ask your PBS administrator if you are
unsure.)

The most secure method of running xpbs remotely and displaying it on
your local XWindows session is to redirect the XWindows traffic through
ssh (secure shell), via setting the "X11Forwarding yes" parameter in
the sshd_config file. (Your local system administrator can provide
details on this process if needed.)

An alternative, but less secure, method is to direct your X-Windows ses-
sion to permit the xpbs client to connect to your local X-server. Do this by
running the xhost command with the name of the host from which you
will be running xpbs, as shown in the example below:

Next, on the system from which you will be running xpbs, set your X-
Windows DISPLAY variable to your local workstation. For example, if
using the C-shell:

However, if you are using the Bourne or Korn shell, type the following:

xhost + server.mydomain.com

setenv DISPLAY myWorkstation:0.0

export DISPLAY=myWorkstation:0.0
98 PBS Professional 9.2 User’s Guide

Using the xpbs GUI Chapter 5
5.2 Using xpbs: Definitions of Terms

The various panels, boxes, and regions (collectively called “widgets”) of
xpbs and how they are manipulated are described in the following sec-
tions. A listbox can be multi-selectable (a number of entries can be
selected/highlighted using a mouse click) or single-selectable (one entry
can be highlighted at a time).

For a multi-selectable listbox, the following operations are allowed:

• left-click to select/highlight an entry.
• shift-left-click to contiguously select more than one

entry.
• control-left-click to select multiple non-contiguous

entries.
• click the Select All / Deselect All button to select all

entries or deselect all entries at once.
• double clicking an entry usually activates some

action that uses the selected entry as a parameter.

An entry widget is brought into focus with a left-click. To manipulate this
widget, simply type in the text value. Use of arrow keys and mouse selec-
tion of text for deletion, overwrite, copying and pasting with sole use of
mouse buttons are permitted. This widget has a scrollbar for horizontally
scanning a long text entry string.

A matrix of entry boxes is usually shown as several rows of entry widgets
where a number of entries (called fields) can be found per row. The matrix
is accompanied by up/down arrow buttons for paging through the rows of
data, and each group of fields gets one scrollbar for horizontally scanning
long entry strings. Moving from field to field can be done using the <Tab>
(move forward), <Cntrl-f> (move forward), or <Cntrl-b> (move backward)
keys.

A spinbox is a combination of an entry widget and a horizontal scrollbar.
The entry widget will only accept values that fall within a defined list of
valid values, and incrementing through the valid values is done by clicking
on the up/down arrows.

A button is a rectangular region appearing either raised or pressed that
PBS Professional 9.2 User’s Guide 99

Chapter 5 Using the xpbs GUI
invokes an action when clicked with the left mouse button. When the but-
ton appears pressed, then hitting the <RETURN> key will automatically
select the button.

A text region is an editor-like widget. This widget is brought into focus
with a left-click. To manipulate this widget, simply type in the text. Use of
arrow keys, backspace/delete key, mouse selection of text for deletion or
overwrite, and copying and pasting with sole use of mouse buttons are per-
mitted. This widget has a scrollbar for vertically scanning a long entry.

5.3 Introducing the xpbs Main Display

The main window or display of xpbs is comprised of five collapsible sub-
windows or panels. Each panel contains specific information. Top to bot-
tom, these panels are: the Menu Bar, Hosts panel, Queues panel, Jobs
panel, and the Info panel.

5.3.1 xpbs Menu Bar

The Menu Bar is composed of a row of command buttons that signal some
action with a click of the left mouse button. The buttons are:

Manual Update forces an update of the information on hosts, queues,
and jobs.

Auto Update sets an automatic update of information every user-
specified number of minutes.

Track Job for periodically checking for returned output files of
jobs.

Preferences for setting parameters such as the list of Server
host(s) to query.

Help contains some help information.
About gives general information about the xpbs GUI.
Close for exiting xpbs plus saving the current setup infor-

mation.
.

100 PBS Professional 9.2 User’s Guide

Using the xpbs GUI Chapter 5
5.3.2 xpbs Hosts Panel

The Hosts panel is composed of a leading horizontal HOSTS bar, a listbox,
and a set of command buttons. The HOSTS bar contains a minimize/maxi-
mize button, identified by a dot or a rectangular image, for displaying or
iconizing the Hosts region. The listbox displays information about favorite
Server host(s), and each entry is meant to be selected via a single left-click,
shift-left-click for contiguous selection, or control-left-click for non-con-
tiguous selection.

To the right of the Hosts Panel are buttons that represent actions that can be
performed on selected host(s). Use of these buttons will be explained in
detail below.
PBS Professional 9.2 User’s Guide 101

Chapter 5 Using the xpbs GUI
detail Provides information about selected Server host(s).
This functionality can also be achieved by double
clicking on an entry in the Hosts listbox.

submit For submitting a job to any of the queues managed
by the selected host(s).

terminate For terminating (shutting down) PBS Servers on
selected host(s). (Visible via the “-admin” option
only.)

Important: Note that some buttons are only visible if xpbs is
started with the “-admin” option, which requires
manager or operator privilege to function.

The middle portion of the Hosts Panel has abbreviated column names indi-
cating the information being displayed, as the following table shows:

5.3.3 xpbs Queues Panel

The Queues panel is composed of a leading horizontal QUEUES bar, a list-
box, and a set of command buttons. The QUEUES bar lists the hosts that
are consulted when listing queues; the bar also contains a minimize/maxi-

Table 1: xpbs Server Column Headings

Heading Meaning

Max Maximum number of jobs permitted

Tot Count of jobs currently enqueued in any state

Que Count of jobs in the Queued state

Run Count of jobs in the Running state

Hld Count of jobs in the Held state

Wat Count of jobs in the Waiting state

Trn Count of jobs in the Transiting state

Ext Count of jobs in the Exiting state

Status Status of the corresponding Server

PEsInUse Count of Processing Elements (CPUs, PEs, Vnodes) in Use
102 PBS Professional 9.2 User’s Guide

Using the xpbs GUI Chapter 5
mize button for displaying or iconizing the Queues panel. The listbox dis-
plays information about queues managed by the Server host(s) selected
from the Hosts panel; each listbox entry can be selected as described above
for the Hosts panel.

To the right of the Queues Panel area are buttons for actions that can be
performed on selected queue(s).

detail provides information about selected queue(s). This
functionality can also be achieved by double click-
ing on a Queue listbox entry.

stop for stopping the selected queue(s). (-admin only)
start for starting the selected queue(s). (-admin only)

disable for disabling the selected queue(s). (-admin only)
enable for enabling the selected queue(s). (-admin only)

The middle portion of the Queues Panel has abbreviated column names
indicating the information being displayed, as the following table shows:

Table 2: xpbs Queue Column Headings

Heading Meaning

Max Maximum number of jobs permitted

Tot Count of jobs currently enqueued in any state

Ena Is queue enabled? yes or no

Str Is queue started? yes or no

Que Count of jobs in the Queued state

Run Count of jobs in the Running state

Hld Count of jobs in the Held state

Wat Count of jobs in the Waiting state

Trn Count of jobs in the Transiting state

Ext Count of jobs in the Exiting state

Type Type of queue: execution or route

Server Name of Server on which queue exists
PBS Professional 9.2 User’s Guide 103

Chapter 5 Using the xpbs GUI
5.3.4 xpbs Jobs Panel

The Jobs panel is composed of a leading horizontal JOBS bar, a listbox,
and a set of command buttons. The JOBS bar lists the queues that are con-
sulted when listing jobs; the bar also contains a minimize/maximize button
for displaying or iconizing the Jobs region. The listbox displays informa-
tion about jobs that are found in the queue(s) selected from the Queues list-
box; each listbox entry can be selected as described above for the Hosts
panel.

The region just above the Jobs listbox shows a collection of command but-
tons whose labels describe criteria used for filtering the Jobs listbox con-
tents. The list of jobs can be selected according to the owner of jobs
(Owners), job state (Job_States), name of the job (Job_Name), type of hold
placed on the job (Hold_Types), the account name associated with the job
(Account_Name), checkpoint attribute (Checkpoint), time the job is eligi-
ble for queueing/execution (Queue_Time), resources requested by the job
(Resources), priority attached to the job (Priority), and whether or not the
job is rerunnable (Rerunnable).

The selection criteria can be modified by clicking on any of the appropriate
command buttons to bring up a selection box. The criteria command but-
tons are accompanied by a Select Jobs button, which when clicked, will
update the contents of the Jobs listbox based on the new selection criteria.
Note that only jobs that meet all the selected criteria will be displayed.

Finally, to the right of the Jobs panel are the following command buttons,
for operating on selected job(s):

detail provides information about selected job(s). This
functionality can also be achieved by double-click-
ing on a Jobs listbox entry.

modify for modifying attributes of the selected job(s).
delete for deleting the selected job(s).

hold for placing some type of hold on selected job(s).
release for releasing held job(s).
signal for sending signals to selected job(s) that are run-

ning.
msg for writing a message into the output streams of

selected job(s).
104 PBS Professional 9.2 User’s Guide

Using the xpbs GUI Chapter 5
move for moving selected job(s) into some specified desti-
nation.

order for exchanging order of two selected jobs in a queue.
run for running selected job(s). (-admin only)

rerun for requeueing selected job(s) that are running. (-
admin only)

The middle portion of the Jobs Panel has abbreviated column names indi-
cating the information being displayed, as the following table shows:

5.3.5 xpbs Info Panel

The Info panel shows the progress of the commands executed by xpbs.
Any errors are written to this area. The INFO panel also contains a mini-
mize/maximize button for displaying or iconizing the Info panel.

5.3.6 xpbs Keyboard Tips

There are a number of shortcuts and key sequences that can be used to
speed up using xpbs. These include:

Tip 1. All buttons which appear to be depressed in the dia-
log box/subwindow can be activated by pressing the
return/enter key.

Table 3: xpbs Job Column Headings

Heading Meaning

Job id Job Identifier

Name Name assigned to job, or script name

User User name under which job is running

PEs Number of Processing Elements (CPUs) requested

CputUse Amount of CPU time used

WalltUse Amount of wall-clock time used

S State of job

Queue Queue in which job resides
PBS Professional 9.2 User’s Guide 105

Chapter 5 Using the xpbs GUI
Tip 2. Pressing the tab key will move the blinking cursor
from one text field to another.

Tip 3. To contiguously select more than one entry: left-
click then drag the mouse across multiple entries.

Tip 4. To non-contiguously select more than one entry:
hold the control-left-click on the desired entries.

5.4 Setting xpbs Preferences

The “Preferences” button is in the Menu Bar at the top of the main xpbs
window. Clicking it will bring up a dialog box that allows you to customize
the behavior of xpbs:

1. Define Server hosts to query
2. Select wait timeout in seconds
3. Specify xterm command (for interactive jobs,

UNIX only)
4. Specify which rsh/ssh command to use

5.5 Relationship Between PBS and xpbs

xpbs is built on top of the PBS client commands, such that all the features
of the command line interface are available through the GUI. Each “task”
that you perform using xpbs is converted into the necessary PBS com-
106 PBS Professional 9.2 User’s Guide

Using the xpbs GUI Chapter 5
mand and then run.

 * Indicates command button is visible only if xpbs is started with the “-
admin” option.

Table 4: xpbs Buttons and PBS Commands

 Location Command
Button PBS Command

Hosts Panel detail qstat -B -f selected
server_host(s)

Hosts Panel submit qsub options selected Server(s)

Hosts Panel terminate * qterm selected server_host(s)

Queues Panel detail qstat -Q -f selected queue(s)

Queues Panel stop * qstop selected queue(s)

Queues Panel start * qstart selected queue(s)

Queues Panel enable * qenable selected queue(s)

Queues Panel disable * qdisable selected queue(s)

Jobs Panel detail qstat -f selected job(s)

Jobs Panel modify qalter selected job(s)

Jobs Panel delete qdel selected job(s)

Jobs Panel hold qhold selected job(s)

Jobs Panel release qrls selected job(s)

Jobs Panel run qrun selected job(s)

Jobs Panel rerun qrerun selected job(s)

Jobs Panel signal qsig selected job(s)

Jobs Panel msg qmsg selected job(s)

Jobs Panel move qmove selected job(s)

Jobs Panel order qorder selected job(s)
PBS Professional 9.2 User’s Guide 107

Chapter 5 Using the xpbs GUI
5.6 How to Submit a Job Using xpbs

To submit a job using xpbs, perform the following steps:

First, select a host from the HOSTS listbox in the main xpbs display to
which you wish to submit the job.

Next, click on the Submit button located next to the HOSTS panel. The
Submit button brings up the Submit Job Dialog box (see below) which is
composed of four distinct regions. The Job Script File region is at the upper
left. The OPTIONS region containing various widgets for setting job
attributes is scattered all over the dialog box. The OTHER OPTIONS is
located just below the Job Script file region, and COMMAND BUTTONS
region is at the bottom.

The job script region is composed of a header box, the text box, FILE entry
box, and two buttons labeled load and save. If you have a script file con-
taining PBS options and executable lines, then type the name of the file on
the FILE entry box, and then click on the load button. Alternatively, you
may click on the FILE button, which will display a File Selection browse
window, from which you may point and click to select the file you wish to
108 PBS Professional 9.2 User’s Guide

Using the xpbs GUI Chapter 5
open. The File Selection Dialog window is shown below. Clicking on the
Select File button will load the file into xpbs, just as does the load button
described above.

The various fields in the Submit window will get loaded with values found
in the script file. The script file text box will only be loaded with execut-
able lines (non-PBS) found in the script. The job script header box has a
Prefix entry box that can be modified to specify the PBS directive to look
for when parsing a script file for PBS options.

If you don’t have a existing script file to load into xpbs, you can start typ-
ing the executable lines of the job in the file text box.

Next, review the Destination listbox. This box shows the queues found in
the host that you selected. A special entry called “@host” refers to the
default queue at the indicated host. Select appropriately the destination
queue for the job.

Next, define any required resources in the Resource List subwindow.

The resources specified in the “Resource List” section will be job-wide
resources only. In order to specify chunks or job placement, use a script.
PBS Professional 9.2 User’s Guide 109

Chapter 5 Using the xpbs GUI
To run an array job, use a script. You will not be able to query individual
subjobs or the whole job array using xpbs. Type the script into the “File:
entry” box. Do not click the “Load” button. Instead, use the “Submit” but-
ton.

Finally, review the optional settings to see if any should apply to this job.

For example:

o Use the one of the buttons in the “Output” region to
merge output and error files.

o Use “Stdout File Name” to define standard output
file and to redirect output

o Use the “Environment Variables to Export” subwin-
dow to have current environment variables exported
to the job.

o Use the “Job Name” field in the OPTIONS subwin-
dow to give the job a name.

o Use the “Notify email address” and one of the but-
tons in the OPTIONS subwindow to have PBS send
you mail when the job terminates.

Now that the script is built you have four options of what to do next:

Reset options to default
Save the script to a file
Submit the job as a batch job
Submit the job as an interactive-batch job (UNIX
only)

Reset clears all the information from the submit job dialog box, allowing
you to create a job from a fresh start.

Use the FILE. field (in the upper left corner) to define a filename for the
script. Then press the Save button. This will cause a PBS script file to be
generated and written to the named file.

Pressing the Confirm Submit button at the bottom of the Submit window
will submit the PBS job to the selected destination. xpbs will display a
small window containing the job identifier returned for this job. Clicking
OK on this window will cause it and the Submit window to be removed
110 PBS Professional 9.2 User’s Guide

Using the xpbs GUI Chapter 5
from your screen.

On UNIX systems (not Windows) you can alternatively submit the job as
an interactive-batch job, by clicking the Interactive button at the bottom of
the Submit Job window. Doing so will cause an X-terminal window
(xterm) to be launched, and within that window a PBS interactive-batch
job submitted. The path for the xterm command can be set via the prefer-
ences, as discussed above in section 5.4 “Setting xpbs Preferences” on
page 106. For further details on usage, and restrictions, see “Interactive-
batch Jobs” on page 87.)

5.7 Exiting xpbs

Click on the Close button located in the Menu bar to leave xpbs. If any
settings have been changed, xpbs will bring up a dialog box asking for a
confirmation in regards to saving state information. The settings will be
saved in the .xpbsrc configuration file, and will be used the next time
you run xpbs, as discussed in the following section.

5.8 The xpbs Configuration File

Upon exit, the xpbs state may be written to the .xpbsrc file in the user’s
home directory. (See also section 3.9.1 “Windows User's HOMEDIR” on
page 26.) Information saved includes: the selected host(s), queue(s), and
job(s); the different jobs listing criteria; the view states (i.e. minimized/
maximized) of the Hosts, Queues, Jobs, and INFO regions; and all settings
in the Preferences section. In addition, there is a system-wide xpbs con-
figuration file, maintained by the PBS Administrator, which is used in the
absence of a user’s personal .xpbsrc file.

5.9 xpbs Preferences

The resources that can be set in the xpbs configuration file, ˜/.xpbsrc,
are:

*serverHosts List of Server hosts (space separated) to query by
xpbs. A special keyword
PBS_DEFAULT_SERVER can be used which will
PBS Professional 9.2 User’s Guide 111

Chapter 5 Using the xpbs GUI
be used as a placeholder for the value obtained from
the /etc/pbs.conf file (UNIX) or “[PBS
Destination Folder]\pbs.conf” file
(Windows).

*timeoutSecs Specify the number of seconds before timing out
waiting for a connection to a PBS host.

*xtermCmd The xterm command to run driving an interactive
PBS session.

*labelFont Font applied to text appearing in labels.
*fixlabelFont Font applied to text that label fixed-width widgets

such as listbox labels. This must be a fixed-width
font.

*textFont Font applied to a text widget. Keep this as fixed-
width font.

*backgroundColor The color applied to background of frames, buttons,
entries, scrollbar handles.

*foregroundColor The color applied to text in any context.
*activeColor The color applied to the background of a selection, a

selected command button, or a selected scroll bar
handle.

*disabledColor Color applied to a disabled widget.
*signalColor Color applied to buttons that signal something to the

user about a change of state. For example, the
color of the Track Job button when returned output
files are detected.

*shadingColor A color shading applied to some of the frames to
emphasize focus as well as decoration.

*selectorColor The color applied to the selector box of a radiobut-
ton or checkbutton.

*selectHosts List of hosts (space separated) to automatically
select/highlight in the HOSTS listbox.

*selectQueues List of queues (space separated) to automatically
select/highlight in the QUEUES listbox.

*selectJobs List of jobs (space separated) to automatically
select/highlight in the JOBS listbox.

*selectOwners List of owners checked when limiting the jobs
appearing on the Jobs listbox in the main xpbs win-
dow. Specify value as "Owners: <list_of_owners>".
See -u option in qselect(1B) for format of
<list_of_owners>.
112 PBS Professional 9.2 User’s Guide

Using the xpbs GUI Chapter 5
*selectStates List of job states to look for (do not space separate)
when limiting the jobs appearing on the Jobs listbox
in the main xpbs window. Specify value as
"Job_States: <states_string>". See -s option in
qselect(1B) for format of <states_string>.

*selectRes List of resource amounts (space separated) to con-
sult when limiting the jobs appearing on the Jobs
listbox in the main xpbs window. Specify value as
"Resources: <res_string>". See -l option in qse-
lect(1B) for format of <res_string>.

*selectExecTime The Execution Time attribute to consult when limit-
ing the list of jobs appearing on the Jobs listbox in
the main xpbs window. Specify value as
"Queue_Time: <exec_time>". See -a option in
qselect(1B) for format of <exec_time>.

*selectAcctName The name of the account that will be checked when
limiting the jobs appearing on the Jobs listbox in the
main xpbs window. Specify value as
"Account_Name: <account_name>". See -A option
in qselect(1B) for format of <account_name>.

*selectCheckpoint The checkpoint attribute relationship (including the
logical operator) to consult when limiting the list of
jobs appearing on the Jobs listbox in the main xpbs
window. Specify value as "Checkpoint:
<checkpoint_arg>". See -c option in qse-
lect(1B) for format of <checkpoint_arg>.

*selectHold The hold types string to look for in a job when limit-
ing the jobs appearing on the Jobs listbox in the
main xpbs window. Specify value as "Hold_Types:
<hold_string>". See -h option in qselect(1B)
for format of <hold_string>.

*selectPriority The priority relationship (including the logical oper-
ator) to consult when limiting the list of jobs appear-
ing on the Jobs listbox in the main xpbs window.
Specify value as "Priority: <priority_value>". See -
p option in qselect(1B) for format of
<priority_value>.

*selectRerun The rerunnable attribute to consult when limiting the
list of jobs appearing on the Jobs listbox in the main
xpbs window. Specify value as "Rerunnable:
PBS Professional 9.2 User’s Guide 113

Chapter 5 Using the xpbs GUI
<rerun_val>". See -r option in qselect(1B) for
format of <rerun_val>.

*selectJobName Name of the job that will be checked when limiting
the jobs appearing on the Jobs listbox in the main
xpbs window. Specify value as "Job_Name: <job-
name>". See -N option in qselect(1B) for for-
mat of <jobname>.

*iconizeHosts-
View

A boolean value (true or false) indicating whether or
not to iconize the HOSTS region.

*iconizeQueues-
View

A boolean value (true or false) indicating whether or
not to iconize the QUEUES region.

*iconizeJobsView A boolean value (true or false) indicating whether or
not to iconize the JOBS region.

*iconizeInfoView A boolean value (true or false) indicating whether or
not to iconize the INFO region.

*jobResourceList A curly-braced list of resource names as according
to architecture known to xpbs. The format is as fol-
lows:
{ <arch-type1> resname1 resname2 ... resnameN }
{ <arch-type2> resname1 resname2 ... resnameN }
{ <arch-typeN> resname1 resname2 ... resnameN }
114 PBS Professional 9.2 User’s Guide

Chapter 6
Checking Job / System
Status

This chapter introduces several PBS commands useful for checking status
of jobs, queues, and PBS Servers. Examples for use are included, as are
instructions on how to accomplish the same task using the xpbs graphical
interface.

6.1 The qstat Command

The qstat command is used to the request the status of jobs, queues, and
the PBS Server. The requested status is written to standard output stream
(usually the user’s terminal). When requesting job status, any jobs for
which the user does not have view privilege are not displayed. For detailed
usage information, see the qstat(1B) man page or the PBS Professional
External Reference Specification.
PBS Professional 9.2 User’s Guide 115

Chapter 6 Checking Job / System Status
6.1.1 Checking Job Status

Executing the qstat command without any options displays job informa-
tion in the default format. (An alternative display format is also provided,
and is discussed below.) The default display includes the following infor-
mation:

The job identifier assigned by PBS
The job name given by the submitter
The job owner
The CPU time used
The job state
The queue in which the job resides

The job state is abbreviated to a single character:

Job States

State Description

B Job arrays only: job array has started

E Job is exiting after having run

H Job is held. A job is put into a held state by the server or by a
user or administrator. A job stays in a held state until it is
released by a user or administrator.

Q Job is queued, eligible to run or be routed

R Job is running

S Job is suspended by server. A job is put into the suspended
state when a higher priority job needs the resources.

T Job is in transition (being moved to a new location)

U Job is suspended due to workstation becoming busy

W Job is waiting for its requested execution time to be reached,
or the job’s specified stagein request has failed for some rea-
son.

X Subjobs only; subjob is finished (expired.)
116 PBS Professional 9.2 User’s Guide

Checking Job / System Status Chapter 6
The following example illustrates the default display of qstat.

An alternative display (accessed via the “-a” option) is also provided that
includes extra information about jobs, including the following additional
fields:

Session ID
Number of vnodes requested
Number of parallel tasks (or CPUs)
Requested amount of memory
Requested amount of wallclock time
Walltime or CPU time, whichever submitter speci-
fied, if job is running.

qstat
Job id Name User Time Use S Queue
--------- ----------- ----------- -------- - -----
16.south aims14 user1 0 H workq
18.south aims14 user1 0 W workq
26.south airfoil barry 00:21:03 R workq
27.south airfoil barry 21:09:12 R workq
28.south myjob user1 0 Q workq
29.south tns3d susan 0 Q workq
30.south airfoil barry 0 Q workq
31.south seq_35_3 donald 0 Q workq
PBS Professional 9.2 User’s Guide 117

Chapter 6 Checking Job / System Status
Other options which utilize the alternative display are discussed in subse-
quent sections of this chapter.

6.1.2 Viewing Specific Information

When requesting queue or Server status qstat will output information
about each destination. The various options to qstat take as an operand
either a job identifier or a destination. If the operand is a job identifier, it
must be in the following form:

sequence_number[.server_name][@server]

where sequence_number.server_name is the job identifier
assigned at submittal time, see qsub. If the .server_name is omitted,
the name of the default Server will be used. If @server is supplied, the
request will be for the job identifier currently at that Server.

If the operand is a destination identifier, it takes one of the following three
forms:

queue
@server
queue@server

If queue is specified, the request is for status of all jobs in that queue at
the default Server. If the @server form is given, the request is for status
of all jobs at that Server. If a full destination identifier, queue@server,

qstat -a
 Req'd Elap
Job ID User Queue Jobname Ses NDS TSK Mem Time S Time
-------- ------ ----- ------- --- --- --- --- ---- - ----
16.south user1 workq aims14 -- -- 1 -- 0:01 H --
18.south user1 workq aims14 -- -- 1 -- 0:01 W --
51.south barry workq airfoil 930 -- 1 -- 0:13 R 0:01
52.south user1 workq myjob -- -- 1 -- 0:10 Q --
53.south susan workq tns3d -- -- 1 -- 0:20 Q --
54.south barry workq airfoil -- -- 1 -- 0:13 Q --
55.south donald workq seq_35_ -- -- 1 -- 2:00 Q --
118 PBS Professional 9.2 User’s Guide

Checking Job / System Status Chapter 6
is given, the request is for status of all jobs in the named queue at the
named server.

Important: If a PBS Server is not specified on the qstat com-
mand line, the default Server will be used. (See dis-
cussion of PBS_DEFAULT in “Environment
Variables” on page 29.)

6.1.3 Checking Server Status

The “-B” option to qstat displays the status of the specified PBS Batch
Server. One line of output is generated for each Server queried. The three
letter abbreviations correspond to various job limits and counts as follows:
Maximum, Total, Queued, Running, Held, Waiting, Transiting, and Exit-
ing. The last column gives the status of the Server itself: active, idle, or
scheduling.

When querying jobs, Servers, or queues, you can add the “-f” option to
qstat to change the display to the full or long display. For example, the
Server status shown above would be expanded using “-f” as shown

qstat -B
Server Max Tot Que Run Hld Wat Trn Ext Status
----------- --- ---- ---- ---- ---- ---- ---- ---- ------
fast.domain 0 14 13 1 0 0 0 0 Active
PBS Professional 9.2 User’s Guide 119

Chapter 6 Checking Job / System Status
below:

6.1.4 Checking Queue Status

The “-Q” option to qstat displays the status of all (or any specified)
queues at the (optionally specified) PBS Server. One line of output is gen-
erated for each queue queried. The three letter abbreviations correspond to
limits, queue states, and job counts as follows: Maximum, Total, Enabled
Status, Started Status, Queued, Running, Held, Waiting, Transiting, and
Exiting. The last column gives the type of the queue: routing or execution.

The full display for a queue provides additional information:

qstat -Bf
Server: fast.mydomain.com
 server_state = Active
 scheduling = True
 total_jobs = 14
 state_count = Transit:0 Queued:13 Held:0 Waiting:0
 Running:1 Exiting:0
 managers = user1@fast.mydomain.com
 default_queue = workq
 log_events = 511
 mail_from = adm
 query_other_jobs = True
 resources_available.mem = 64mb
 resources_available.ncpus = 2
 resources_default.ncpus = 1
 resources_assigned.ncpus = 1
 resources_assigned.nodect = 1
 scheduler_iteration = 600
 pbs_version = PBSPro_9.2.41640

qstat -Q

Queue Max Tot Ena Str Que Run Hld Wat Trn Ext Type
----- --- --- --- --- --- --- --- --- --- --- ---------
workq 0 10 yes yes 7 1 1 1 0 0 Execution
120 PBS Professional 9.2 User’s Guide

Checking Job / System Status Chapter 6

6.1.5 Viewing Job Information

We saw above that the “-f” option could be used to display full or long
information for queues and Servers. The same applies to jobs. By specify-
ing the “-f” option and a job identifier, PBS will print all information
known about the job (e.g. resources requested, resource limits, owner,
source, destination, queue, etc.) as shown in the following example. (See
“Job Attributes” on page 89 for a description of attribute.)

qstat -Qf
Queue: workq
 queue_type = Execution
 total_jobs = 10
 state_count = Transit:0 Queued:7 Held:1 Waiting:1

 Running:1 Exiting:0
 resources_assigned.ncpus = 1
 hasnodes = False
 enabled = True
 started = True
PBS Professional 9.2 User’s Guide 121

Chapter 6 Checking Job / System Status
qstat -f 89
Job Id: 89.south
 Job_Name = tns3d
 Job_Owner = susan@south.mydomain.com
 resources_used.cput = 00:00:00
 resources_used.mem = 2700kb
 resources_used.ncpus = 1
 resources_used.vmem = 5500kb
 resources_used.walltime = 00:00:00
 job_state = R
 queue = workq
 server = south
 Checkpoint = u
 ctime = Thu Aug 23 10:11:09 2004
 Error_Path = south:/u/susan/tns3d.e89
 exec_host = south/0
 Hold_Types = n
 Join_Path = oe
 Keep_Files = n
 Mail_Points = a
 mtime = Thu Aug 23 10:41:07 2004
 Output_Path = south:/u/susan/tns3d.o89
 Priority = 0
 qtime = Thu Aug 23 10:11:09 2004
 Rerunnable = True
 Resource_List.mem = 300mb
 Resource_List.ncpus = 1
 Resource_List.walltime = 00:20:00
 session_id = 2083
 Variable_List = PBS_O_HOME=/u/susan,PBS_O_LANG=en_US,
 PBS_O_LOGNAME=susan,PBS_O_PATH=/bin:/usr/bin,
 PBS_O_SHELL=/bin/csh,PBS_O_HOST=south,
 PBS_O_WORKDIR=/u/susan,PBS_O_SYSTEM=Linux,
 PBS_O_QUEUE=workq
 euser = susan
 egroup = myegroup
 queue_type = E
 comment = Job run on host south - started at 10:41
 etime = Thu Aug 23 10:11:09 2004
122 PBS Professional 9.2 User’s Guide

Checking Job / System Status Chapter 6
6.1.6 List User-Specific Jobs

The “-u” option to qstat displays jobs owned by any of a list of user
names specified. The syntax of the list of users is:

user_name[@host][,user_name[@host],...]

Host names are not required, and may be “wild carded” on the left end, e.g.
“*.mydomain.com”. user_name without a “@host” is equivalent to
“user_name@*”, that is at any host.

6.1.7 List Running Jobs

The “-r” option to qstat displays the status of all running jobs at the
(optionally specified) PBS Server. Running jobs include those that are run-
ning and suspended. One line of output is generated for each job reported,
and the information is presented in the alternative display.

6.1.8 List Non-Running Jobs

The “-i” option to qstat displays the status of all non-running jobs at
the (optionally specified) PBS Server. Non-running jobs include those that
are queued, held, and waiting. One line of output is generated for each job
reported, and the information is presented in the alternative display (see
description above).

qstat -u user1
 Req'd Elap
Job ID User Queue Jobname Sess NDS TSK Mem Time S Time
-------- ------ ----- ------- ---- --- --- --- ---- - ----
16.south user1 workq aims14 -- -- 1 -- 0:01 H --
18.south user1 workq aims14 -- -- 1 -- 0:01 W --
52.south user1 workq my_job -- -- 1 -- 0:10 Q --

qstat -u user1,barry

51.south barry workq airfoil 930 -- 1 -- 0:13 R 0:01
52.south user1 workq my_job -- -- 1 -- 0:10 Q --
54.south barry workq airfoil -- -- 1 -- 0:13 Q --
PBS Professional 9.2 User’s Guide 123

Chapter 6 Checking Job / System Status
6.1.9 Display Size in Gigabytes

The “-G” option to qstat displays all jobs at the requested (or default)
Server using the alternative display, showing all size information in
gigabytes (GB) rather than the default of smallest displayable units. Note
that if the size specified is less than 1 GB, then the amount if rounded up to
1 GB.

6.1.10 Display Size in Megawords

The “-M” option to qstat displays all jobs at the requested (or default)
Server using the alternative display, showing all size information in mega-
words (MW) rather than the default of smallest displayable units. A word is
considered to be 8 bytes.

6.1.11 List Hosts Assigned to Jobs

The “-n” option to qstat displays the hosts allocated to any running job
at the (optionally specified) PBS Server, in addition to the other informa-
tion presented in the alternative display. The host information is printed
immediately below the job (see job 51 in the example below), and includes
the host name and number of virtual processors assigned to the job (i.e.
“south/0”, where “south” is the host name, followed by the virtual
processor(s) assigned.). A text string of “--” is printed for non-running jobs.
Notice the differences between the queued and running jobs in the example
below:
124 PBS Professional 9.2 User’s Guide

Checking Job / System Status Chapter 6
6.1.12 Display Job Comments

The “-s” option to qstat displays the job comments, in addition to the
other information presented in the alternative display. The job comment is
printed immediately below the job. By default the job comment is updated
by the Scheduler with the reason why a given job is not running, or when
the job began executing. A text string of “--” is printed for jobs whose com-
ment has not yet been set. The example below illustrates the different type

qstat -n
 Req'd Elap
Job ID User Queue Jobname Sess NDS TSK Mem Time S Time
-------- ------ ----- ------- ---- --- --- --- ---- - ----
16.south user1 workq aims14 -- -- 1 -- 0:01 H --
 --
18.south user1 workq aims14 -- -- 1 -- 0:01 W --
 --
51.south barry workq airfoil 930 -- 1 -- 0:13 R 0:01
 south/0
52.south user1 workq my_job -- -- 1 -- 0:10 Q --
 --
PBS Professional 9.2 User’s Guide 125

Chapter 6 Checking Job / System Status
of messages that may be displayed:

6.1.13 Display Queue Limits

The “-q” option to qstat displays any limits set on the requested (or
default) queues. Since PBS is shipped with no queue limits set, any visible
limits will be site-specific. The limits are listed in the format shown below.

6.1.14 Show State of Job, Job Array or Subjob

The “-t” option to qstat will show the state of a job, a job array object, and
all non-X subjobs. In combination with “-J”, qstat will show only the state
of subjobs.

6.1.15 Viewing Job Status in Wide Format

The –w qstat option displays job status in wide format. The total width
of the display is extended from 80 characters to 120 characters. The Job ID

qstat -s
 Req'd Elap
Job ID User Queue Jobname Sess NDS TSK Mem Time S Time
-------- ----- ----- ------- ---- --- --- --- ---- - ----
16.south user1 workq aims14 -- -- 1 -- 0:01 H --
 Job held by user1 on Wed Aug 22 13:06:11 2004
18.south user1 workq aims14 -- -- 1 -- 0:01 W --
 Waiting on user requested start time
51.south barry workq airfoil 930 -- 1 -- 0:13 R 0:01
 Job run on host south - started Thu Aug 23 at 10:56
52.south user1 workq my_job -- -- 1 -- 0:10 Q --
 Not Running: No available resources on nodes
57.south susan workq solver -- -- 2 -- 0:20 Q --
 --

qstat -q
server: south

Queue Memory CPU Time Walltime Node Run Que Lm State
------ ------ -------- -------- ---- --- --- -- -----
workq -- -- -- -- 1 8 -- E R
126 PBS Professional 9.2 User’s Guide

Checking Job / System Status Chapter 6
column can be up to 30 characters wide, while the Username, Queue, and
Jobname column can be up to 15 characters wide. The SessID column can
be up to eight characters wide, and the NDS column can be up to four char-
acters wide.

Note: You can use this option only with the –a, -n, or –s qstat options.

6.1.16 Show state of Job Arrays

The “-J” option to qstat will show only the state of job arrays. In combina-
tion with “-t”, qstat will show only the state of subjobs.

6.1.17 Print Job Array Percentage Completed

The “-p” option to qstat prints the default display, with a column for Per-
centage Completed. For a job array, this is the number of subjobs com-
pleted and deleted, divided by the total number of subjobs.

6.1.18 Getting Information on Jobs Moved to Another Server

If your site is using peer scheduling, your job may be moved to a server
that is not your default server. When that happens, you will need to give
the job ID as an argument to qstat. If you use only “qstat”, your job will
not appear to exist. For example: you submit a job to ServerA, and it
returns the jobid as “123.ServerA”. Then 123.ServerA is moved to Ser-
verB. In this case, use

qstat 123
or

qstat 123.ServerA
to get information about your job. ServerA will query ServerB for the
information. To list all jobs at ServerB, you can use:

qstat @ServerB

If you use “qstat” without the job ID, the job will not appear to exist.

6.1.19 Viewing Resources Allocated to a Job

The exec_vnode attribute displayed via qstat shows the allocated
resources on each vnode.

The exec_vnode line looks like:
PBS Professional 9.2 User’s Guide 127

Chapter 6 Checking Job / System Status
exec_vnode = hostA:ncpus=1

For example, a job requesting

-l select=2:ncpus=1:mem=1gb+1:ncpus=4:mem=2gb

would get an exec_vnode of

exec_vnode = \
(VNA:ncpus=1:mem=1gb)+(VNB:ncpus=1:mem=1gb) \
+(VNC:ncpus=4:mem=2gb)

Note that the vnodes and resources required to satisfy a chunk are grouped
by parentheses. In the example above, if two vnodes on a single host were
required to satisfy the last chunk, the exec_vnode might be:

exec_vnode = \
(VNA:ncpus=1:mem=1gb)+(VNB:ncpus=1:mem=1gb) \
+(VNC1:ncpus=2:mem=1gb+VNC2:ncpus \
=2:mem=1gb)

You cannot use the qstat command to view any custom resource which
has been created to be invisible or unrequestable, whether this resource is
on a queue, the server, or is a job attribute. See section 4.5.14 “Resource
Permissions” on page 56.

6.2 Viewing Job / System Status with xpbs

The main display of xpbs shows a brief listing of all selected Servers, all
queues on those Servers, and any jobs in those queues that match the selec-
tion criteria (discussed below). Servers are listed in the HOST panel near
the top of the display.

To view detailed information about a given Server (i.e. similar to that pro-
duced by “qstat -fB”) select the Server in question, then click the
“Detail” button. Likewise, for details on a given queue (i.e. similar to that
produced by “qstat -fQ”) select the queue in question, then click its cor-
responding “Detail” button. The same applies for jobs as well (i.e. “qstat
-f”). You can view detailed information on any displayed job by selecting
128 PBS Professional 9.2 User’s Guide

Checking Job / System Status Chapter 6
it, and then clicking on the “Detail” button. Note that the list of jobs dis-
played will be dependent upon the Selection Criteria currently selected.
This is discussed in the xpbs portion of the next section.

6.3 The qselect Command

The qselect command provides a method to list the job identifier of
those jobs, job arrays or subjobs which meet a list of selection criteria. Jobs
are selected from those owned by a single Server. When qselect suc-
cessfully completes, it will have written to standard output a list of zero or
more job identifiers which meet the criteria specified by the options. Each
option acts as a filter restricting the number of jobs which might be listed.
With no options, the qselect command will list all jobs at the Server
which the user is authorized to list (query status of). The -u option may be
used to limit the selection to jobs owned by this user or other specified
users.

When an option is specified with a optional op component to the option
argument, then op specifies a relation between the value of a certain job
attribute and the value component of the option argument. If an op is
allowable on an option, then the description of the option letter will indi-
cate that op is allowable. The only acceptable strings for the op compo-
nent, and the relation the string indicates, are shown in the following list:

.eq. The value represented by the attribute of the job is
equal to the value represented by the option argu-
ment.

.ne. The value represented by the attribute of the job is
not equal to the value represented by the option
argument.

.ge. The value represented by the attribute of the job is
greater than or equal to the value represented by the
option argument.

.gt. The value represented by the attribute of the job is
greater than the value represented by the option
argument.

.le. The value represented by the attribute of the job is
less than or equal to the value represented by the
option argument.
PBS Professional 9.2 User’s Guide 129

Chapter 6 Checking Job / System Status
.lt. The value represented by the attribute of the job is
less than the value represented by the option argu-
ment.

The available options to qselect are:

-a [op]date_time Restricts selection to a specific time, or a range of
times. The qselect command selects only jobs for
which the value of the Execution_Time attribute is
related to the date_time argument by the optional op
operator. The date_time argument is in the POSIX
date format:

[[CC]YY]MMDDhhmm[.SS]

where the MM is the two digits for the month, DD is
the day of the month, hh is the hour, mm is the
minute, and the optional SS is the seconds. CC is the
century and YY the year. If op is not specified, jobs
will be selected for which the Execution_Time and
date_time values are equal.

-A account_string Restricts selection to jobs whose Account_Name
attribute matches the specified account_string.

-c [op] interval Restricts selection to jobs whose Checkpoint inter-
val attribute matches the specified relationship. The
values of the Checkpoint attribute are defined to
have the following ordered relationship:

n > s > c=minutes > c > u

If the optional op is not specified, jobs will be
selected whose Checkpoint attribute is equal to the
interval argument.

-h hold_list Restricts the selection of jobs to those with a spe-
cific set of hold types. Only those jobs will be
selected whose Hold_Types attribute exactly match
the value of the hold_list argument. The hold_list
argument is a string consisting of one or more occur-
130 PBS Professional 9.2 User’s Guide

Checking Job / System Status Chapter 6
rences the single letter n, or one or more of the let-
ters u, o, p, or s in any combination. If letters are
duplicated, they are treated as if they occurred once.
The letters represent the hold types:

-J Shows only job array identifiers

-l resource_list Restricts selection of jobs to those with specified
resource amounts. Only those jobs will be selected
whose Resource_List attribute matches the specified
relation with each resource and value listed in the
resource_list argument. The relation operator op
must be present. The resource_list is in the follow-
ing format:

resource_nameopvalue[,resource_nameopval,...]

You cannot use the qselect command to select
jobs based on a custom resource which has been cre-
ated to be invisible or unrequestable. See section
4.5.14 “Resource Permissions” on page 56.

-N name Restricts selection of jobs to those with a specific
name.

-p [op]priority Restricts selection of jobs to those with a priority
that matches the specified relationship. If op is not

Table 1:

Letter Meaning

n none

u user

o operator

p bad password (Windows only)

s system
PBS Professional 9.2 User’s Guide 131

Chapter 6 Checking Job / System Status
specified, jobs are selected for which the job Priority
attribute is equal to the priority.

-q destination Restricts selection to those jobs residing at the spec-
ified destination. The destination may be one of the
following three forms:

queue
@server
queue@server

If the -q option is not specified, jobs will be
selected from the default Server. If the destination
describes only a queue, only jobs in that queue on
the default batch Server will be selected. If the desti-
nation describes only a Server, then jobs in all
queues on that Server will be selected. If the destina-
tion describes both a queue and a Server, then only
jobs in the named queue on the named Server will be
selected.

-r rerun Restricts selection of jobs to those with the specified
Rerunnable attribute. The option argument must be
a single character. The following two characters are
supported by PBS: y and n.

-s states Restricts job selection to those in the specified
states. The states argument is a character string
which consists of any combination of the characters:
B,E, H, Q, R, S, T, U, W and X. The characters in
the states argument list states shown in the table
titled “Job States” on page 116.

Jobs will be selected which are in any of the speci-
fied states.

-t Shows job, job array and subjob identifiers.

-u user_list Restricts selection to jobs owned by the specified
user names. This provides a means of limiting the
132 PBS Professional 9.2 User’s Guide

Checking Job / System Status Chapter 6
selection to jobs owned by one or more users. The
syntax of the user_list is:

user_name[@host][,user_name[@host],...]

Host names may be wild carded on the left end, e.g.
“*.mydomain.com”. User_name without a
“@host” is equivalent to “user_name@*”, i.e. at
any host. Jobs will be selected which are owned by
the listed users at the corresponding hosts.

For example, say you want to list all jobs owned by user “barry” that
requested more than 16 CPUs. You could use the following qselect
command syntax:

Notice that what is returned is the job identifiers of jobs that match the
selection criteria. This may or may not be enough information for your pur-
poses. Many users will use shell syntax to pass the list of job identifiers
directly into qstat for viewing purposes, as shown in the next example
(necessarily different between UNIX and Windows).

UNIX:

qselect -u barry -l ncpus.gt.16
121.south
133.south
154.south

qstat -a ‘ qselect -u barry -l ncpus.gt.16 ‘
 Req'd Elap
Job ID User Queue Jobname Sess NDS TSK Mem Time S Time
-------- ----- ----- ------- ---- --- --- --- ---- - ----
121.south barry workq airfoil -- -- 32 -- 0:01 H --
133.south barry workq trialx -- -- 20 -- 0:01 W --
154.south barry workq airfoil 930 -- 32 -- 1:30 R 0:32
PBS Professional 9.2 User’s Guide 133

Chapter 6 Checking Job / System Status
Windows (type the following at the cmd prompt, all on one line):

Note: This technique of using the output of the qselect command as
input to qstat can also be used to supply input to other PBS commands
as well.

6.4 Selecting Jobs Using xpbs

The xpbs command provides a graphical means of specifying job selec-
tion criteria, offering the flexibility of the qselect command in a point
and click interface. Above the JOBS panel in the main xpbs display is the
Other Criteria button. Clicking it will bring up a menu that lets you choose
and select any job selection criteria you wish.

The example below shows a user clicking on the Other Criteria button,
then selecting Job States, to reveal that all job states are currently selected.
Clicking on any of these job states would remove that state from the selec-
tion criteria.

for /F "usebackq" %j in (`qselect -u barry -l ncpus.gt.16`) do
(qstat -a %j)
121.south
133.south
134 PBS Professional 9.2 User’s Guide

Checking Job / System Status Chapter 6
You may specify as many or as few selection criteria as you wish. When
you have completed your selection, click on the Select Jobs button above
the HOSTS panel to have xpbs refresh the display with the jobs that
match your selection criteria. The selected criteria will remain in effect
until you change them again. If you exit xpbs, you will be prompted if you
wish to save your configuration information; this includes the job selection
criteria.

6.5 Using xpbs TrackJob Feature

The xpbs command includes a feature that allows you to track the
progress of your jobs. When you enable the Track Job feature, xpbs will
monitor your jobs, looking for the output files that signal completion of the
job. The Track Job button will flash red on the xpbs main display, and if
you then click it, xpbs will display a list of all completed jobs (that you
were previously tracking). Selecting one of those jobs will launch a win-
dow containing the standard output and standard error files associated with
the job.
PBS Professional 9.2 User’s Guide 135

Chapter 6 Checking Job / System Status
Important: The Track Job feature is not currently available on
Windows.

To enable xpbs job tracking, click on the Track Job button at the top cen-
ter of the main xpbs display. Doing so will bring up the Track Job dialog
box shown below.

From this window you can name the users whose jobs you wish to monitor.
You also need to specify where you expect the output files to be: either
local or remote (e.g. will the files be retained on the Server host, or did you
request them to be delivered to another host?). Next, click the start/reset
tracking button and then the close window button. Note that you can dis-
able job tracking at any time by clicking the Track Job button on the main
xpbs display, and then clicking the stop tracking button.
136 PBS Professional 9.2 User’s Guide

Chapter 7
Working With PBS Jobs

This chapter introduces the reader to various commands useful in working
with PBS jobs. Covered topics include: modifying job attributes, holding
and releasing jobs, sending messages to jobs, changing order of jobs within
a queue, sending signals to jobs, and deleting jobs. In each section below,
the command line method for accomplishing a particular task is presented
first, followed by the xpbs method.

7.1 Modifying Job Attributes

Most attributes can be changed by the owner of the job (or a manager or
operator) while the job is still queued. However, once a job begins execu-
tion, the only resources that can be modified are cputime and wall-
time. These can only be reduced.

When the qalter "-l" option is used to alter the resource list of a queued job,
it is important to understand the interactions between altering the select
PBS Professional 9.2 User’s Guide 137

Chapter 7 Working With PBS Jobs
directive and job limits.

If the job was submitted with an explicit "-l select=", then vnode-level
resources must be qaltered using the "-l select=" form. In this case a vnode
level resource RES cannot be qaltered with the "-l RES" form.

For example:
Submit the job:
% qsub -l select=1:ncpus=2:mem=512mb jobscript
Job’s ID is 230

qalter the job using "-l RES" form:
% qalter -l ncpus=4 230

Error reported by qalter:
qalter: Resource must only appear in "select"
specification when select is used: ncpus 230

qalter the job using the "-l select=" form:
% qalter -l select=1:ncpus=4:mem=512mb 230

No error reported by qalter:
%

7.1.1 Changing the Selection Directive

If the selection directive is altered, the job limits for any consumable
resource in the directive are also modified.

For example, if a job is queued with the following resource list:

select=2:ncpus=1:mem=5gb, ncpus=2, mem=10gb

and the selection directive is altered to request

select=3:ncpus=2:mem=6gb

then the job limits are reset to ncpus=6 and mem=18gb
138 PBS Professional 9.2 User’s Guide

Working With PBS Jobs Chapter 7
7.1.2 Changing the Job-wide Limit

However, if the job-wide limit is modified, the corresponding resources in
the selection directive are not modified. It would be impossible to deter-
mine where to apply the changes in a compound directive.

Reducing a job-wide limit to a new value less than the sum of the resource
in the directive is strongly discouraged. This may produce a situation
where the job is aborted during execution for exceeding its limits. The
actual effect of such a modification is not specified.

If a job is queued, requested modifications must still fit within the queue's
and server's job resource limits. If a requested modification to a resource
would exceed the queue's or server's job resource limits, the resource
request will be rejected.

Resources are modified by using the -l option, either in chunks inside of
selection statements, or in job-wide modifications using
resource_name=value pairs. The selection statement is of the form:

-l select=[N:]chunk[+[N:]chunk ...]

where N specifies how many of that chunk, and a chunk is of the form:

resource_name=value[:resource_name=value ...]

Job-wide resource_name=value modifications are of the form:

-l resource_name=value[,resource_name=value
...]

It is an error to use a boolean resource as a job-wide limit.

Placement of jobs on vnodes is changed using the place statement:

-l place=modifier[:modifier]

where modifier is any combination of group, excl, and/or one of
free|pack|scatter.
PBS Professional 9.2 User’s Guide 139

Chapter 7 Working With PBS Jobs
The usage syntax for qalter is:

qalter job-resources job-list

The following examples illustrate how to use the qalter command. First
we list all the jobs of a particular user. Then we modify two attributes as
shown (increasing the wall-clock time from 20 to 25 minutes, and changing
the job name from “airfoil” to “engine”):

To alter a job attribute via xpbs, first select the job(s) of interest, and the
click on modify button. Doing so will bring up the Modify Job Attributes
dialog box. From this window you may set the new values for any attribute
you are permitted to change. Then click on the confirm modify button at the
lower left of the window.

The qalter command can be used on job arrays, but not on subjobs or
ranges of subjobs. When used with job arrays, any job array identifiers
must be enclosed in double quotes, e.g.:

qalter -l walltime=25:00 “1234[].south”

You cannot use the qalter command (or any other command) to alter a
custom resource which has been created to be invisible or unrequestable.
See section 4.5.14 “Resource Permissions” on page 56.

For more information, see the qalter(1B) manual page.

qstat -u barry
 Req'd Elap
Job ID User Queue Jobname Sess NDS TSK Mem Time S Time
-------- ------ ----- ------- ---- --- --- --- ---- - ----
51.south barry workq airfoil 930 -- 1 -- 0:16 R 0:01
54.south barry workq airfoil -- -- 1 -- 0:20 Q --

qalter -l walltime=20:00 -N engine 54

qstat -a 54
 Req'd Elap
Job ID User Queue Jobname Sess NDS TSK Mem Time S Time
-------- ------ ----- ------- ---- --- --- --- ---- - ----
54.south barry workq engine -- -- 1 -- 0:25 Q --
140 PBS Professional 9.2 User’s Guide

Working With PBS Jobs Chapter 7
7.2 Holding and Releasing Jobs

PBS provides a pair of commands to hold and release jobs. To hold a job is
to mark it as ineligible to run until the hold on the job is “released”.

The qhold command requests that a Server place one or more holds on a
job. A job that has a hold is not eligible for execution. There are three types
of holds: user, operator, and system. A user may place a user hold upon any
job the user owns. An “operator”, who is a user with “operator privilege”,
may place either an user or an operator hold on any job. The PBS Manager
may place any hold on any job. The usage syntax of the qhold command
is:

qhold [-h hold_list] job_identifier ...

Note that for a job array the job_identifier must be enclosed in dou-
ble quotes.

The hold_list defines the type of holds to be placed on the job. The
hold_list argument is a string consisting of one or more of the letters
u, p, o, or s in any combination, or the letter n. The hold type associated
with each letter is:

If no -h option is given, the user hold will be applied to the jobs described
by the job_identifier operand list. If the job identified by
job_identifier is in the queued, held, or waiting states, then all that
occurs is that the hold type is added to the job. The job is then placed into
held state if it resides in an execution queue.

Table 1:

Letter Meaning

n none - no hold type specified

u user - the user may set and release this hold type

p password - set if job fails due to a bad password; can be unset
by the user

o operator; require operator privilege to unset

s system - requires manager privilege to unset
PBS Professional 9.2 User’s Guide 141

Chapter 7 Working With PBS Jobs
If the job is running, then the following additional action is taken to inter-
rupt the execution of the job. If the job is checkpointable, requesting a hold
on a running job will cause (1) the job to be checkpointed, (2) the resources
assigned to the job to be released, and (3) the job to be placed in the held
state in the execution queue. If the job is not checkpointable, qhold will
only set the requested hold attribute. This will have no effect unless the job
is requeued with the qrerun command. See section 4.13.13.1 “Check-
pointable Jobs” on page 82.

The qhold command can be used on job arrays, but not on subjobs or
ranges of subjobs. On job arrays, the qhold command can be applied only
in the ‘Q’, ‘B’ or ‘W’ states. This will put the job array in the ‘H’, held,
state. If any subjobs are running, they will run to completion. Job arrays
cannot be moved in the ‘H’ state if any subjobs are running.

Checkpointing is not supported for job arrays. Even on systems that sup-
port checkpointing, no subjobs will be checkpointed -- they will run to
completion.

Similarly, the qrls command releases a hold on a job. However, the user
executing the qrls command must have the necessary privilege to release
a given hold. The same rules apply for releasing a hold as exist for setting a
hold.

The qrls command can only be used with job array objects, not with sub-
jobs or ranges. The job array will be returned to its pre-hold state, which
can be either ‘Q’, ‘B’, or ‘W’.

The usage syntax of the qrls command is:

qrls [-h hold_list] job_identifier ...

For job arrays, the job_identifier must be enclosed in double quotes.

The following examples illustrate how to use both the qhold and qrls
commands. Notice that the state (“S”) column shows how the state of the
job changes with the use of these two commands.
142 PBS Professional 9.2 User’s Guide

Working With PBS Jobs Chapter 7
If you attempted to release a hold on a job which is not on hold, the request
will be ignored. If you use the qrls command to release a hold on a job
that had been previously running, and subsequently checkpointed, the hold
will be released, and the job will return to the queued (Q) state (and be eli-
gible to be scheduled to run when resources come available).

To hold (or release) a job using xpbs, first select the job(s) of interest, then
click the hold (or release) button.

7.3 Deleting Jobs

PBS provides the qdel command for deleting jobs from the system. The
qdel command deletes jobs in the order in which their job identifiers are
presented to the command. A job that has been deleted is no longer subject
to management by PBS. A batch job may be deleted by its owner, a PBS
operator, or a PBS administrator.

qstat -a 54
 Req'd Elap
Job ID User Queue Jobname Sess NDS TSK Mem Time S Time
-------- ------ ----- ------- ---- --- --- --- ---- - ----
54.south barry workq engine -- -- 1 -- 0:20 Q --

qhold 54
qstat -a 54
 Req'd Elap
Job ID User Queue Jobname Sess NDS TSK Mem Time S Time
-------- ------ ----- ------- ---- --- --- --- ---- - ----
54.south barry workq engine -- -- 1 -- 0:20 H --

qrls -h u 54
qstat -a 54
 Req'd Elap
Job ID User Queue Jobname Sess NDS TSK Mem Time S Time
-------- ------ ----- ------- ---- --- --- --- ---- - ----
54.south barry workq engine -- -- 1 -- 0:20 Q --
PBS Professional 9.2 User’s Guide 143

Chapter 7 Working With PBS Jobs
Example:
qdel 51

qdel 1234[].server

Job array identifiers must be enclosed in double quotes.

Mail is sent for each job deleted unless you specify otherwise. Use the fol-
lowing option to qdel to prevent more email than you want from being
sent:

-Wsuppress_email=<N>
N must be a non-negative integer. Make N the largest number of emails
you wish to receive. PBS will send one email for each deleted job, up to N.
Note that a job array is one job, so deleting a job array results in one email
being sent.

To delete a job using xpbs, first select the job(s) of interest, then click the
delete button.

7.4 Sending Messages to Jobs

To send a message to a job is to write a message string into one or more
output files of the job. Typically this is done to leave an informative mes-
sage in the output of the job. Such messages can be written using the qmsg
command.

Important: A message can only be sent to running jobs.

The usage syntax of the qmsg command is:

qmsg [-E][-O] message_string job_identifier

Example:
qmsg -O “output file message” 54

qmsg -O “output file message” “1234[].server”

Job array identifiers must be enclosed in double quotes.

The -E option writes the message into the error file of the specified job(s).
The -O option writes the message into the output file of the specified
144 PBS Professional 9.2 User’s Guide

Working With PBS Jobs Chapter 7
job(s). If neither option is specified, the message will be written to the error
file of the job.

The first operand, message_string, is the message to be written. If the
string contains blanks, the string must be quoted. If the final character of
the string is not a newline, a newline character will be added when written
to the job’s file. All remaining operands are job_identifiers which
specify the jobs to receive the message string. For example:

To send a message to a job using xpbs, first select the job(s) of interest,
then click the msg button. Doing so will launch the Send Message to Job
dialog box. From this window, you may enter the message you wish to
send and indicate whether it should be written to the standard output or the
standard error file of the job. Click the Send Message button to complete
the process.

7.5 Sending Signals to Jobs

The qsig command requests that a signal be sent to executing PBS jobs.
The signal is sent to the session leader of the job. Usage syntax of the
qsig command is:

qsig [-s signal] job_identifier

Job array job_identifiers must be enclosed in double quotes.

If the -s option is not specified, SIGTERM is sent. If the -s option is spec-
ified, it declares which signal is sent to the job. The signal argument
is either a signal name, e.g. SIGKILL, the signal name without the SIG
prefix, e.g. KILL, or an unsigned signal number, e.g. 9. The signal name
SIGNULL is allowed; the Server will send the signal 0 to the job which
will have no effect. Not all signal names will be recognized by qsig. If it
doesn’t recognize the signal name, try issuing the signal number instead.
The request to signal a batch job will be rejected if:

qmsg -E “hello to my error (.e) file” 55
qmsg -O “hello to my output (.o) file” 55
qmsg “this too will go to my error (.e) file” 55
PBS Professional 9.2 User’s Guide 145

Chapter 7 Working With PBS Jobs
The user is not authorized to signal the job.
The job is not in the running state.
The requested signal is not supported by the execu-
tion host.
The job is exiting.

Two special signal names, “suspend” and “resume”, (note, all lower case),
are used to suspend and resume jobs. When suspended, a job continues to
occupy system resources but is not executing and is not charged for wall-
time. Manager or operator privilege is required to suspend or resume a job.

The three examples below all send a signal 9 (SIGKILL) to job 34:

Important: On most UNIX systems the command “kill -l”
(that’s ‘minus ell’) will list all the available signals.

To send a signal to a job using xpbs, first select the job(s) of interest, then
click the signal button. Doing so will launch the Signal Running Job dialog
box.

From this window, you may click on any of the common signals, or you
may enter the signal number or signal name you wish to send to the job.
Click the Signal button to complete the process.

7.6 Changing Order of Jobs

PBS provides the qorder command to change the order of two jobs,
within or across queues. To order two jobs is to exchange the jobs’ posi-
tions in the queue or queues in which the jobs reside. If job1 is at position 3
in queue A and job2 is at position 4 in queue B, qordering them will result
in job1 being in position 4 in queue B and job2 being in position 3 in queue
A. The two jobs must be located at the same Server, and both jobs must be
owned by the user. No attribute of the job (such as priority) is changed. The

qsig -s SIGKILL 34
qsig -s KILL 34
qsig -s 9 34
146 PBS Professional 9.2 User’s Guide

Working With PBS Jobs Chapter 7
impact of changing the order within the queue(s) is dependent on local job
scheduling policy; contact your systems administrator for details.

Important: A job in the running state cannot be reordered.

Usage of the qorder command is:

qorder job_identifier1 job_identifier2

Job array identifiers must be enclosed in double quotes.

Both operands are job_identifiers which specify the jobs to be
exchanged.

To change the order of two jobs using xpbs, select the two jobs, and then
click the order button.

The qorder command can only be used with job array objects, not on sub-
jobs or ranges. This will change the queue order of the job array in associ-
ation with other jobs or job arrays in the queue.

qstat -u bob
 Req'd Elap
Job ID User Queue Jobname Sess NDS TSK Mem Time S Time
-------- ------ ----- ------- ---- --- --- --- ---- - ----
54.south bob workq twinkie -- -- 1 -- 0:20 Q --
63[].south bob workq airfoil -- -- 1 -- 0:13 Q --

qorder 54 “63[]”
qstat -u bob
 Req'd Elap
Job ID User Queue Jobname Sess NDS TSK Mem Time S Time
-------- ------ ----- ------- ---- --- --- --- ---- - ----
63[].south bob workq airfoil -- -- 1 -- 0:13 Q --
54.south bob workq twinkie -- -- 1 -- 0:20 Q --
PBS Professional 9.2 User’s Guide 147

Chapter 7 Working With PBS Jobs
7.7 Moving Jobs Between Queues

PBS provides the qmove command to move jobs between different queues
(even queues on different Servers). To move a job is to remove the job
from the queue in which it resides and instantiate the job in another queue.

Important: A job in the running state cannot be moved.

The usage syntax of the qmove command is:

qmove destination job_identifier(s)

Job array job_identifiers must be enclosed in double quotes.

The first operand is the new destination for

queue
@server
queue@server

If the destination operand describes only a queue, then qmove will
move jobs into the queue of the specified name at the job’s current Server.
If the destination operand describes only a Server, then qmove will
move jobs into the default queue at that Server. If the destination
operand describes both a queue and a Server, then qmove will move the
jobs into the specified queue at the specified Server. All following operands
are job_identifiers which specify the jobs to be moved to the new
destination.

To move jobs between queues or between Servers using xpbs, select the
job(s) of interest, and then click the move button. Doing so will launch the
Move Job dialog box from which you can select the queue and/or Server to
which you want the job(s) moved.

The qmove command can only be used with job array objects, not with
subjobs or ranges. Job arrays can only be moved from one server to
another if they are in the ‘Q’, ‘H’, or ‘W’ states, and only if there are no
running subjobs. The state of the job array object is preserved in the
move. The job array will run to completion on the new server.
148 PBS Professional 9.2 User’s Guide

Working With PBS Jobs Chapter 7
As with jobs, a qstat on the server from which the job array was moved will
not show the job array. A qstat on the job array object will be redirected to
the new server.

Note: The subjob accounting records will be split between the two servers.

7.8 Converting a Job into a Reservation Job

The pbs_rsub command can be used to convert a normal job into a reser-
vation job that will run as soon as possible. PBS creates a reservation
queue and a reservation, and moves the job into the queue. Other jobs can
also be moved into that queue via qmove(1B) or submitted to that queue
via qsub(1B). The reservation is called an ASAP reservation.

The format for converting a normal job into a reservation job is:

pbs_rsub [-l walltime=time] -W qmove=job_identifier

Example:
pbs_rsub -W qmove=54

pbs_rsub -W qmove=”1234[].server”

The -R and -E options to pbs_rsub are disabled when using the -W
qmove option.

For more information, see “Advance and Standing Reservation of
Resources” on page 172, and the pbs_rsub(1B), qsub(1B) and
qmove(1B) manual pages.

A job’s default walltime is 5 years. Therefore an ASAP reservation’s start
time can be in 5 years, if all the jobs in the system have the default wall-
time.

You cannot use the pbs_rsub command (or any other command) to
request a custom resource which has been created to be invisible or unre-
questable. See section 4.5.14 “Resource Permissions” on page 56.
PBS Professional 9.2 User’s Guide 149

Chapter 7 Working With PBS Jobs
150 PBS Professional 9.2 User’s Guide

Chapter 8
Advanced PBS Features

This chapter covers the less commonly used commands and more complex
topics which will add substantial functionality to your use of PBS. The
reader is advised to read chapters 5 - 7 of this manual first.

8.1 New Features

8.1.1 Job-Specific Staging and Execution Directories

PBS can now provide a staging and execution directory for each job. Jobs
have new attributes sandbox and jobdir, the MOM has a new option
$jobdir_root, and there is a new environment variable called
PBS_JOBDIR. If the job’s sandbox attribute is set to PRIVATE, PBS
creates a job-specific staging and execution directory. If the job’s sand-
box attribute is unset or is set to HOME, PBS uses the user’s home direc-
tory for staging and execution, which is how previous versions of PBS
behaved. Note that where local pathnames used in staging used to be rela-
PBS Professional 9.2 User’s Guide 151

Chapter 8 Advanced PBS Features
tive to the user’s home directory, they are now relative to the staging and
execution directory. See section 8.7 “Input/Output File Staging” on page
158.

8.1.2 Standing Reservations

PBS now provides a facility for making standing reservations. A standing
reservation is a series of advance reservations. The pbs_rsub command is
used to create both advance and standing reservations. See section 8.9
“Advance and Standing Reservation of Resources” on page 172.

8.2 UNIX Job Exit Status

On UNIX systems, the exit status of a job is normally the exit status of the
shell executing the job script. If a user is using csh and has a .logout
file in the home directory, the exit status of csh becomes the exit status of
the last command in .logout. This may impact the use of job dependen-
cies which depend on the job’s exit status. To preserve the job’s exit status,
the user may either remove .logout or edit it as shown in this example:

Doing so will ensure that the exit status of the job persists across the invo-
cation of the .logout file.

The exit status of a job array is determined by the status of each of the com-
pleted subjobs. It is only available when all valid subjobs have completed.
The individual exit status of a completed subjob is passed to the epilogue,
and is available in the ‘E’ accounting log record of that subjob. See “Job
Array Exit Status” on page 221.

8.3 Changing UNIX Job umask

The “-W umask=nnn” option to qsub allows you to specify, on UNIX
systems, what umask PBS should use when creating and/or copying your

set EXITVAL = $status
[.logout’s original content]
exit $EXITVAL
152 PBS Professional 9.2 User’s Guide

Advanced PBS Features Chapter 8
stdout and stderr files, and any other files you direct PBS to transfer
on your behalf.

Important: This feature does not apply to Windows.

The following example illustrates how to set your umask to 022 (i.e. to
have files created with write permission for owner only: -rw-r--r--).

qsub -W umask=022 my_job

#PBS -W umask=022

8.4 Requesting qsub Wait for Job Completion

The “-W block=true” option to qsub allows you to specify that you
want qsub to wait for the job to complete (i.e. “block”) and report the exit
value of the job. If job submission fails, no special processing will take
place. If the job is successfully submitted, qsub will block until the job
terminates or an error occurs.

If qsub receives one of the signals: SIGHUP, SIGINT, or SIGTERM, it
will print a message and then exit with the exit status 2. If the job is deleted
before running to completion, or an internal PBS error occurs, an error
message describing the situation will be printed to this error stream and
qsub will exit with an exit status of 3. Signals SIGQUIT and SIGKILL
are not trapped and thus will immediately terminate the qsub process,
leaving the associated job either running or queued. If the job runs to com-
pletion, qsub will exit with the exit status of the job. (See also section 8.2
“UNIX Job Exit Status” on page 152 for further discussion of the job exit
status.)

For job arrays, blocking qsub waits until the entire job array is complete,
then returns the exit status of the job array.

8.5 Specifying Job Dependencies

PBS allows you to specify dependencies between two or more jobs. Depen-
dencies are useful for a variety of tasks, such as:
PBS Professional 9.2 User’s Guide 153

Chapter 8 Advanced PBS Features
1 Specifying the order in which jobs in a set should
execute

2 Requesting a job run only if an error occurs in
another job

3 Holding jobs until a particular job starts or com-
pletes execution

The “-W depend=dependency_list” option to qsub defines the
dependency between multiple jobs. The dependency_list has the format:

type:arg_list[,type:arg_list ...]

where except for the on type, the arg_list is one or more PBS job IDs
in the form:

jobid[:jobid ...]

There are several types:

after:arg_list

This job may be scheduled for execution at any
point after all jobs in arg_list have started execution.

afterok:arg_list

This job may be scheduled for execution only after
all jobs in arg_list have terminated with no errors.
See "Warning about exit status with csh" in EXIT
STATUS.

afternotok:arg_list

This job may be scheduled for execution only after
all jobs in arg_list have terminated with errors. See
"Warning about exit status with csh" in EXIT STA-
TUS.

afterany:arg_list
154 PBS Professional 9.2 User’s Guide

Advanced PBS Features Chapter 8
This job may be scheduled for execution after all
jobs in arg_list have finished execution, with or
without errors.

before:arg_list

Jobs in arg_list may begin execution once this job
has begun execution.

beforeok:arg_list

Jobs in arg_list may begin execution once this job
terminates without errors. See "Warning about exit
status with csh" in EXIT STATUS.

beforenotok:arg_list

If this job terminates execution with errors, the jobs
in arg_list may begin. See "Warning about exit sta-
tus with csh" in EXIT STATUS.

beforeany:arg_list

Jobs in arg_list may begin execution once this job
terminates execution, with or without errors.

on:count

This job may be scheduled for execution after
count dependencies on other jobs have been satis-
fied. This type is used in conjunction with one of
the before types listed. count is an integer
greater than 0.

Job IDs in the arg_list of before types must have been submitted with a
type of on.

To use the before types, the user must have the authority to alter the jobs
in arg_list. Otherwise, the dependency is rejected and the new job
aborted.
PBS Professional 9.2 User’s Guide 155

Chapter 8 Advanced PBS Features
Error processing of the existence, state, or condition of the job on which
the newly submitted job is a deferred service, i.e. the check is performed
after the job is queued. If an error is detected, the new job will be deleted
by the server. Mail will be sent to the job submitter stating the error.
Suppose you have three jobs (job1, job2, and job3) and you want job3 to
start after job1 and job2 have ended. The first example below illustrates the
options you would use on the qsub command line to specify these job
dependencies.

As another example, suppose instead you want job2 to start only if job1
ends with no errors (i.e. it exits with a no error status):

Similarly, you can use before dependencies, as the following example
exhibits. Note that unlike after dependencies, before dependencies
require the use of the on dependency.

You can use xpbs to specify job dependencies as well. On the Submit Job
window, in the other options section (far left, center of window) click on
one of the three dependency buttons: “after depend”, “before depend”, or
“concurrency”. These will launch a “Dependency” window in which you
will be able to set up the dependencies you wish.

qsub job1
16394.jupiter
qsub job2
16395.jupiter
qsub -W depend=afterany:16394:16395 job3
16396.jupiter

qsub job1
16397.jupiter
qsub -W depend=afterok:16397 job2
16396.jupiter

qsub -W depend=on:2 job1
16397.jupiter
qsub -W depend=beforeany:16397 job2
16398.jupiter
qsub -W depend=beforeany:16397 job3
16399.jupiter
156 PBS Professional 9.2 User’s Guide

Advanced PBS Features Chapter 8
8.5.1 Job Array Dependencies

Job dependencies are supported:
• Between jobs and jobs
• Between job arrays and job arrays
• Between job arrays and jobs
• Between jobs and job arrays

Note: Job dependencies are not supported for subjobs or ranges of subjobs.

8.6 Delivery of Output Files

To transfer output files or to transfer staged-in or staged-out files to/from a
remote destination, PBS uses either rcp or scp depending on the configu-
ration options. The version of rcp used by PBS always exits with a non-
zero exit status for any error. Thus MOM knows if the file was delivered or
not. The secure copy program, scp, is also based on this version of rcp
and exits with the proper exit status.

If using rcp, the copy of output or staged files can fail for (at least) two
reasons.

1. The user lacks authorization to access the specified
system. (See discussion in “User’s PBS Environ-
ment” on page 23.)

2. Under UNIX, if the user’s .cshrc outputs any
characters to standard output, e.g. contains an echo
command, pbs_rcp will fail.

If using Secure Copy (scp), then PBS will first try to deliver output or
stagein/out files using scp. If scp fails, PBS will try again using rcp
(assuming that scp might not exist on the remote host). If rcp also fails,
the above cycle will be repeated after a delay, in case the problem is caused
by a temporary network problem. All failures are logged in MOM’s log,
and an email containing the errors is sent to the job owner.

For delivery of output files on the local host, PBS uses the cp command
(UNIX) or the xcopy command (Windows). Local and remote delivery of
output may fail for the following additional reasons:
PBS Professional 9.2 User’s Guide 157

Chapter 8 Advanced PBS Features
1. A directory in the specified destination path does not
exist.

2. A directory in the specified destination path is not
searchable by the user.

3. The target directory is not writable by the user.

8.7 Input/Output File Staging

File staging is a way to specify which files should be copied onto the exe-
cution host before the job starts, and which should be copied off the execu-
tion host when it finishes.

8.7.1 Staging and Execution Directory: User’s Home vs. Job-specific

The job’s staging and execution directory is the directory to which files are
copied before the job runs, and from which output files are copied after the
job has finished. This directory is either your home directory or a job-spe-
cific directory created by PBS just for this job. If you use job-specific stag-
ing and execution directories, you don’t need to have a home directory on
each execution host, as long as those hosts are configured properly. In
addition, each job gets its own staging and execution directory, so you can
more easily avoid filename collisions.

This table lists the differences between using your home directory for stag-
ing and execution and using a job-specific staging and execution directory
created by PBS.

Table 1: Differences Between User’s Home and Job-specific Directory
for Staging and Execution

Question Regarding Action,
Requirement, or Setting

User’s Home
Directory

Job-specific
Directory

Does PBS create a job-specific stag-
ing and execution directory?

No Yes

User’s home directory must exist on
execution host(s)?

Yes No
158 PBS Professional 9.2 User’s Guide

Advanced PBS Features Chapter 8
8.7.2 Using Job-specific Staging and Execution Directories

8.7.2.1 Setting the Job’s Staging and Execution Directory

The job’s sandbox attribute controls whether PBS creates a unique job-
specific staging and execution directory for this job. If the job’s sandbox
attribute is set to PRIVATE, PBS creates a unique staging and execution
directory for the job. If sandbox is unset, or is set to HOME, PBS uses
the user’s home directory as the job’s staging and execution directory. By
default, the sandbox attribute is not set.

The user can set the sandbox attribute via qsub, or through a PBS direc-
tive. For example:

qsub -Wsandbox=PRIVATE

Standard out and standard error auto-
matically deleted when qsub -k
option is used?

No Yes

When are staged-out files are
deleted?

Successfully
staged-out
files are
deleted; others
go to “undeliv-
ered”

Only after all
are success-
fully staged
out

Staging and execution directory
deleted after job finishes?

No Yes

How is job’s sandbox attribute set? HOME or not
set

PRIVATE

Table 1: Differences Between User’s Home and Job-specific Directory
for Staging and Execution

Question Regarding Action,
Requirement, or Setting

User’s Home
Directory

Job-specific
Directory
PBS Professional 9.2 User’s Guide 159

Chapter 8 Advanced PBS Features
The job’s sandbox attribute cannot be altered while the job is executing.

8.7.2.2 The Job’s jobdir Attribute and the PBS_JOBDIR Environ-
ment Variable

The job’s jobdir attribute is a read-only attribute, set to the pathname of
the job’s staging and execution directory on the primary host. The user can
view this attribute by using qstat -f, only while the job is executing.
The value of jobdir is not retained if a job is rerun; it is undefined
whether jobdir is visible or not when the job is not executing.

The environment variable PBS_JOBDIR is set to the pathname of the
staging and execution directory on the primary execution host.
PBS_JOBDIR is added to the job script process, any job tasks, and the
prologue and epilogue.

8.7.3 Attributes and Environment Variables Affecting Staging

The following attributes and environment variables affect staging and exe-

Table 2: Effect of Job’s sandbox Attribute on Location of Staging
and Execution Directory

Job’s sandbox
attribute Effect

not set Job’s staging and execution directory is the user’s
home directory

HOME Job’s staging and execution directory is the user’s
home directory

PRIVATE Job’s staging and execution directory is a job-spe-
cific directory created by PBS.

If the qsub -k option is used, output and error files
are retained on the primary execution host in the
staging and execution directory. This directory is
removed, along with all of its contents, when the
job finishes.
160 PBS Professional 9.2 User’s Guide

Advanced PBS Features Chapter 8
cution.

Table 3: Attributes and Environment Variables Affecting Staging

 Attribute or Environment
Variable Effect

Job’s sandbox attribute Determines whether PBS uses user’s
home directory or creates job-specific
directory for staging and execution.
User-settable per job via qsub -W or
through a PBS directive.

Job’s stagein attribute Sets list of files or directories to be staged
in. User-settable per job via qsub -W or
through a PBS directive.

Job’s stageout attribute Sets list of files or directories to be staged
out. User-settable per job via qsub -W
or through a PBS directive.

Job’s Keep_Files
attribute

Determines whether output and/or error
files remain on execution host. User-set-
table per job via qsub -k or through a
PBS directive. If the Keep_Files
attribute is set to o and/or e (output and/
or error files remain in the staging and
execution directory) and the job’s sand-
box attribute is set to PRIVATE, stan-
dard out and/or error files are removed,
when the staging directory is removed at
job end along with its contents.

Job’s jobdir attribute Set to pathname of staging and execution
directory on primary execution host.
Read-only; viewable via
qstat -f.

Job’s PBS_JOBDIR envi-
ronment variable

Set to pathname of staging and execution
directory on primary execution host.
Added to environments of job script pro-
cess, job tasks, and prologue and epi-
logue.
PBS Professional 9.2 User’s Guide 161

Chapter 8 Advanced PBS Features
8.7.4 Specifying Files To Be Staged In or Staged Out

You can specify files to be staged in before the job runs and staged out after
the job runs by using -W stagein=file_list and -W stage-
out=file_list. You can use these as options to qsub, or as directives
in the job script.

The file_list takes the form:

local_path@hostname:remote_path[,...]

for both stagein and stageout.

The name local_path is the name of the file in the job’s staging and execu-
tion directory (on the execution host). The local_path can be relative to
the job’s staging and execution directory, or it can be an absolute path.

The ‘@’ character separates the local specification from the remote specifi-
cation.

The name remote_path is the file name on the host specified by hostname.
For stagein, this is the location where the input files come from. For stage-
out, this is where the output files end up when the job is done. You must
specify a hostname. The name can be absolute, or it can be relative to the
user’s home directory on the remote machine.

Important: It is advisable to use an absolute pathname for the
remote_path. Remember that the path to your home
directory may be different on each machine, and that
when using sandbox = PRIVATE, you may or
may not have a home directory on all execution
machines.

Job’s TMPDIR environ-
ment variable

Location of job-specific scratch directory.

Table 3: Attributes and Environment Variables Affecting Staging

 Attribute or Environment
Variable Effect
162 PBS Professional 9.2 User’s Guide

Advanced PBS Features Chapter 8
For stagein, the direction of travel is from remote_path to local_path.

For stageout, the direction of travel is from local_path to remote_path.

The following example shows how to use a directive to stagein a file
named grid.dat located in the directory /u/user1 on the host called
serverA. The staged-in file is copied to the staging and execution direc-
tory and given the name dat1. Since local_path is evaluated relative
to the staging and execution directory, it is not necessary to specify a full
pathname for dat1. Always use a relative pathname for local_path
when the job’s staging and execution directory is created by PBS.

#PBS -W stagein=dat1@serverA:/u/user1/ \

grid.dat ...

To use the qsub option to stage in the file residing on myhost, in /
Users/myhome/mydata/data1, calling it input_data1 in the
staging and execution directory:

qsub -W stagein=input_data1@myhost:/Users/

myhome/mydata/data1

To stage more than one file or directory, use a comma-separated list of
paths, and enclose the list in double quotes. For example, to stage two
files data1 and data2 in:

qsub -W stagein=\

“input1@hostA:/myhome/data1, \

input2@hostA:/myhome/data1”

• Under Windows, special characters such as spaces, backslashes (\),
colons (:), and drive letter specifications are valid pathnames. For
example, the following will stagein the grid.dat file on drive D at hostB
to a local file (“dat1”) on drive C.:

qsub -W stagein=”dat1@hostB:D\Documents and \

Settings\grid.dat”
PBS Professional 9.2 User’s Guide 163

Chapter 8 Advanced PBS Features
8.7.4.1 Copying Directories Into and Out Of the Staging and Execu-
tion Directory

You can stage directories into and out of the staging and execution direc-
tory the same way you stage files. The remote_path and
local_path for both stagein and stageout can be a directory. If you
stagein or stageout a directory, PBS copies that directory along with all of
its files and subdirectories. At the end of the job, the directory, including
all files and subdirectories, is deleted. This can create a problem if multiple
jobs are using the same directory.

8.7.4.2 Wildcards In File Staging

You can use wildcards when staging files and directories, according to the
following rules.

• The asterisk “*” matches one or more characters.

• The question mark “?” matches a single character.

• All other characters match only themselves.

• Wildcards inside of quote marks are expanded.

• Wildcards cannot be used to match UNIX files that begin with period
“.” or Windows files that have the “SYSTEM” or “HIDDEN”
attributes.

• When using the qsub command line on UNIX, you must prevent the
shell from expanding wildcards. For some shells, you can enclose the
pathnames in double quotes. For some shells, you can use a backspace
before the wildcard.

• Wildcards can only be used in the source side of a staging specification.
This means they can be used in the remote_path specification for
stagein, and in the local_path specification for stageout.

• When staging using wildcards, the destination must be a directory. If
the destination is not a directory, the result is undefined. So for exam-
ple, when staging out all .out files, you must specify a directory for
remote_path.

• Wildcards can only be used in the final path component, i.e. the base-
name.

• When wildcards are used during stagein, PBS will not automatically
delete staged files at job end. Note that if PBS created the staging and
164 PBS Professional 9.2 User’s Guide

Advanced PBS Features Chapter 8
execution directory, that directory and all its contents are deleted at job
end.

Examples:

1 Stage out all files from the execution directory to a specific directory:

• UNIX
-W stageout=*@myworkstation:/user/project1/

case1

• Windows
-W stageout=*@mypc:E:\project1\case1

2 Stage out specific types of result files and disregard the scratch and
other temporary files after the job terminates. The result files that are
interesting for this example end in '.dat':

• UNIX
-W stageout=*.dat@myworkstation:project3/data

• Windows
-W stageout=*.dat@mypc:C:\project\data

3 Stage in all files from an application data directory to a subdirectory:

• UNIX
-W stagein=jobarea@myworkstation:crashtest1/*

• Windows
-W stagein=jobarea@mypc:E:\crashtest1*

4 Stage in data from files and directories matching “wing*”:

• UNIX
-W stagein=.@myworkstation:848/wing*

• Windows
-W stagein=.@mypc:E:\flowcalc\wing*

5 Stage in .bat and .dat files to jobarea:

• UNIX:
-W stagein=jobarea@myworkstation:/users/me/crash1.?at

• Windows:
-W stagein=jobarea@myworkstation:C:\me\crash1.?at
PBS Professional 9.2 User’s Guide 165

Chapter 8 Advanced PBS Features
8.7.4.3 Caveats

When using a job-specific staging and execution directory, do not use an
absolute path in local_path.

8.7.4.4 Output Filenames

The name of the job defaults to the script name, if no name is given via
qsub -N, via a PBS directive, or via stdin. For example, if the sequence
number is 1234,

#PBS -N fixgamma

gives stdout the name fixgamma.o1234 and stderr the name fix-
gamma.e1234.

For information on submitting jobs, see section 4.4 “Submitting a PBS
Job” on page 44.

8.7.5 Example of Using Job-specific Staging and Execution Directories

In this example, you want the file “jay.fem” to be delivered to the job-spe-
cific staging and execution directory given in PBS_JOBDIR, by being cop-
ied from the host “submithost”. The job script is executed in
PBS_JOBDIR and “jay.out” is staged out from PBS_JOBDIR to your
home directory on the submittal host (i.e., “hostname”):

qsub -Wsandbox=PRIVATE \

-Wstagein=jay.fem@submithost:jay.fem \

-Wstageout=jay.out@submithost:jay.out

8.7.6 Summary of the Job’s Lifecycle

This is a summary of the steps performed by PBS. The steps are not neces-
sarily performed in this order.

• On each execution host, if specified, PBS creates a job-specific staging
and execution directory.

• PBS sets PBS_JOBDIR and the job’s jobdir attribute to the path of the
job’s staging and execution directory.
166 PBS Professional 9.2 User’s Guide

Advanced PBS Features Chapter 8
• On each execution host allocated to the job, PBS creates a job-specific
temporary directory.

• PBS sets the TMPDIR environment variable to the pathname of the tem-
porary directory.

• If any errors occur during directory creation or the setting of variables,
the job is requeued.

• PBS stages in any files or directories.

• The prologue is run on the primary execution host, with its current work-
ing directory set to PBS_HOME/mom_priv, and with PBS_JOBDIR and
TMPDIR set in its environment.

• The job is run as the user on the primary execution host.

• The job’s associated tasks are run as the user on the execution host(s).

• The epilogue is run on the primary execution host, with its current work-
ing directory set to the path of the job’s staging and execution directory,
and with PBS_JOBDIR and TMPDIR set in its environment.

• PBS stages out any files or directories.

• PBS removes any staged files or directories.

• PBS removes any job-specific staging and execution directories and their
contents, and all TMPDIRs and their contents.

• PBS writes the final job accounting record and purges any job informa-
tion from the Server’s database.

8.7.7 Detailed Description of Job’s Lifecycle

8.7.7.1 Creation of TMPDIR

For each host allocated to the job, PBS creates a job-specific temporary
scratch directory for the job. If the temporary scratch directory cannot be
created, the job is aborted.
PBS Professional 9.2 User’s Guide 167

Chapter 8 Advanced PBS Features
8.7.7.2 Choice of Staging and Execution Directories

f the job’s sandbox attribute is set to PRIVATE, PBS creates job-specific
staging and execution directories for the job. If the job’s sandbox
attribute is set to HOME, or is unset, PBS uses the user’s home directory for
staging and execution.

Job-specific Staging and Execution Directories

If the staging and execution directory cannot be created the job is aborted.
If PBS fails to create a staging and execution directory, see the system
administrator.

You should not depend on any particular naming scheme for the new direc-
tories that PBS creates for staging and execution.

User’s Home Directory as Staging and Execution Directory

The user must have a home directory on each execution host. The absence
of the user's home directory is an error and causes the job to be aborted.

8.7.7.3 Setting Environment Variables and Attributes

PBS sets PBS_JOBDIR and the job’s jobdir attribute to the pathname
of the staging and execution directory. The TMPDIR environment vari-
able is set to the pathname of the job-specific temporary scratch directory.

8.7.7.4 Staging Files Into Staging and Execution Directories

PBS evaluates local_path and remote_path relative to the staging
and execution directory given in PBS_JOBDIR, whether this directory is
the user’s home directory or a job-specific directory created by PBS. PBS
copies the specified files and/or directories to the job’s staging and execu-
tion directory.

8.7.7.5 Running the Prologue

The MOM’s prologue is run on the primary host as root, with the current
working directory set to PBS_HOME/mom_priv, and with
PBS_JOBDIR and TMPDIR set in its environment.
168 PBS Professional 9.2 User’s Guide

Advanced PBS Features Chapter 8
8.7.7.6 Job Execution

PBS runs the job script on the primary host as the user. PBS also runs any
tasks created by the job as the user. The job script and tasks are executed
with their current working directory set to the job's staging and execution
directory, and with PBS_JOBDIR and TMPDIR set in their environment.

8.7.7.7 Standard Out and Standard Error

The job's stdout and stderr files are created directly in the job's staging and
execution directory on the primary execution host.

Job-specific Staging and Execution Directories

If the qsub -k option is used, the stdout and stderr files will not be auto-
matically copied out of the staging and execution directory at job end - they
will be deleted when the directory is automatically removed.

User’s Home Directory as Staging and Execution Directory

If the -k option to qsub is used, standard out and/or standard error files
are retained on the primary execution host instead of being returned to the
submission host, and are not deleted after job end.

8.7.7.8 Running the Epilogue

PBS runs the epilogue on the primary host as root. The epilogue is exe-
cuted with its current working directory set to the job's staging and execu-
tion directory, and with PBS_JOBDIR and TMPDIR set in its
environment.

8.7.7.9 Staging Files Out and Removing Execution Directory

When PBS stages files out, it evaluates local_path and
remote_path relative to PBS_JOBDIR. Files that cannot be staged out
are saved in PBS_HOME/undelivered. See section 9.4.6 “Non Delivery of
Output” on page 414 of the PBS Professional Administrator’s Guide.

Job-specific Staging and Execution Directories

If PBS created job-specific staging and execution directories for the job, it
PBS Professional 9.2 User’s Guide 169

Chapter 8 Advanced PBS Features
cleans up at the end of the job. The staging and execution directory and all
of its contents are removed, on all execution hosts.

8.7.7.10 Removing TMPDIRs

PBS removes all TMPDIRs, along with their contents.

8.7.8 Staging with Job Arrays

File staging is supported for job arrays. See “File Staging” on page 207.

8.7.9 Using xpbs for File Staging

Using xpbs to set up file staging directives may be easier than using the
command line. On the Submit Job window, in the miscellany options sec-
tion (far left, center of window) click on the file staging button. This will
launch the File Staging dialog box (shown below) in which you will be
able to set up the file staging you desire.

The File Selection Box will be initialized with your current working direc-
tory. If you wish to select a different directory, double-click on its name,
and xpbs will list the contents of the new directory in the File Selection
Box. When the correct directory is displayed, simply click on the name of
the file you wish to stage (in or out). Its name will be written in the File
Selected area.

Next, click either of the Add file selected... buttons to add the named file to
the stagein or stageout list. Doing so will write the file name into the corre-
sponding area on the lower half of the File Staging window. Now you need
to provide location information. For stagein, type in the path and filename
where you want the named file placed. For stageout, specify the hostname
and pathname where you want the named file delivered. You may repeat
this process for as many files as you need to stage.

When you are done selecting files, click the OK button.

8.7.10 Stagein and Stageout Failure

When stagein fails, the job is placed in a 30-minute wait to allow the user
time to fix the problem. Typically this is a missing file or a network out-
age. Email is sent to the job owner when the problem is detected. Once the
170 PBS Professional 9.2 User’s Guide

Advanced PBS Features Chapter 8
problem has been resolved, the job owner or the Operator may remove the
wait by resetting the time after which the job is eligible to be run via the -a
option to qalter. The server will update the job’s comment with infor-
mation about why the job was put in the wait state. When the job is eligible
to run, it may run on different vnodes.

When stageout encounters an error, there are three retries. PBS waits 1 sec-
ond and tries
again, then waits 11 seconds and tries a third time, then finally waits
another 21 seconds
and tries a fourth time. Email is sent to the job owner if all attempts fail.
Files that cannot be staged out are saved in PBS_HOME/undelivered. See
section 9.4.6 “Non Delivery of Output” on page 414 of the PBS Profes-
sional Administrator’s Guide.

8.8 The pbsdsh Command

The pbsdsh command allows you to distribute and execute a task on each
of the vnodes assigned to your job. (pbsdsh uses the PBS Task Manager
API, see tm(3), to distribute the program on the allocated vnodes.)

Important: The pbsdsh command is not available under Win-
dows.

Usage of the pbsdsh command is:

pbsdsh [-c N] [-o] [-s] [-v] -- program [program args]
pbsdsh [-n N] [-o] [-s] [-v] -- program [program args]

Note that the double dash must come after the options and before the pro-
gram and arguments. The double dash is only required for Linux.

The available options are:

-c N The program is spawned on the first N vnodes allo-
cated. If the value of N is greater than the number of
vnodes, it will “wrap” around, running multiple cop-
ies on the vnodes. This option is mutually exclusive
with -n.
PBS Professional 9.2 User’s Guide 171

Chapter 8 Advanced PBS Features
-n N The program is spawned on a single vnode which is
the N-th vnode allocated. This option is mutually
exclusive with -c.

-o The program will not wait for the tasks to finish.

-s If this option is given, the program is run sequen-
tially on each vnode, one after the other.

-v Verbose output about error messages and task exit
status is produced.

When run without the -c or the -n option, pbsdsh will spawn the pro-
gram on all vnodes allocated to the PBS job. The execution take place con-
currently--all copies of the task execute at (about) the same time.

The following example shows the pbsdsh command inside of a PBS
batch job. The options indicate that the user wants pbsdsh to run the
myapp program with one argument (app-arg1) on all four vnodes allo-
cated to the job (i.e. the default behavior).

#!/bin/sh

#PBS -l select=4:ncpus=1

#PBS -l walltime=1:00:00

pbsdsh ./myapp app-arg1

The pbsdsh command runs one task for each line in the
PBS_NODEFILE. Each MPI rank will get a single line in the
PBS_NODEFILE, so if you are running multiple MPI ranks on the same
host, you will still get multiple pbsdsh tasks on that host.

8.9 Advance and Standing Reservation of Resources

An advance reservation is a reservation for a set of resources for a speci-
fied time. The reservation is only available to a specific user or group of
users.

A standing reservation is an advance reservation which recurs at specified
172 PBS Professional 9.2 User’s Guide

Advanced PBS Features Chapter 8
times. For example, the user can reserve 8 CPUs and 10GB every Wednes-
day and Thursday from 5pm to 8pm, for the next three months.

An instance of a standing reservation is also called an occurrence of the
standing reservation. The soonest occurrence of a standing reservation is
the occurrence which is currently active, or if none is active, then it is the
next occurrence.

An occurrence of a standing reservation behaves like an advance reserva-
tion, with the following exceptions:

• while a job can be submitted to a specific advance reservation, it can
only be submitted to the standing reservation as a whole, not to a spe-
cific occurrence. You can only specify when the job is eligible to run.
See the qsub(1B) man page.

• when an advance reservation ends, it and all of its jobs, running or
queued, are deleted, but when an occurrence ends, only its running jobs
are deleted.

Each occurrence of a standing reservation has reserved resources which
satisfy the resource request, but each instance may have its resources
drawn from a different source. A query for the resources assigned to a
standing reservation will return the resources assigned to the soonest
occurrence, shown in the resv_nodes attribute reported by
pbs_rstat.

The time for which a reservation is requested is in the time zone at the sub-
mission host.

8.9.1 Introduction to Creating and Using Reservations

The user creates both advance and standing reservations using the
pbs_rsub command. PBS either confirms that the reservation can be
made, or rejects the request. Once the reservation is confirmed, PBS cre-
ates a queue for the reservation’s jobs. Jobs are then submitted to this
queue.

When a reservation is confirmed, it means that the reservation will not con-
flict with currently running jobs, other confirmed reservations, or dedicated
time, and that the requested resources are available for the reservation. A
reservation request that fails these tests is rejected. All instances of a stand-
PBS Professional 9.2 User’s Guide 173

Chapter 8 Advanced PBS Features
ing reservation must be acceptable in order for the standing reservation to
be confirmed.

The pbs_rsub command returns a reservation ID, which is the reserva-
tion name. For an advance reservation, this reservation ID has the format:

R<unique integer>.<server name>

For a standing reservation, this reservation ID refers to the entire series,
and has the format:

S<unique integer>.<server name>

The user specifies the resources for a reservation using the same syntax as
for a job. Jobs in reservations are placed the same way non-reservation
jobs are placed in placement sets.

The xpbs GUI cannot be used for creation, querying, or deletion of reser-
vations.

8.9.2 Creating Advance Reservations

You create an advance reservation using the pbs_rsub command. PBS
must be able to calculate the start and end times of the reservation, so you
must specify two of the following three options:

D Duration
E End time
R Start time

8.9.2.1 Examples of Creating Advance Reservations

The following example shows the creation of an advance reservation ask-
ing for 1 vnode, 30 minutes of wall-clock time, and a start time of 11:30.
Since an end time is not specified, PBS will calculate the end time based on
the reservation start time and duration.

pbs_rsub -R 1130 -D 00:30:00

PBS returns the reservation ID:
R226.south UNCONFIRMED
174 PBS Professional 9.2 User’s Guide

Advanced PBS Features Chapter 8
The following example shows an advance reservation for 2 CPUs from
8:00 p.m. to 10:00 p.m.:

pbs_rsub -R 2000.00 -E 2200.00 \

-l select=1:ncpus=2

PBS returns the reservation ID:
R332.south UNCONFIRMED

8.9.3 Creating Standing Reservations

You create standing reservations using the pbs_rsub command. You
must specify a start and end date when creating a standing reservation.
The recurring nature of the reservation is specified using the -r option to
pbs_rsub. The -r option takes the recurrence_rule argument,
which specifies the standing reservation’s occurrences. The recurrence
rule uses iCalendar syntax, and uses a subset of the parameters described in
RFC 2445.

The recurrence rule can take two forms:

"FREQ= freq_spec; COUNT= count_spec; interval_spec"

In this form, you specify how often there will be occurrences, how many
there will be, and which days and/or hours apply.

"FREQ= freq_spec; UNTIL= until_spec; interval_spec"

In this form, the user specifies how often there will be occurrences, when
the occurrences will end, and which days and/or hours apply.

freq_spec This is the frequency with which the reservation
repeats. Valid values are
WEEKLY|DAILY|HOURLY

When using a freq_spec of WEEKLY, you may use an
interval_spec of BYDAY and/or BYHOUR. When
using a freq_spec of DAILY, you may use an
interval_spec of BYHOUR. When using a freq_spec
of HOURLY, do not use an interval_spec.
PBS Professional 9.2 User’s Guide 175

Chapter 8 Advanced PBS Features
count_spec The exact number of occurrences. Number up to 4
digits in length. Format: integer.

interval_spec Specifies the interval at which there will be occur-
rences. Can be one or both of BYDAY=<days> or
BYHOUR=<hours>. Valid values are BYDAY =
MO|TU|WE|TH|FR|SA|SU and BYHOUR =
0|1|2|...|23. When using both, separate them
with a semicolon. Separate days or hours with a
comma.

For example, to specify that there will be recur-
rences on Tuesdays and Wednesdays, at 9 a.m. and
11 a.m., use BYDAY=TU,WE;BYHOUR=9,11

BYDAY should be used with FREQ=WEEKLY.
BYHOUR should be used with FREQ=DAILY or
FREQ=WEEKLY.

until_spec Occurrences will start up to but not after this date
and time. This means that if occurrences last for an
hour, and normally start at 9 a.m., then a time of
9:05 a.m on the day specified in the until_spec
means that an occurrence will start on that day.

Format: YYYYMMDD[THHMMSS]
Note that the year-month-day section is separated
from the hour-minute-second section by a capital T.

Default: 3 years from time of reservation creation.

8.9.3.1 Setting Reservation Start Time and Duration

In a standing reservation, the arguments to the -R and -E options to
pbs_rsub can provide more information than they do in an advance res-
ervation. In an advance reservation, they provide the start and end time of
the reservation. In a standing reservation, they can provide the start and
end time, but they can also be used to compute the duration and the offset
from the interval start.

The difference between the values of the arguments for -R and -E is the
176 PBS Professional 9.2 User’s Guide

Advanced PBS Features Chapter 8
duration of the reservation. For example, if you specify
-R 0930 -E 1145

the duration of your reservation will be two hours and fifteen minutes. If
you specify

-R 150800 -E 170830

the duration of your reservation will be two days plus 30 minutes.

The interval_spec can be used to specify the day or the hour at which the
interval starts. If you specify

-R 0915 -E 0945 ... BYHOUR=9,10

the duration is 30 minutes, and the offset is 15 minutes from the start of the
interval. The interval start is at 9 and again at 10. Your reservation will run
from 9:15 to 9:45, and again at 10:15 and 10:45. Similarly, if you specifiy

-R 0800 -E -1000 ... BYDAY=WE,TH

the duration is two hours and the offset is 8 hours from the start of the inter-
val. Your reservation will run Wednesday from 8 to 10, and again on
Thursday from 8 to 10.

Elements specified in the recurrence rule override those specified in the
arguments to the -R and -E options. Therefore if you specify

-R 0730 -E 0830 ... BYHOUR=9

the duration is one hour, but the hour element (9:00) in the recurrence rule
has overridden the hour element specified in the argument to -R (7:00).
The offset is still 30 minutes after the interval start. Your reservation will
run from 9:30 to 10:30. Similarly, if the 16th is a Monday, and you specify

-R 160800 -E 170900 ... BYDAY=TU;BYHOUR=11

the duration 25 hours, but both the day and the hour elements have been
overridden. Your reservation will run on Tuesday at 11, for 25 hours, end-
ing Wednesday at 12. However, if you specify

-R 160810 -E 170910 ... BYDAY=TU;BYHOUR=11

the duration is 25 hours, and the offset from the interval start is 10 minutes.
Your reservation will run on Tuesday at 11:10, for 25 hours, ending
PBS Professional 9.2 User’s Guide 177

Chapter 8 Advanced PBS Features
Wednesday at 12:10. The minutes in the offset weren’t overridden by any-
thing in the recurrence rule.

The values specified for the arguments to the -R and -E options can be
used to set the start and end times in a standing reservation, just as they are
in an advance reservation. To do this, don’t override their elements inside
the recurrence rule. If you specify

-R 0930 -E 1030 ... BYDAY=MO,TU

you haven’t overridden the hour or minute elements. Your reservation will
run Monday and Tuesday, from 9:30 to 10:30.

8.9.3.2 Requirements for Creating Standing Reservations

• The user must specify a start and end date. See the -R and -E options to
the pbs_rsub command in section 8.9.4 “The pbs_rsub Command”
on page 179.

• The user must set the submission host’s PBS_TZID environment vari-
able. The format for PBS_TZID is a timezone location. Example:
America/Los_Angeles, America/Detroit, Europe/
Berlin, Asia/Calcutta. See section 8.9.8.1 “Setting the Sub-
mission Host’s Time Zone” on page 194.

• The recurrence rule must be one unbroken line. See the -r option to
pbs_rsub in section 8.9.4 “The pbs_rsub Command” on page 179.

• The recurrence rule must be enclosed in double quotes.

• Vnodes that have been configured to accept jobs only from a specific
queue (vnode-queue restrictions) cannot be used for advance or stand-
ing reservations. See your PBS administrator to determine whether
some vnodes have been configured to accept jobs only from specific
queues.

8.9.3.3 Examples of Creating Standing Reservations

For a reservation that runs every day from 8am to 10am, for a total of 10
occurrences:

pbs_rsub -R 0800 -E 1000 - \

r"FREQ=DAILY;COUNT=10"
178 PBS Professional 9.2 User’s Guide

Advanced PBS Features Chapter 8
Every weekday from 6am to 6pm until December 10, 2008:
pbs_rsub -R 0600 -E 1800 \

-r "FREQ=WEEKLY; BYDAY=MO,TU,WE,TH,FR; \

UNTIL=20081210"

Every week from 3pm to 5pm on Monday, Wednesday, and Friday, for 9
occurrences, i.e., for three weeks:

pbs_rsub -R 1500 -E 1700 \

-r "FREQ=WEEKLY;BYDAY=MO,WE,FR; COUNT=3"

8.9.4 The pbs_rsub Command

The pbs_rsub command returns a reservation ID string, and the current
status of the reservation.

These are the options to the pbs_rsub command:

-D duration Specifies reservation duration. If the start time and
end time are the only times specified, this duration
time is calculated.
Format: Either a total number of seconds of wall-
time, or a colon-delimited timestring, e.g.
HH:MM:SS or MM:SS.
Default: none.

-E end_time Specifies the reservation end time. If start time and
duration are the only times specified, the end time
value is calculated.
Format: Datetime. See “Formats:” on page 186 for a
description of the datetime string.
Default: none.

-g group_list The group_list is a comma-separated list of group
names. The server uses entries on this list, along
with an ordered set of rules, to associate a group
name with the reservation.
Format: group@hostname[,group@host-
name ...]
PBS Professional 9.2 User’s Guide 179

Chapter 8 Advanced PBS Features
-G auth_group_list
Comma-separated list of names of groups who can
or cannot submit jobs to this reservation. Group
names are interpreted in the context of the server's
host, not the context of the host from which the job
is submitted. This list becomes the acl_groups
list for the reservation's queue. Refer to the
Authorized_Groups reservation attribute on
the pbs_resv_attributes(7B) man page.
Format: [+|-]group_name[,[+|-
]group_name ...]
Default: All groups are authorized to submit jobs.

-H auth_host_list Comma-separated list of hosts from which jobs can
and cannot be submitted to this reservation. This list
becomes the acl_hosts list for the reservation's
queue. See the Authorized_Hosts reservation
attribute on the pbs_resv_attributes(7B)
man page.
Format: [+|-]hostname[,[+|-]hostname ...]
Default: All hosts are authorized to submit jobs.

-I block_time Specifies interactive mode. The pbs_rsub com-
mand will block, up to block_time seconds,
while waiting for the reservation to be confirmed or
denied.

If block_time is positive, and the reservation
isn't confirmed or denied in the specified time, the
ID string for the reservation is returned with the sta-
tus "UNCONFIRMED".

If block_time is negative, and the reservation is
neither confirmed nor denied in the specified time,
the reservation is automatically deleted.

Format: integer.
Default: not interactive.

-l placement The placement specifies how a job will be placed on
vnodes. The place statement has this form:
180 PBS Professional 9.2 User’s Guide

Advanced PBS Features Chapter 8
-l place=[arrangement][: sharing]
 [: grouping]

where

arrangement is one of free | pack | scatter
sharing is one of excl | share
grouping can have only one instance of
group=resource

and where

free: Place job on any vnode(s).
pack: All chunks will be taken from one host.
scatter: Only one chunk with any MPI processes
will be taken from a host. A chunk with no MPI pro-
cesses may be taken from the same node as another
chunk.
excl: Only this job uses the vnodes chosen.
share: This job can share the vnodes chosen.
group=resource: Chunks will be grouped according
to a resource. All nodes in the group must have a
common value for the resource, which can be either
the built-in resource host or a site-defined node-
level resource.

Note that nodes can have sharing attributes that
override job placement requests. See the
pbs_node_attributes(7B) man page.

-l resource_request
The resource_request specifies the resources
required for the reservation. These resources will be
used for the limits on the queue that is dynamically
created for the reservation. The aggregate amount of
resources for currently running jobs from this queue
will not exceed these resource limits. Jobs in the
queue that request more of a resource than the queue
limit for that resource are not allowed to run. Also,
the queue inherits the value of any resource limit set
PBS Professional 9.2 User’s Guide 181

Chapter 8 Advanced PBS Features
on the server, and these are used for the job if the
reservation request itself is silent about that
resource. A non-privileged user cannot submit a res-
ervation requesting a custom resource which has
been created to be invisible or read-only for users.

Resources are requested by using the -l option,
either in chunks inside of selection statements, or in
job-wide requests using
resource_name=value pairs. The selection
statement is of the form:

-l select=[N:]chunk[+[N:]chunk
...]

where N specifies how many of that chunk, and a
chunk is of the form:

resource_name=value
[:resource_name=value ...]

Job-wide resource_name=value requests are of the
form:

-l resource_name=value
 [,resource_name=value ...]

-m mail_events Specifies whether mail is sent to user_list and when.
The argument mail_events is a string, either
“n”, for no mail, or composed of any combination of
“a”, “b”, “e”, or “c”. Must be enclosed in double
quotes.

Table 4:

“n
”

do not send mail

“a
”

notify if the reservation is terminated for any
reason
182 PBS Professional 9.2 User’s Guide

Advanced PBS Features Chapter 8
Format: String.
Default: “ac”.

-M mail_list The list of users to whom mail is sent whenever the
reservation transitions to one of the states specified
in the -m mail_events option.
Format: user[@hostname][,user[@host-
name]...]
Default: reservation's owner.

-N reservation_name
This specifies a name for the reservation.
Format: String up to 15 characters in length. It must
consist of printable, non-white space characters with
the first character alphabetic.
Default: None.

-q destination Specifies the destination server at which to create
the reservation. The default server is used if this
option is not specified.

-r recurrence_rule Specifies rule for recurrence of standing reserva-
tions. This rule must conform to iCalendar syntax,
and is specified using a subset of parameters from
RFC 2445. Valid syntax for recurrence_rule
takes one of two forms:
"FREQ= freq_spec; COUNT=count_spec;

“b
”

notify when the reservation period begins

“e
”

notify when the reservation period ends

“c
”

notify when the reservation is confirmed

Table 4:
PBS Professional 9.2 User’s Guide 183

Chapter 8 Advanced PBS Features
interval_spec"
or
"FREQ= freq_spec; UNTIL=until_spec;

interval_spec"
where

Requirements:
• The recurrence rule must be on one unbroken

line and must be enclosed in double quotes.

Table 5: Recurrence Rule Parameters

Specification Description Format & Valid Values

freq_spec Frequency with which
the standing reserva-
tion repeats.

Valid values are:
WEEKLY|DAILY
|HOURLY

count_spec The exact number of
occurrences. Num-
ber up to 4 digits in
length.

Format: integer.

interval_spec Specifies interval.
Format uses one or
both of BYDAY= and
BYHOUR=.
When using both,
separate them with a
semicolon.

BYDAY =
MO|TU|WE|TH|FR
|SA|SU

BYHOUR = 0|1|2|...|23

until_spec Occurrences will start
up to but not after
date and time speci-
fied.

Format: YYYYM-
MDD[THHMMSS]

Note that the year-month-
day section is separated from
the hour-minute-second sec-
tion by a capital T.
184 PBS Professional 9.2 User’s Guide

Advanced PBS Features Chapter 8
• A start and end date must be used when specify-
ing a recurrence rule. See the R and E options.

• The PBS_TZID environment variable must be
set at the submission host.

-R start_time Reservation start time. If the reservation’s end time
and duration are the only times specified, this start
time is calculated.

If the day, DD, is not specified, it will default to
today if the time hhmm is in the future. Otherwise,
the day will be set to tomorrow. For example, if you
submit a reservation having a specification -R
1110 at 11:15am, it will be interpreted as being for
11:10am tomorrow. If the month portion, MM, is not
specified, it defaults to the current month provided
that the specified day DD, is in the future. Otherwise,
the month will be set to next month. Similar com-
ments apply to the two other optional, left hand
components.

Format: Datetime.

-u user_list Comma-separated list of user names. Not used.
Refer to the User_List reservation attribute on
the pbs_resv_attributes(7B) man page.
Format: user[@host][,user[@host] ...]
Default: None.

-U auth_user_list Comma-separated list of users who are and are not
allowed to submit jobs to this reservation. This list
becomes the acl_users attribute for the reserva-
tion's queue. Refer to the Authorized_Users
reservation attribute on the
pbs_resv_attributes(7B) man page.
Format: [+|-]user@host[,[+|-
]user@host...]
Default: Job owner only.

-W attribute_value_list
PBS Professional 9.2 User’s Guide 185

Chapter 8 Advanced PBS Features
This allows you to define other attributes for the res-
ervation.

The following attribute is supported:

qmove=jobid

Converts the normal job with job ID jobid into a res-
ervation job that will run as soon as possible. Cre-
ates the reservation and reservation queue and
places the job in the queue. Uses the resources
requested by the job to create the reservation.

In creating the reservation, resources requested
through the pbs_rsub command override existing
job resources. Therefore, if the existing job
resources are greater than those requested for the
reservation, the job will be rejected by the reserva-
tion.

The -R and -E options to pbs_rsub are disabled
when using the qmove=jobid attribute.

See “Converting a Job into a Reservation Job” on
page 149.

 --version The pbs_rsub command returns its PBS version
information and exits. This option can only be used
alone.

Formats:
Datetime [[[[CC]YY]MM]DD]hhmm[.SS]

8.9.4.1 Getting Confirmation of a Reservation

By default the pbs_rsub command does not immediately notify you
whether the reservation is confirmed or denied. Instead you receive email
with this information. You can specify that the pbs_rsub command
should wait for confirmation by using the -I <block_time> option. The
pbs_rsub command will wait up to <block_time> seconds for the reser-
vation to be confirmed or denied and then notify you of the outcome. If
186 PBS Professional 9.2 User’s Guide

Advanced PBS Features Chapter 8
block_time is negative and the reservation is not confirmed in that time, the
reservation is automatically deleted.

To find out whether the reservation has been confirmed, use the
pbs_rstat command. It will display the state of the reservation. CO
and RESV_CONFIRMED indicate that it is confirmed. If the reservation
does not appear in the output from pbs_rstat, that means that the reser-
vation was denied.

To ensure that you receive mail about your reservations, set the reserva-
tion’s Mail_Users attribute via the -M <email address> option to
pbs_rsub. By default, you will get email when the reservation is termi-
nated or confirmed. If you want to receive email about events other than
those, set the reservation’s Mail_Points attribute via the -m <mail
events> option. For more information, see the pbs_rsub(1B) and
pbs_resv_attributes(7B) man pages.

8.9.5 Viewing the Status of a Reservation

The following table shows the list of possible states for a reservation. The
states that you will usually see are CO, UN, BD, and RN, although a reser-
vation usually remains unconfirmed for too short a time to see that state.

Table 6: Reservation States

Code State Description

NO RESV_NONE No reservation yet

UN RESV_UNCONFIRMED Reservation not confirmed

CO RESV_CONFIRMED Reservation confirmed

WT RESV_WAIT Unused

TR RESV_TIME_TO_RUN Transitory state; reservation’s
start time has arrived

RN RESV_RUNNING Time period from reservation’s
start time to end time is being tra-
versed
PBS Professional 9.2 User’s Guide 187

Chapter 8 Advanced PBS Features
To view the status of a reservation, use the pbs_rstat command. It will
display the status of all reservations at the PBS server. For a standing res-
ervation, the pbs_rstat command will display the status of the soonest
occurrence. Duration is shown in seconds. The pbs_rstat command
will not display a custom resource which has been created to be invisible.
See section 4.5.14 “Resource Permissions” on page 56. This command has
three options:

The full listing for a standing reservation is identical to the listing for an
advance reservation, with the following additions:

FN RESV_FINISHED Transitory state; reservation’s end
time has arrived and reservation
will be deleted

BD RESV_BEING_DELETED Transitory state; reservation is
being deleted

DE RESV_DELETED Transitory state; reservation has
been deleted

DJ RESV_DELETING_JOBS Jobs remaining after reserva-
tion’s end time being deleted

Table 7: Options to pbs_rstat Command

Option Meaning Description

B Brief Lists only the names of the reservations

S Short Lists in table format the name, queue name,
owner, state, and start, duration and end times of
each reservation

F Full Lists the name and all non-default-value
attributes for each reservation.

<none> Default Default is S option

Table 6: Reservation States

Code State Description
188 PBS Professional 9.2 User’s Guide

Advanced PBS Features Chapter 8
• A line that specifies the recurrence rule:
reserve_rrule = FREQ=WEEKLY;BYDAY=MO;COUNT=5

• An entry for the vnodes reserved for the soonest occurrence of the
standing reservation. This entry also appears for an advance reserva-
tion, but will be different for each occurrence:

resv_nodes=(vnode_name:...)

• A line that specifies the total number of occurrences of the standing
reservation:

reserve_count = 5

• The index of the soonest occurrence:
reserve_index = 1

• The timezone at the site of submission of the reservation is appended to
the reservation Variable list. For example, in California:

Variable_List=<other variables>PBS_TZID=Amer-
ica/Los_Angeles

To get the status of a reservation at a server other than the default server,
set the PBS_SERVER environment variable to the name of the server you
wish to query, then use the pbs_rstat command. Your PBS commands
will treat the new server as the default server, so you may wish to unset this
environment variable when you are finished.

You can also get information about the reservation’s queue by using the
qstat command. See section 6.1 “The qstat Command” on page 115 and
the qstat(1B) man page.

8.9.5.1 Examples of Viewing Reservation Status Using pbs_rstat

In our example, we have one advance reservation and one standing reserva-
tion. The advance reservation is for today, for two hours, starting at noon.
The standing reservation is for every Thursday, for one hour, starting at
3:00 p.m. Today is Monday, April 28th, and the time is 1:00, so the
advance reservation is running, and the soonest occurrence of the standing
reservation is Thursday, May 1, at 3:00 p.m.
PBS Professional 9.2 User’s Guide 189

Chapter 8 Advanced PBS Features
Example brief output:
pbs_rstat -B

Name: R302.south

Name: S304.south

Example short output:
pbs_rstat -S

Name Queue User State Start / Duration / End
--
R302.south R302 user1 RN Today 12:00 / 7200/ Today 14:00
S304.south S304 user1 CO May 1 2008 15:00/3600/May 1 2008 16:00

Example full output:
pbs_rstat -F

Name: R302.south
Reserve_Name = NULL
Reserve_Owner = user1@south.mydomain.com
reserve_state = RESV_RUNNING
reserve_substate = 2
reserve_start = Mon Apr 28 12:00:00 2008
reserve_end = Mon Apr 28 14:00:00 2008
reserve_duration = 7200
queue = R302
Resource_List.ncpus = 2
Resource_List.nodect = 1
Resource_List.walltime = 02:00:00
Resource_List.select = 1:ncpus=2
Resource_List.place = free
resv_nodes = (south:ncpus=2)
Authorized_Users = user1@south.mydomain.com
server = south
ctime = Mon Apr 28 11:00:00 2008
Mail_Users = user1@mydomain.com
mtime = Mon Apr 28 11:00:00 2008
Variable_List =
PBS_O_LOGNAME=user1,PBS_O_HOST=south.mydomain.com
190 PBS Professional 9.2 User’s Guide

Advanced PBS Features Chapter 8
Name: S304.south
Reserve_Name = NULL
Reserve_Owner = user1@south.mydomain.com
reserve_state = RESV_CONFIRMED
reserve_substate = 2
reserve_start = Thu May 1 15:00:00 2008
reserve_end = Thu May 1 16:00:00 2008
reserve_duration = 3600
queue = S304
Resource_List.ncpus = 2
Resource_List.nodect = 1
Resource_List.walltime = 01:00:00
Resource_List.select = 1:ncpus=2
Resource_List.place = free
resv_nodes = (south:ncpus=2)
reserve_rrule = FREQ=WEEKLY;BYDAY=MO;COUNT=5
reserve_count = 5
reserve_index = 2
Authorized_Users = user1@south.mydomain.com
server = south
ctime = Mon Apr 28 11:01:00 2008
Mail_Users = user1@mydomain.com
mtime = Mon Apr 28 11:01:00 2008
Variable_List =
PBS_O_LOGNAME=user1,PBS_O_HOST=south.mydo-
main.com,PBS_TZID=America/Los_Angeles

8.9.6 Deleting Reservations

You can delete an advance or standing reservation by using the pbs_rdel
command. For a standing reservation, you can only delete the entire reser-
vation, including all occurrences. When you delete a reservation, all of the
jobs that have been submitted to the reservation are also deleted. A reser-
vation can be deleted by its owner or by a PBS Operator or Manager. For
example, to delete S304.south:

pbs_rdel S304.south
or

pbs_rdel S304
PBS Professional 9.2 User’s Guide 191

Chapter 8 Advanced PBS Features
8.9.7 Submitting a Job to a Reservation

Jobs can be submitted to the queue associated with a reservation, or they
can be moved from another queue into the reservation queue. You submit a
job to a reservation by using the -q <queue> option to the qsub command
to specify the reservation queue. For example, to submit a job to the soon-
est occurrence of a standing reservation named S123.south, submit to
its queue S123:

qsub -q S123 <script>

You move a job into a reservation queue by using the qmove command.
For more information, see the qsub(1B) and qmove(1B) man pages.
For example, to qmove job 22.myhost from workq to S123, the queue
for the reservation named S123.south:

qmove S123 22.myhost
or

qmove S123 22

A job submitted to a standing reservation without a restriction on when it
can run will be run, if possible, during the soonest occurrence. In order to
submit a job to a specific occurrence, use the -a <start time> option to the
qsub command, setting the start time to the time of the occurrence that
you want. You can also use a cron job to submit a job at a specific time.
See the qsub(1B) and cron(8) man pages.

8.9.7.1 Running Jobs in a Reservation

A confirmed reservation will accept jobs into its queue at any time. Jobs
are only scheduled to run from the reservation once the reservation period
arrives.

The jobs in a reservation are not allowed to use, in aggregate, more
resources than the reservation requested. A reservation job is started only
if its requested walltime will fit within the reservation period. So for
example if the reservation runs from 10:00 to 11:00, and the job’s walltime
is 4 hours, the job will not be started.

When an advance reservation ends, any running or queued jobs in that res-
ervation are deleted.
192 PBS Professional 9.2 User’s Guide

Advanced PBS Features Chapter 8
When an occurrence of a standing reservation ends, any running jobs in
that reservation are killed. Any jobs still queued for that reservation are
kept in the queued state. They are allowed to run in future occurrences.
When the last occurrence of a standing reservation ends, all jobs remaining
in the reservation are deleted, whether queued or running.

A job in a reservation cannot be preempted.

8.9.7.2 Access to Reservations

By default, the reservation accepts jobs only from the user who created the
reservation, and accepts jobs submitted from any group or host. You can
specify a list of users and groups whose jobs will and will not be accepted
by the reservation by setting the reservation’s Authorized_Users and
Authorized_Groups attributes using the -U auth_user_list and -G
auth_group_list options to pbs_rsub. You can specify the hosts from
which jobs can and cannot be submitted by setting the reservation’s
Authorized_Hosts attribute using the -H auth_host_list option to
pbs_rsub.

The administrator can also specify which users and groups can and cannot
submit jobs to a reservation, and the list of hosts from which jobs can and
cannot be submitted.

For more information, see the pbs_rsub(1B) and
pbs_resv_attributes(7B) man pages.

8.9.7.3 Viewing Status of a Job Submitted to a Reservation

You can view the status of a job that has been submitted to a reservation or
to an occurrence of a standing reservation by using the qstat command.
See section 6.1 “The qstat Command” on page 115 and the qstat(1B)
man page.

For example, if a job named MyJob has been submitted to the soonest
occurrence of the standing reservation named S304.south, it is listed
under S304, the name of the queue:

qstat

Job id Name User Time Use S Queue
---------- --------- ------------ -------- -- -----
PBS Professional 9.2 User’s Guide 193

Chapter 8 Advanced PBS Features
139.south MyJob user1 0 Q S304

8.9.8 Reservation Caveats and Errors

8.9.8.1 Setting the Submission Host’s Time Zone

The environment variable PBS_TZID must be set at the submission host.
The time for which a reservation is requested is the time defined at the sub-
mission host. The format for PBS_TZID is a timezone location, rather
than a timezone POSIX abbreviation. Examples of values for PBS_TZID
are:

America/Los_Angeles
America/Detroit
Europe/Berlin
Asia/Calcutta

8.9.8.2 Reservation Errors

The following table describes the error messages that apply to reservations:

Table 8: Reservation Errors

Description of Error

Server
Log
Error
Code

Error Message

Invalid syntax when specifying a
standing reservation

15133 “pbs_rsub error: Unde-
fined iCalendar syntax”

Recurrence rule has both a COUNT
and an UNTIL parameter

15134 “pbs_rsub error: Unde-
fined iCalendar syntax.
COUNT or UNTIL is
required”

Recurrence rule missing valid
COUNT or UNTIL parameter

15134 “pbs_rsub error: Unde-
fined iCalendar syntax. A
valid COUNT or UNTIL
is required”
194 PBS Professional 9.2 User’s Guide

Advanced PBS Features Chapter 8
Problem with the start and/or end
time of the reservation, such as:

Given start time is earlier
than
 current date and time

Missing start time or end
time

End time is earlier than
start time

15086 “pbs_rsub: Bad time
specification(s)”

Reservation duration exceeds 24
hours and the recurrence fre-
quency, FREQ, is set to DAILY

15129 “pbs_rsub error: DAILY
recurrence duration can-
not exceed 24 hours”

Reservation duration exceeds 7
days and the frequency FREQ is
set to WEEKLY

15128 “pbs_rsub error:
WEEKLY recurrence
duration cannot exceed 1
week”

Reservation duration exceeds 1
hour and the frequency FREQ is
set to HOURLY or the BY-rule is
set to BYHOUR and occurs every
hour, such as BYHOUR=9,10

15130 “pbs_rsub error:
HOURLY recurrence
duration cannot exceed 1
hour”

The PBS_TZID environment vari-
able is not set correctly at the sub-
mission host; rejection at
submission host

None “pbs_rsub error: a valid
PBS_TZID timezone
environment variable is
required”

The PBS_TZID environment vari-
able is not set correctly at the sub-
mission host; rejection at Server

15135 “Unrecognized
PBS_TZID environ-
ment variable”

Table 8: Reservation Errors

Description of Error

Server
Log
Error
Code

Error Message
PBS Professional 9.2 User’s Guide 195

Chapter 8 Advanced PBS Features
8.9.8.3 Time Required Between Reservations

Leave enough time between reservations for the reservations and jobs in
them to clean up. A job consumes resources even while it is in the E or
exiting state. This can take longer when large files are being staged. If the
job is still running when the reservation ends, it may take up to two min-
utes to be cleaned up. The reservation itself cannot finish cleaning up until
its jobs are cleaned up. This will delay the start time of jobs in the next res-
ervation unless there is enough time between the reservations for cleanup.

8.9.9 Reservation Information in the Accounting Log

The PBS Server writes an accounting record for each reservation in the job
accounting file. The accounting record for a reservation is similar to that
for a job. The accounting record for any job belonging to a reservation will
include the reservation ID. See section 6.16.1 “Accounting Log Format”
on page 344 in the PBS Professional Administrator’s Guide.

8.10 Dedicated Time

Dedicated time is one or more specific time periods defined by the admin-
istrator. These are not repeating time periods. Each one is individually
defined.

During dedicated time, the only jobs PBS starts are those in special dedi-
cated time queues. PBS schedules non-dedicated jobs so that they will not
run over into dedicated time. Jobs in dedicated time queues are also sched-
uled so that they will not run over into non-dedicated time. PBS will
attempt to backfill around the dedicated-non-dedicated time borders.

PBS uses walltime to schedule within and around dedicated time. If a job
is submitted without a walltime to a non-dedicated-time queue, it will not
be started until all dedicated time periods are over. If a job is submitted to
a dedicated-time queue without a walltime, it will never run.

To submit a job to be run during dedicated time, use the -q <queue name>
option to qsub and give the name of the dedicated-time queue you wish to
use as the queue name. Queues are created by the administrator; see your
administrator for queue name(s).
196 PBS Professional 9.2 User’s Guide

Advanced PBS Features Chapter 8
8.11 Using Comprehensive System Accounting

PBS supports Comprehensive System Accounting (CSA) on SGI Altix
machines that are running SGI’s ProPack 4.0 or greater and have the Linux
job container facility available. CSA provides accounting information
about user jobs, called user job accounting.

CSA works the same with and without PBS. To run user job accounting,
either the user must specify the file to which raw accounting information
will be written, or an environment variable must be set. The environment
variable is “ACCT_TMPDIR”. This is the directory where a temporary
file of raw accounting data is written.

To run user job accounting, the user issues the CSA command “ja
<filename>” or, if the environment variable “ACCT_TMPDIR” is set,
“ja”. In order to have an accounting report produced, the user issues the
command “ja -<options>” where the options specify that a report will
be written and what kind. To end user job accounting, the user issues the
command “ja -t”; the -t option can be included in the previous set of
options. See the manpage on ja for details.

The starting and ending ja commands must be used before and after any
other commands the user wishes to monitor. Here are examples of com-
mand line and a script:

On the command line:

qsub -N myjobname -l ncpus=1
ja myrawfile
sleep 50
ja -c > myreport
ja -t myrawfile

ctrl-D
Accounting data for the user’s job (sleep 50) is written to myreport.

If the user creates a file foo with these commands:
#PBS -N myjobname
#PBS -l ncpus=1
ja myrawfile
sleep 50
PBS Professional 9.2 User’s Guide 197

Chapter 8 Advanced PBS Features
ja -c > myreport
ja -t myrawfile

The user could run this script via qsub:
qsub foo

This does the same thing, via the script “foo”.

8.12 Running PBS in a UNIX DCE Environment

PBS Professional includes optional support for UNIX-based DCE. (By
optional, we mean that the customer may acquire a copy of PBS Profes-
sional with the standard security and authentication module replaced with
the DCE module.)

There are two -W options available with qsub which will enable a dcel-
ogin context to be set up for the job when it eventually executes. The user
may specify either an encrypted password or a forwardable/renewable Ker-
beros V5 TGT.

Specify the “-W cred=dce” option to qsub if a forwardable, renewable,
Kerberos V5, TGT (ticket granting ticket) with the user as the listed princi-
pal is what is to be sent with the job. If the user has an established creden-
tials cache and a non-expired, forwardable, renewable, TGT is in the cache,
that information is used.

The other choice, “-W cred=dce:pass”, causes the qsub command to
interact with the user to generate a DES encryption of the user's password.
This encrypted password is sent to the PBS Server and MOM processes,
where it is placed in a job-specific file for later use by pbs_mom in acquir-
ing a DCE login context for the job. The information is destroyed if the job
terminates, is deleted, or aborts.

Important: The ”-W pwd=’’” option to qsub has been super-
seded by the above two options, and therefore
should no longer be used.

Any acquired login contexts and accompanying DCE credential caches
198 PBS Professional 9.2 User’s Guide

Advanced PBS Features Chapter 8
established for the job get removed on job termination or deletion.

Important: The “-W cred” option to qsub is not available
under Windows.

8.13 Running PBS in a UNIX Kerberos Environment

PBS Professional includes optional support for Kerberos-only (i.e. no
DCE) environment. (By optional, we mean that the customer may acquire a
copy of PBS Professional with the standard security and authentication
module replaced with the KRB5 module.) This is not supported under
Windows.

To use a forwardable/renewable Kerberos V5 TGT specify the “-W
cred=krb5” option to qsub. This will cause qsub to check the user's
credential cache for a valid forwardable/renewable TGT which it will send
to the Server and then eventually to the execution MOM. While it's at the
Server and the MOM, this TGT will be periodically refreshed until either
the job finishes or the maximum refresh time on the TGT is exceeded,
whichever comes first. If the maximum refresh time on the TGT is
exceeded, no KRB5 services will be available to the job, even though it
will continue to run.

8.14 Support for Large Page Mode on AIX

A process running as part of a job can use large pages. The memory
reported in resources_used.mem may be larger with large page sizes.

You can set an environment variable to request large memory pages:
LDR_CNTRL="LARGE_PAGE_DATA=M"
LDR_CNTRL="LARGE_PAGE_DATA=Y"

For more information see the man page for setpcred. This can be
viewed with the command "man setpcred" on an AIX machine.

You can run a job that requests large page memory in "mandatory mode":

qsub -Wcred=dce <other qsub options> job-script
PBS Professional 9.2 User’s Guide 199

Chapter 8 Advanced PBS Features
% qsub
export LDR_CNTRL="LARGE_PAGE_DATA=M"
/path/to/exe/bigprog
^D

You can run a job that requests large page memory in "advisory mode":

% qsub
export LDR_CNTRL="LARGE_PAGE_DATA=Y"
/path/to/exe/bigprog
^D
200 PBS Professional 9.2 User’s Guide

Chapter 9
Job Arrays

This chapter describes job arrays and their use. A job array represents a
collection of jobs which only differ by a single index parameter. The pur-
pose of a job array is twofold. It offers the user a mechanism for grouping
related work, making it possible to submit, query, modify and display the
set as a single unit. Second, it offers a way to possibly improve perfor-
mance, because the batch system can use certain known aspects of the col-
lection for speedup.

9.1 Definitions

Subjob Individual entity within a job array (e.g. 1234[7],
where 1234[] is the job array itself, and 7 is the
index) which has many properties of a job as
well as additional semantics (defined below.)

Sequence_number
PBS Professional 9.2 User’s Guide 201

Chapter 9 Job Arrays
The numeric part of a job or job array identifier, e.g.
1234.

Subjob index The unique index which differentiates one subjob
from another. This must be a non-negative integer.

Job array
identifier

The identifier returned upon success when submit-
ting a job array. The format is sequence_number[]
or
 sequence_number[].server.domain.com.

Job array range A set of subjobs within a job array. When specify-
ing a range, indices used must be valid members of
the job array’s indices.

9.1.1 Description

A job array is a compact representation of one or more jobs, called subjobs
when part of a Job array, which have the same job script, and have the
same values for all attributes and resources, with the following exceptions:

each subjob has a unique index
Job Identifiers of subjobs only differ by their indices
the state of subjobs can differ

 All subjobs within a job array have the same scheduling priority.

A job array is submitted through a single command which returns, on suc-
cess, a “job array identifier” with a server-unique sequence number. Sub-
job indices are specified at submission time. These can be:
• a contiguous range, e.g. 1 through 100
• a range with a stepping factor, e.g. every second entry in 1 through 100

(1, 3, 5, ... 99)

A job array identifier can be used
• by itself to represent the set of all subjobs of the job array
• with a single index (a “job array identifier”) to represent a single subjob
• with a range (a “job array range”) to represent the subjobs designated by

the range
202 PBS Professional 9.2 User’s Guide

Job Arrays Chapter 9
9.1.2 Identifier Syntax

Job arrays have three identifier syntaxes:
• The job array object itself : 1234[].server or 1234[]
• A single subjob of a job array with index M: 1234[M].server or 1234[M]
• A range of subjobs of a job array: 1234[X-Y:Z].server or 1234[X-Y:Z]

Examples:

1234[].server.domain.com Full job array identifier
1234[] Short job array identifier
1234[73] Subjob identifier of the 73rd index of job array
1234[]
1234 Error, if 1234[] is a job array
1234.server.domain.com Error, if 1234[].server.domain.com is a job
array

The sequence number (1234 in 1234[].server) is unique, so that jobs and
job arrays cannot share a sequence number.

Note: Since some shells, for example csh and tcsh, read “[“ and “]” as shell
metacharacters, job array names and subjob names will need to be enclosed
in double quotes for all PBS commands.

Example:
qdel “1234.myhost[5]”

qdel “1234.myhost[]”

Single quotes will work, except where you are using shell variable substitu-
tion.

9.2 qsub: Submitting a Job Array

To submit a job array, qsub is used with the option -J range, where range
is of the form X-Y[:Z]. X is the starting index, Y is the ending index, and
Z is the optional stepping factor. X and Y must be whole numbers, and Z
must be a positive integer. Y must be greater than X. If Y is not a multiple
of the stepping factor above X, (i.e. it won’t be used as an index value) the
highest index used will be the next below Y. For example, 1-100:2 gives 1,
PBS Professional 9.2 User’s Guide 203

Chapter 9 Job Arrays
3, 5, ... 99.

Blocking qsub waits until the entire job array is complete, then returns the
exit status of the job array.

Interactive submission of job arrays is not allowed.

Examples:

To submit a job array of 10,000 subjobs, with indices 1, 2, 3, ... 10000:
$ qsub -J 1-10000 job.scr

1234[].server.domain.com

To submit a job array of 500 subjobs, with indices 500, 501, 502, ... 1000:
$ qsub -J 500-1000 job.scr

1235[].server.domain.com

To submit a job array with indices 1, 3, 5 ... 999:
$ qsub -J 1-1000:2 job.scr

1236[].server.domain.com

9.2.1 Interactive Job Submission

Job arrays do not support interactive submission.
204 PBS Professional 9.2 User’s Guide

Job Arrays Chapter 9
9.3 Job Array Attributes

Job arrays and subjobs have all of the attributes of a job. In addition, they
have the following when appropriate. These attributes are read-only.

Table 1: Job Array Attributes

Name Type Applies
To Value

array boolean job array True if item is job
array

array_id string subjob Subjob’s job array
identifier

array_index string subjob Subjob’s index num-
ber

array_state_count string job array Similar to
state_count attribute
for server and queue
objects. Lists num-
ber of subjobs in
each state.

array_indices_remaining string job array List of indices of
subjobs still queued.
Range or list of
ranges, e.g. 500, 552,
596-1000

array_indices_submitted string job array Complete list of indi-
ces of subjobs given
at submission time.
Given as range, e.g.
1-100
PBS Professional 9.2 User’s Guide 205

Chapter 9 Job Arrays
9.4 Job Array States

Job array states map closely to job states except for the ‘B’ state. The ‘B’
state applies to job arrays and indicates that at least one subjob has left the
queued state and is running or has run, but not all subjobs have run. Job
arrays will never be in the ‘R’, ‘S’ or ‘U’ states.

9.4.1 Subjob States

Subjobs can be in one of six states, listed here.

Table 2: Job Array States

State Indication

B The job array has started

W The job array has a wait time in the future

H The job array is held

T The job array is in transit between servers

Q The job array is queued, or has been qrerun

E All subjobs are finished and the server is cleaning up the job
array

Table 3: Subjob States

State Indication

Q Queued

R Running

E Ending

X Expired or deleted; subjob has completed execution or been
deleted

S Suspended

U Suspended by keyboard activity
206 PBS Professional 9.2 User’s Guide

Job Arrays Chapter 9
9.5 PBS Environmental Variables

9.6 File Staging

File staging for job arrays is like that for jobs, with an added variable to
specify the subjob index. This variable is ^array_index^. This is the
name of the variable that will be used for the actual array index. The stdout
and stderr files follow the naming convention for jobs, but include the iden-
tifier of the job array, which includes the subscripted index. As with jobs,
the stagein and stageout keywords require the -W option to qsub.

9.6.1 Specifying Files To Be Staged In or Staged Out

You can specify files to be staged in before the job runs and staged out after
the job runs by using -W stagein=file_list and -W stage-
out=file_list. You can use these as options to qsub, or as directives
in the job script.

The file_list takes the form:

local_path@hostname:remote_path[,...]

for both stagein and stageout.

The name local_path is the name of the file in the job’s staging and execu-

Table 4: PBS Environmental Variables

Environment Variable
Name Used For Description

$PBS_ARRAY_INDEX subjobs Subjob index in job array, e.g. 7

$PBS_ARRAY_ID subjobs Identifier for a job array.
Sequence number of job array,
e.g. 1234[].server

$PBS_JOBID Jobs, sub-
jobs

Identifier for a job or a subjob.
For subjob, sequence number
and subjob index in brackets,
e.g. 1234[7].server
PBS Professional 9.2 User’s Guide 207

Chapter 9 Job Arrays
tion directory (on the execution host). The local_path can be relative to
the job’s staging and execution directory, or it can be an absolute path.

The ‘@’ character separates the local specification from the remote specifi-
cation.

The name remote_path is the file name on the host specified by hostname.
For stagein, this is the location where the input files come from. For stage-
out, this is where the output files end up when the job is done. You must
specify a hostname. The name can be absolute, or it can be relative to the
user’s home directory on the remote machine.

Important: It is advisable to use an absolute pathname for the
remote_path. Remember that the path to your home
directory may be different on each machine, and that
when using sandbox = PRIVATE, you may or
may not have a home directory on all execution
machines.

For stagein, the direction of travel is from remote_path to local_path.

For stageout, the direction of travel is from local_path to remote_path.

When staging more than one filename, separate the filenames with a
comma and enclose the entire list in double quotes.

Examples:

Remote_path: store:/film
Data files used as input: frame1, frame2, frame3
Local_path: pix
Executable: a.out
208 PBS Professional 9.2 User’s Guide

Job Arrays Chapter 9
For this example, a.out produces frame2.out from frame2.
#PBS -W stagein=pix/in/frame^array_index^\

@store:/film/frame^array_index^

#PBS- W \

stageout=pix/out/frame^array_index^.out \

@store:/film/frame^array_index^.out

#PBS -J 1-3 a.out frame$PBS_ARRAY_INDEX \

./in ./out

Note that the stageout statement is all one line, broken here for readability.

The result will be that the user’s directory named “film” contains the origi-
nal files frame1, frame2, frame3, plus the new files
frame1.out, frame2.out and frame3.out.

9.6.1.1 Scripts

Example 1
In this example, we have a script named ArrayScript which calls scriptlet1
and scriptlet2.
All three scripts are located in /homedir/testdir.

#!/bin/sh

#PBS -N ArrayExample

#PBS -J 1-2

echo "Main script: index " $PBS_ARRAY_INDEX

/homedir/testdir/scriptlet$PBS_ARRAY_INDEX

In our example, scriptlet1 and scriptlet2 simply echo their names. We run
ArrayScript using the qsub command:

qsub ArrayScript

Example 2
In this example, we have a script called StageScript. It takes two
input files, dataX and extraX, and makes an output file, newdataX, as
well as echoing which iteration it is on. The dataX and extraX files will
be staged from inputs to work, then newdataX will be staged from
work to outputs.
PBS Professional 9.2 User’s Guide 209

Chapter 9 Job Arrays
#!/bin/sh

#PBS -N StagingExample

#PBS -J 1-2

#PBS -W stagein=”/homedir/work/data^array_index^

@host1:/homedir/inputs/data^array_index^, \

/homedir/work/extra^array_index^ \

@host1:/homedir/inputs/extra^array_index^”

#PBS -W stageout=/homedir/work/newdata^array_index^

@host1:/homedir/outputs/newdata^array_index^

echo "Main script: index " $PBS_ARRAY_INDEX

cd /homedir/work

cat data$PBS_ARRAY_INDEX extra$PBS_ARRAY_INDEX \

>> newdata$PBS_ARRAY_INDEX

Local path (execution directory):
/homedir/work

Remote host (data storage host):
host1

Remote path for inputs (original data files dataX and extraX):
/homedir/inputs

Remote path for results (output of computation newdataX):
/homedir/outputs

StageScript resides in /homedir/testdir. In that directory, we
can run it by typing:

qsub StageScript

It will run in /homedir, our home directory, which is why the line
“cd /homedir/work” is in the script.

Example 3
In this example, we have the same script as before, but we will run it in a
staging and execution directory created by PBS. StageScript takes two
input files, dataX and extraX, and makes an output file, newdataX, as
well as echoing which iteration it is on. The dataX and extraX files will
be staged from inputs to the staging and execution directory, then new-
dataX will be staged from the staging and execution directory to out-
puts.
210 PBS Professional 9.2 User’s Guide

Job Arrays Chapter 9
#!/bin/sh

#PBS -N StagingExample

#PBS -J 1-2

#PBS -W stagein=”data^array_index^\

@host1:/homedir/inputs/data^array_index^, \

extra^array_index^ \

@host1:/homedir/inputs/extra^array_index^”

#PBS -W stageout=newdata^array_index^\

@host1:/homedir/outputs/newdata^array_index^

echo "Main script: index " $PBS_ARRAY_INDEX

cat data$PBS_ARRAY_INDEX extra$PBS_ARRAY_INDEX \

>> newdata$PBS_ARRAY_INDEX

Local path (execution directory):
created by PBS; we don’t know the name

Remote host (data storage host):
host1

Remote path for inputs (original data files dataX and extraX):
/homedir/inputs

Remote path for results (output of computation newdataX):
/homedir/outputs

StageScript resides in /homedir/testdir. In that directory, we
can run it by typing:

qsub StageScript

It will run in the staging and execution directory created by PBS. See sec-
tion 8.7 “Input/Output File Staging” on page 158.

9.6.1.2 Output Filenames

The name of the job array will default to the script name if no name is
given via qsub -N.
For example, if the sequence number were 1234,

#PBS -N fixgamma

would give stdout for index number 7 the name fixgamma.o1234.7 and
stderr the name fixgamma.e1234.7. The name of the job array can also be
given through stdin.
PBS Professional 9.2 User’s Guide 211

Chapter 9 Job Arrays
9.6.2 Job Array Staging Syntax on Windows

In Windows the stagein and stageout string must be contained in double
quotes when using ^array_index^.

Example of a stagein:

qsub -W stagein="foo.^array_index^\

@host-1:C:\WINNT\Temp\foo.^array_index^" \

-J 1-5 stage_script

Example of a stageout:

qsub -W stageut=\

"C:\WINNT\Temp\foo.^array_index^@host-1:\

Q:\my_username\foo. ^array_index^_out" \

-J 1-5 stage_script

9.7 PBS Commands

9.7.1 PBS Commands Taking Job Arrays as Arguments

Note: Some shells such as csh and tcsh use the square bracket (“[“, “]”) as
a metacharacter. When using one of these shells, and a PBS command tak-
ing subjobs, job arrays or job array ranges as arguments, the subjob, job
array or job array range must be enclosed in double quotes.

The following table shows PBS commands that take job arrays, subjobs or
ranges as arguments. The cells in the table indicate which objects are acted
upon. In the table,

Array[] = the job array object
Array[Range] = the set of subjobs of the job array with indices in
range given
Array[Index] = the individual subjob of the job array with the index
given
Array[RUNNING] = the set of subjobs of the job array which are cur-
rently running
212 PBS Professional 9.2 User’s Guide

Job Arrays Chapter 9
Array[QUEUED] = the set of subjobs of the job array which are cur-
rently queued
Array[REMAINING] =the set of subjobs of the job array which are queued
or running
Array[DONE]= the set of subjobs of the job array which have fin-
ished running

Table 5: PBS Commands Taking Job Arrays as Arguments

Argument to Command

Com-
mand Array[] Array[Range] Array[Index]

qstat Array[] Array[Range] Array[Index]

qdel Array[] &
Array[REMAIN-
ING]

Array[Range] where
Array[REMAINING]

Array[Index]

qalter Array[] erroneous erroneous

qorder Array[] erroneous erroneous

qmove Array[] &
Array[QUEUED]

erroneous erroneous

qhold Array[] &
Array[QUEUED]

erroneous erroneous

qrls Array[] &
Array[QUEUED]

erroneous erroneous

qrerun Array[RUNNING]
& Array[DONE]

Array[Range] where
Array[RUNNING]

Array[Index]

qrun erroneous Array[Range] where
Array[QUEUED]

Array[Index]

trace-
job

erroneous erroneous Array[Index]

qsig Array[RUNNING] Array[Range] where
Array[RUNNING]

Array[Index]
PBS Professional 9.2 User’s Guide 213

Chapter 9 Job Arrays
9.7.2 qstat: Status of a Job Array

The qstat command is used to query the status of a Job Array. The default
output is to list the Job Array in a single line, showing the Job Array Identi-
fier. Options can be combined. To show the state of all running subjobs,
use -t -r. To show the state only of subjobs, not job arrays, use -t -J.

Examples:
We run an example job and an example job array, on a machine with 2 pro-
cessors:
demoscript:

#!/bin/sh

#PBS -N JobExample

sleep 60

qmsg erroneous erroneous erroneous

Table 6: Job Array and Subjob Options to qstat

Option Result

-t Shows state of job array object and subjobs.
Will also show state of jobs.

-J Shows state only of job arrays.

-p Prints the default display, with column for Percentage Com-
pleted.
For a job array, this is the number of subjobs completed or
deleted divided by the total number of subjobs. For a job, it is
time used divided by time requested.

Table 5: PBS Commands Taking Job Arrays as Arguments

Argument to Command

Com-
mand Array[] Array[Range] Array[Index]
214 PBS Professional 9.2 User’s Guide

Job Arrays Chapter 9
arrayscript:
#!/bin/sh

#PBS -N ArrayExample

#PBS -J 1-5

sleep 60

We run these scripts using qsub.
qsub arrayscript

1235[].host

qsub demoscript

1236.host

Then:
qstat

Job id Name User Time Use S Queue
----------- ------------ ---------- -------- - -----
1235[].host ArrayExample user1 0 B workq
1236.host JobExample user1 0 Q workq

qstat -J

Job id Name User Time Use S Queue
----------- ------------ ---------- -------- - -----
1235[].host ArrayExample user1 0 B workq

qstat -p

Job id Name User % done S Queue
----------- ------------ ---------- ------- - -----
1235[].host ArrayExample user1 0 B workq
1236.host JobExample user1 -- Q workq
PBS Professional 9.2 User’s Guide 215

Chapter 9 Job Arrays
qstat -t

Job id Name User Time Use S Queue
----------- ------------ ---------- -------- - -----
1235[].host ArrayExample user1 0 B workq
1235[1].host ArrayExample user1 00:00:00 R workq
1235[2].host ArrayExample user1 00:00:00 R workq
1235[3].host ArrayExample user1 0 Q workq
1235[4].host ArrayExample user1 0 Q workq
1235[5].host ArrayExample user1 0 Q workq
1236.host JobExample user1 0 Q workq

qstat -Jt
Job id Name User Time Use S Queue
------------ ------------ ----- -------- - -----
1235[1].host ArrayExample user1 00:00:00 R workq
1235[2].host ArrayExample user1 00:00:00 R workq
1235[3].host ArrayExample user1 0 Q workq
1235[4].host ArrayExample user1 0 Q workq
1235[5].host ArrayExample user1 0 Q workq

After the first two subjobs finish:
qstat -Jtp

Job id Name User % done S Queue
------------ ------------ ----- ------ - -----
1235[1].host ArrayExample user1 100 X workq
1235[2].host ArrayExample user1 100 X workq
1235[3].host ArrayExample user1 -- R workq
1235[4].host ArrayExample user1 -- R workq
1235[5].host ArrayExample user1 -- Q workq

qstat -pt

Job id Name User % done S Queue
------------ ------------ ----- ------ - -----
1235[].host ArrayExample user1 40 B workq
1235[1].host ArrayExample user1 100 X workq
1235[2].host ArrayExample user1 100 X workq
1235[3].host ArrayExample user1 -- R workq
1235[4].host ArrayExample user1 -- R workq
1235[5].host ArrayExample user1 -- Q workq
1236.host JobExample user1 -- Q workq
216 PBS Professional 9.2 User’s Guide

Job Arrays Chapter 9
Now if we wait until only the last subjob is still running:
qstat -rt

host:
 Req'd Req'd Elap
Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time
----------- ------ ----- --------- ------ --- --- ------ ----- - -----
1235[5].host user1 workq ArrayExamp 3048 -- 1 -- -- R 00:00
1236.host user1 workq JobExample 3042 -- 1 -- -- R 00:00

qstat -Jrt
host:
 Req'd Req'd Elap
Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time
----------- -------- ----- --------- ------ --- --- ------ ----- - -----
1235[5].host user1 workq ArrayExamp 048 -- 1 -- -- R 00:01

9.7.3 qdel: Deleting a Job Array

The qdel command will take a job array identifier, subjob identifier or job
array range. The indicated object(s) are deleted, including any currently
running subjobs. Running subjobs are treated like running jobs. Subjobs
not running will be deleted and never run. Only one email is sent per
deleted job array, so deleting a job array of 5000 subjobs results in one
email being sent.

9.7.4 qalter: Altering a Job Array

The qalter command can only be used on a job array object, not on subjobs
or ranges. Job array attributes are the same as for jobs.

9.7.5 qorder: Ordering Job Arrays in the Queue

The qorder command can only be used with job array objects, not on sub-
jobs or ranges. This will change the queue order of the job array in associ-
ation with other jobs or job arrays in the queue.

9.7.6 qmove: Moving a Job Array

The qmove command can only be used with job array objects, not with
subjobs or ranges. Job arrays can only be moved from one server to
another if they are in the ‘Q’, ‘H’, or ‘W’ states, and only if there are no
running subjobs. The state of the job array object is preserved in the
move. The job array will run to completion on the new server.
PBS Professional 9.2 User’s Guide 217

Chapter 9 Job Arrays
As with jobs, a qstat on the server from which the job array was moved will
not show the job array. A qstat on the job array object will be redirected to
the new server.

Note: The subjob accounting records will be split between the two servers.

9.7.7 qhold: Holding a Job Array

The qhold command can only be used with job array objects, not with sub-
jobs or ranges. A hold can be applied to a job array only from the ‘Q’,
‘B’ or ‘W’ states. This will put the job array in the ‘H’, held, state. If any
subjobs are running, they will run to completion. No queued subjobs will
be started while in the ‘H’ state.

9.7.8 qrls: Releasing a Job Array

The qrls command can only be used with job array objects, not with sub-
jobs or ranges. If the job array was in the ‘Q’ or ‘B’ state, it will be
returned to that state. If it was in the ‘W’ state, it will be returned to that
state unless its waiting time was reached, it will go to the ‘Q’ state.

9.7.9 qrerun: Requeueing a Job Array

The qrerun command will take a job array identifier, subjob identifier or
job array range. If a job array identifier is given as an argument, it is
returned to its initial state at submission time, or to its altered state if it has
been qaltered. All of that job array’s subjobs are requeued, which includes
those that are currently running, and completed and deleted. If a subjob or
range is given, those subjobs are requeued as jobs would be.

9.7.10 qrun: Running a Job Array

The qrun command takes a subjob or a range of subjobs, not a job array
object. If a single subjob is given as the argument, it is run as a job would
be. If a range of subjobs is given as the argument, the non-running subjobs
within that range will be run.

9.7.11 tracejob on Job Arrays

The tracejob command can be run on job arrays and individual subjobs.
218 PBS Professional 9.2 User’s Guide

Job Arrays Chapter 9
When tracejob is run on a job array or a subjob, the same information is
displayed as for a job, with additional information for a job array. Note
that subjobs do not exist until they are running, so tracejob will not show
any information until they are. When tracejob is run on a job array, the
information displayed is only that for the job array object, not the subjobs.
Job arrays themselves do not produce any MOM log information. Running
tracejob on a job array will give information about why a subjob did not
start.

9.7.12 qsig: Signaling a Job Array

If a job array object, subjob or job array range is given to qsig, all currently
running subjobs within the specified set will be sent the signal.

9.7.13 qmsg: Sending Messages

The qmsg command is not supported by job arrays.

9.8 Other PBS Commands Supported for Job Arrays

9.8.1 qselect: Selection of Job Arrays

The default behavior of qselect is to return the job array identifier, without
returning subjob identifiers.

Note: qselect will not return any job arrays when the state selection (-s)
option restricts the set to ‘R’, ‘S’, ‘T’ or ‘U’, because a job array will never
be in any of these states. However, qselect can be used to return a list of
subjobs by using the -t option.

Options to qselect can be combined. For example, to restrict the selection
to subjobs, use both the -J and the -T options. To select only running sub-
jobs, use -J -T -sR.
PBS Professional 9.2 User’s Guide 219

Chapter 9 Job Arrays
9.9 Job Arrays and xpbs

xpbs does not support job arrays.

9.10 More on Job Arrays

9.10.1 Job Array Run Limits

Jobs and subjobs are treated the same way by job run limits. For example,
if max_user_run is set to 5, a user can have a maximum of 5 subjobs and/or
jobs running.

9.10.2 Starving

A job array’s starving status is based on the queued portion of the array.
This means that if there is a queued subjob which is starving, the job array
is starving. A running subjob retains its starving status when it was started.

9.10.3 Job Array Dependencies

Job dependencies are supported:
between job arrays and job arrays
between job arrays and jobs
between jobs and job arrays

Note: Job dependencies are not supported for subjobs or ranges of subjobs.

Table 7: Options to qselect for Job Arrays

Option Selects Result

(none) jobs,
job arrays

Shows job and job array identifiers

-J job arrays Shows only job array identifiers

-T jobs,
subjobs

Shows job and subjob identifiers
220 PBS Professional 9.2 User’s Guide

Job Arrays Chapter 9
9.10.4 Accounting

Job accounting records for job arrays and subjobs are the same as for jobs.
When a job array has been moved from one server to another, the subjob
accounting records are split between the two servers, except that there will
be no ‘Q’ records for subjobs.

9.10.5 Checkpointing

Checkpointing is not supported for job arrays. On systems that support
checkpointing, subjobs are not checkpointed, instead they run to comple-
tion.

9.10.6 Prologues and Epilogues

If defined, prologues and epilogues will run at the beginning and end of
each subjob, but not for job arrays.

9.10.7 Job Array Exit Status

The exit status of a job array is determined by the status of each of the com-
pleted subjobs. It is only available when all valid subjobs have completed.
The individual exit status of a completed subjob is passed to the epilogue,
and is available in the ‘E’ accounting log record of that subjob.

9.10.8 Scheduling Job Arrays

All subjobs within a job array have the same scheduling priority.

Table 8:

Exit Status Meaning

0 All subjobs of the job array returned an exit status of 0.
No PBS error occurred. Deleted subjobs are not consid-
ered

1 At least 1 subjob returned a non-zero exit status. No PBS
error occurred.

2 A PBS error occurred.
PBS Professional 9.2 User’s Guide 221

Chapter 9 Job Arrays
9.10.8.1 Preemption

Individual subjobs may be preempted by higher priority work.

9.10.8.2 Peer Scheduling

Peer scheduling does not support job arrays.

9.10.8.3 Fairshare

Subjobs are treated like jobs with respect to fairshare ordering, fairshare
accounting and fairshare limits. If running enough subjobs of a job array
causes the priority of the owning entity to change, additional subjobs from
that job array may not be the next to start.

9.10.8.4 Placement Sets and Node Grouping

All nodes associated with a single subjob should belong to the same place-
ment set or node group. Different subjobs can be put on different place-
ment sets or node groups.
222 PBS Professional 9.2 User’s Guide

Chapter 10
Multiprocessor Jobs

10.1 Job Placement

Placement sets allow partitioning by multiple resources, so that a vnode
may be in one set that share a value for one resource, and another set that
share a different value for a different resource. See the PBS Professional
Administrator’s Guide.

If a job requests grouping by a resource, i.e. place=group=resource, then
the chunks are placed as requested and complex-wide node grouping is
ignored.

If a job is to use node grouping but the required number of vnodes is not
defined in any one group, grouping is ignored. This behavior is
unchanged.
PBS Professional 9.2 User’s Guide 223

Chapter 10 Multiprocessor Jobs
10.2 Submitting SMP Jobs

To submit a job which should run on one host and which requires a certain
number of cpus and amount of memory, submit the job with:

qsub -l select=ncpus=N:mem=M -l

place=group=host

When the job is run, the PBS_NODEFILE will contain one entry, the
name of the selected execution host. Generally this is ignored for SMP
jobs as all processes in the job are run on the host where the job script is
run. The job will have two environment variables, NCPUS and
OMP_NUM_THREADS, set to N, the number of CPUs allocated.

10.3 Submitting MPI Jobs

The preferred method for submitting an MPI job is by specifying one
chunk per MPI task. For example, for a 10-way MPI job with 2gb of mem-
ory per MPI task, you would use:

qsub -l select=10:ncpus=1:mem=2gb

If you have a cluster of small systems with for example 2 CPUs each, and
you wish to submit an MPI job that will run on four separate hosts, then
submit:

qsub -l select=4:ncpus=1 -l place=scatter

The PBS_NODEFILE file will contain one entry for each of the hosts allo-
cated to the job. In the example above, it would contain 4 lines. The vari-
ables NCPUS and OMP_NUM_THREADS will be set to one.

If you do not care where the four MPI processes are run, you may submit:
qsub -l select=4:ncpus=1 -l place=free

and the job will run on 2, 3, or 4 hosts depending on what is available.

For this example, PBS_NODEFILE will contain 4 entries, either four sepa-
rate hosts, or 3 hosts one of which is repeated once, or 2 hosts, etc.
NCPUS and OMP_NUM_THREADS will be set 1 or 2 depending on the
number of cpus allocated from the first listed host.
224 PBS Professional 9.2 User’s Guide

Multiprocessor Jobs Chapter 10
10.3.1 The mpiprocs Resource

The number of MPI processes for a job is controlled by the value of the
resource mpiprocs. The mpiprocs resource controls the contents of the
PBS_NODEFILE on the host which executes the top PBS task for the PBS
job (the one executing the PBS job script.) See “Built-in Resources” on
page 38. The PBS_NODEFILE contains one line per MPI process with the
name of the host on which that process should execute. The number of
lines in PBS_NODEFILE is equal to the sum of the values of mpiprocs
over all chunks requested by the job. For each chunk with mpiprocs=P,
(where P > 0), the host name (the value of the allocated vnode's
resources_available.host) is written to the PBS_NODEFILE exactly P
times.

If a user wishes to run two MPI processes on each of 3 hosts and have them
"share" a single processor on each host, the user would request

-lselect=3:ncpus=1:mpiprocs=2

The PBS_NODEFILE would contain the following list:
VnodeA

VnodeA

VnodeB

VnodeB

VnodeC

VnodeC

If you want 3 chunks, each with 2 CPUs and running 2 MPI process, use:
-l select=3:ncpus=2:mpiprocs=2...

The PBS_NODEFILE would contain the following list:
VnodeA

VnodeA

VnodeB

VnodeB

VnodeC

VnodeC
PBS Professional 9.2 User’s Guide 225

Chapter 10 Multiprocessor Jobs
10.4 OpenMP Jobs with PBS

PBS Professional supports OpenMP applications by setting the
OMP_NUM_THREADS variable automatically based on the resource
request of a job in the environment of the job. The OpenMP run-time will
pick up the value of OMP_NUM_THREADS and create threads appropri-
ately.

The OMP_NUM_THREADS value can be set explicitly by using the
ompthreads pseudo-resource for any chunk within the select statement. If
ompthreads is not used, then OMP_NUM_THREADS is set to the value of
the ncpus resource of that chunk. If neither ncpus nor ompthreads is used
within the select statement, then OMP_NUM_THREADS is set to 1.

To submit an OpenMP job is as a single chunk, for a 2-CPU job requiring
10gb of memory, you would use:

qsub -l select=1:ncpus=2:mem=10gb

You might be running an OpenMP application on a host and wish to run
fewer threads than the number of CPUs requested. This might be because
the threads need exclusive access to shared resources in a multi-core pro-
cessor system, such as to a cache shared between cores, or to the memory
shared between cores. If you want one chunk, with 16 CPUs and 8 threads:

qsub -l select=1:ncpus=16:ompthreads=8

You might be running an OpenMP application on a host and wish to run
more threads than the number of CPUs requested (because each thread is I/
O bound perhaps). If you want one chunk, with eight CPUs and 16
threads:

qsub -l select=1:ncpus=8:ompthreads=16

10.5 Hybrid MPI-OpenMP Jobs

For jobs that are both MPI and multi-threaded, the number of threads per
chunk, for all chunks, is set to the number of threads requested (explicitly
or implicitly) in the first chunk, except for MPIs that have been integrated
with the PBS TM API. For these MPIs (LAM MPI), you can specify the
number of threads separately for each chunk. This means that for most
MPIs, OMP_NUM_THREADS and NCPUS will default to the number of
226 PBS Professional 9.2 User’s Guide

Multiprocessor Jobs Chapter 10
ncpus requested on the first chunk, and for integrated MPIs, you can set the
ompthreads resource separately for each chunk.

Should you have a job that is both MPI and multi-threaded, you can request
one chunk for each MPI process, or set mpiprocs to the number of MPI
processes you want on each chunk.

For example, to request 4 chunks, each with 1 MPI process, 2 CPUs and 2
threads:

qsub -l select=4:ncpus=2

or
qsub -l select=4:ncpus=2:ompthreads=2

To request 4 chunks, each with 2 CPUs and 4 threads:
qsub -l select=4:ncpus=2:ompthreads=4

To request 16 MPI processes each with 2 threads on machines with 2 pro-
cessors:

qsub -l select=16:ncpus=2

To request two chunks, each with 8 CPUs and 8 MPI tasks and four
threads:

qsub -l

select=2:ncpus=8:mpiprocs=8:ompthreads=4

Example:
qsub -l select=4:ncpus=2

This request is satisfied by 4 CPUs from VnodeA, 2 from VnodeB and 2
from VnodeC, so the following is written to the PBS_NODEFILE:

VnodeA

VnodeA

VnodeB

VnodeC

The OpenMP environment variables are set (for the 4 PBS tasks corre-
sponding to the 4 MPI processes) as follows:
PBS Professional 9.2 User’s Guide 227

Chapter 10 Multiprocessor Jobs
• For PBS task #1 on VnodeA: OMP_NUM_THREADS=2 NCPUS=2
• For PBS task #2 on VnodeA: OMP_NUM_THREADS=2 NCPUS=2
• For PBS task #3 on VnodeB: OMP_NUM_THREADS=2 NCPUS=2
• For PBS task #4 on VnodeC: OMP_NUM_THREADS=2 NCPUS=2

Example:
qsub -l \

select=3:ncpus=2:mpiprocs=2:ompthreads=1

This is satisfied by 2 CPUs from each of three vnodes (VnodeA, VnodeB,
and VnodeC), so the following is written to the PBS_VNODEFILE:

VnodeA

VnodeA

VnodeB

VnodeB

VnodeC

VnodeC

The OpenMP environment variables are set (for the 6 PBS tasks corre-
sponding to the 6 MPI processes) as follows:
• For PBS task #1 on VnodeA: OMP_NUM_THREADS=1 NCPUS=1
• For PBS task #2 on VnodeA: OMP_NUM_THREADS=1 NCPUS=1
• For PBS task #3 on VnodeB: OMP_NUM_THREADS=1 NCPUS=1
• For PBS task #4 on VnodeB: OMP_NUM_THREADS=1 NCPUS=1
• For PBS task #5 on VnodeC: OMP_NUM_THREADS=1 NCPUS=1
• For PBS task #6 on VnodeC: OMP_NUM_THREADS=1 NCPUS=1

To run two threads on each of N chunks, each running a process, all on the
same Altix:

qsub -l select=N:ncpus=2 -l place=pack

This starts N processes on a single host, with two OpenMP threads per pro-
cess, because OMP_NUM_THREADS=2.

10.6 MPI Jobs with PBS

PBS creates one MPI process per chunk.
228 PBS Professional 9.2 User’s Guide

Multiprocessor Jobs Chapter 10
For most implementations of the Message Passing Interface (MPI), you
would use the mpirun command to launch your application. For example,
here is a sample PBS script for an MPI job:

#PBS -l select=arch=linux

#

mpirun -np 32 -machinefile $PBS_NODEFILE \

a.out

10.6.1 MPICH Jobs With PBS

For users of PBS with MPICH on Linux, the mpirun command has been
changed slightly. The syntax and arguments are the same except for one
option, which should not be set by the user:

-machinefile file PBS supplies the machinefile. If the user tries to
specify it, PBS will print a warning that it is replac-
ing the machinefile.

Under Windows the -localroot option to MPICH’s mpirun command
may be needed in order to allow the job’s processes to run more efficiently.

10.6.2 MPI Jobs Using LAM MPI

The pbs_mpilam command follows the convention of LAM's mpirun.
The “nodes” here are LAM nodes. LAM's mpirun has two syntax forms:

pbs_mpilam/mpirun [global_options] [<where>]
<program> [--args]

pbs_mpilam/mpirun [global_options] <schema file>

#PBS -l select=arch=linux
#
mpirun a.out
PBS Professional 9.2 User’s Guide 229

Chapter 10 Multiprocessor Jobs
Where
<where> is a set of node and/or CPU identifiers indicating where to start
<program>:

Nodes: n<list>, e.g., n0-3,5
CPUS: c<list>, e.g., c0-3,5
Extras: h (local node), o (origin node), N (all nodes), C (all CPUs)
<schema file> is an ASCII file containing a description of the pro-
grams which constitute an application.

The first form is fully supported by PBS: all user MPI processes are
tracked. The second
form is supported, but user MPI processes are not tracked.

CAUTION: Keep in mind that if the <where> argument and global option
-np or -c are not specified in the command line, then pbs_mpilam will
expect an ASCII schema file as argument.

10.6.3 MPI Jobs Using AIX, POE

PBS users of AIX machines running IBM’s Parallel Operating Environ-
ment, or POE, can run jobs on the HPS using either IP or US mode. PBS
will manage the HPS.

Under PBS, the poe command is slightly different. The syntax and argu-
ments are the same except for the following:

Options:

-procs <numranks>
If the -procs option or the MP_PROCS environment
variable is not set by the user, a default of the num-
ber of entries in the file $PBS_NODEFILE is used.
The maximum number of ranks that can be launched
is the number of entries in $PBS_NODEFILE.

-hostfile <file> PBS supplies the hostfile to POE. Any specification
for hostfile will be ignored.

 -euilib {ip | us}
230 PBS Professional 9.2 User’s Guide

Multiprocessor Jobs Chapter 10
If the command line option -euilib is set, it will take
precedence over the MP_EUILIB environment vari-
able. If the -euilib option is set to us, user mode is
set for the job. If the option is set to any other value,
that value is passed to poe.

 -msg_api This option can only take the values "MPI" or
"LAPI".

Environment variables:

 MP_EUILIB If the MP_EUILIB environment variable is set to
us, user mode is set for the job. If the variable is set
to any other value, that value is passed to poe.

 MP_HOSTFILE The MP_HOSTFILE environment variable is
excised.

 MP_PROCS If the -procs option or the MP_PROCS environment
variable is not set by the user, a default of the num-
ber of entries in the file $PBS_NODEFILE is used.

 MP_MSG_API This variable can only take the values "MPI" or
"LAPI".

Notes:

Since PBS is tracking tasks started by poe, these tasks are counted towards
a user’s run limits. Running multiple poe jobs in the background will not
work. Instead, run poe jobs one after the other or submit separate jobs.
Otherwise HPS windows will be used by more than one task. The tracejob
command will show any of various error messages.

For more information on using IBM’s Parallel Operating Environment, see
“IBM Parallel Environment for AIX 5L Hitchhiker’s Guide”
PBS Professional 9.2 User’s Guide 231

Chapter 10 Multiprocessor Jobs
10.6.3.1 Examples Using poe

1 Using IP mode, run a single executable poe job with 4 ranks on hosts
spread across the PBS-allocated nodes listed in $PBS_NODEFILE:

% cat $PBS_NODEFILE

host1

host2

host3

host4

% cat job.script

poe /path/mpiprog -euilib ip

% qsub -l select=4:ncpus=1 -lplace=scatter

job.script

2 Using US mode, run a single executable poe job with 4 ranks on hosts
spread across the PBS-allocated nodes listed in $PBS_NODEFILE:

% cat $PBS_NODEFILE

host1

host2

host3

host4

% cat job.script

poe /path/mpiprog -euilib us

% qsub -l select=4:ncpus=1 -lplace=scatter

job.script
232 PBS Professional 9.2 User’s Guide

Multiprocessor Jobs Chapter 10
3 Using IP mode, run executables prog1 and prog2 with 2 ranks of prog1
on host1, 2 ranks of prog2 on host2 and 2 ranks of prog2 on host3.

% cat $PBS_NODEFILE

host1

host1

host2

host2

host3

host3

% cat job.script

echo prog1 > /tmp/poe.cmd

echo prog1 >> /tmp/poe.cmd

echo prog2 >> /tmp/poe.cmd

echo prog2 >> /tmp/poe.cmd

echo prog2 >> /tmp/poe.cmd

echo prog2 >> /tmp/poe.cmd

poe -cmdfile /tmp/poe.cmd -euilib ip

rm /tmp/poe.cmd

% qsub -l select=3:ncpus=2:mpiprocs=2 \

-l place=scatter job.script
PBS Professional 9.2 User’s Guide 233

Chapter 10 Multiprocessor Jobs
4 Using US mode, run executables prog1 and prog2 with 2 ranks of
prog1 on host1, 2 ranks of prog2 on host2 and 2 ranks of prog2 on
host3.

% cat $PBS_NODEFILE

host1

host1

host2

host2

host3

host3

% cat job.script

echo prog1 > /tmp/poe.cmd

echo prog1 >> /tmp/poe.cmd

echo prog2 >> /tmp/poe.cmd

echo prog2 >> /tmp/poe.cmd

echo prog2 >> /tmp/poe.cmd

echo prog2 >> /tmp/poe.cmd

poe -cmdfile /tmp/poe.cmd -euilib us

rm /tmp/poe.cmd

% qsub -l select=3:ncpus=2:mpiprocs=2 \

-l place=scatter job.script

10.6.3.2 If Your Complex Contains Machines Not on the HPS

If your complex contains machines that are not on the HPS, and you wish
to run on the HPS, you must specify machines on the HPS. Your adminis-
trator will define a resource on each host on the HPS. To specify machines
on the HPS, you must request the "hps" resource in your select statement.
For this example, the resource is “hps”.

Using place=scatter: When "scatter" is used, the 4 chunks are on different
234 PBS Professional 9.2 User’s Guide

Multiprocessor Jobs Chapter 10
hosts so each host has 1 hps resource:
% qsub -l select=4:ncpus=2:hps=1

Using place=pack: When "pack" is used, all the chunks are put on one host
so a chunk with no resources and one "hps" must be specified:

% qsub -l select=4:ncpus=2+1:ncpus=0:hps=1

This ensures that the hps resource is only counted once. You could also
use this:

% qsub -l select=1:ncpus=8:hps=1

For two chunks of 4 CPUs, one on one machine and one on another, you
would use:

% qsub -l select=2:ncpus=4 -l place=scatter

10.6.4 PBS MPI Jobs on HP-UX and Linux

PBS is tightly integrated with the mpirun command on HP-UX so that
resources can be tracked and processes managed. When running a PBS
MPI job, you can use the same arguments to the mpirun command as you
would outside of PBS. The -h host and -l user options will be
ignored, and the -np number option will be modified to fit the available
resources.

10.6.5 PBS Jobs with MPICH-GM's mpirun Using rsh/ssh
(mpirun.ch_gm)

PBS provides an interface to MPICH-GM’s mpirun using rsh/ssh. If
executed inside a PBS job, this lets PBS track all MPICH-GM processes
started via rsh/ssh so that PBS can perform accounting and have com-
plete job control. If executed outside of a PBS job, it behaves exactly as if
standard mpirun.ch_gm had been used.

You use the same command as you would use outside of PBS, either
“mpirun.ch_gm” or “mpirun”.

10.6.5.1 Options

Inside a PBS job script, all of the options to the PBS interface are the same
as mpirun.ch_gm except for the following:
PBS Professional 9.2 User’s Guide 235

Chapter 10 Multiprocessor Jobs
-machinefile
<file>

The file argument contents are ignored and
replaced by the contents of the $PBS_NODEFILE.

-np If not specified, the number of entries found in the
$PBS_NODEFILE is used. The maximum number
of ranks that can be launched is the number of
entries in $PBS_NODEFILE.

-pg The use of the -pg option, for having multiple exe-
cutables on multiple hosts, is allowed but it is up to
user to make sure only PBS hosts are specified in the
process group file; MPI processes spawned on non-
PBS hosts are not guaranteed to be under the control
of PBS.

10.6.5.2 Examples

1 Run a single-executable MPICH-GM job with 64 processes spread out
across the PBS-allocated hosts listed in $PBS_NODEFILE:

PBS_NODEFILE:

pbs-host1

pbs-host2

pbs-host3

qsub -l select=3:ncpus=1

mpirun.ch_gm -np 64 /path/myprog.x 1200

^D

<job-id>
236 PBS Professional 9.2 User’s Guide

Multiprocessor Jobs Chapter 10
2 Run an MPICH-GM job with multiple executables on multiple hosts
listed in the process group file “procgrp”:

qsub -l select=3:ncpus=1

echo "host1 1 user1 /x/y/a.exe arg1 arg2" >

procgrp

echo "host2 1 user1 /x/x/b.exe arg1 arg2" >>

procgrp

mpirun.ch_gm -pg procgrp /path/mypro.x

rm -f procgrp

^D

<job-id>

When the job runs, mpirun.ch_gm will give this warning mes-
sage:

warning: “-pg” is allowed but it is up to user to make sure only PBS
hosts are specified; MPI processes spawned are not guaranteed to
be under the control of PBS.

The warning is issued because if any of the hosts listed in
procgrp are not under the control of PBS, then the processes on
those hosts will not be under the control of PBS.

10.6.6 PBS Jobs with MPICH-MX's mpirun Using rsh/ssh
(mpirun.ch_mx)

PBS provides an interface to MPICH-MX’s mpirun using rsh/ssh. If
executed inside a PBS job, this allows for PBS to track all MPICH-MX pro-
cesses started by rsh/ssh so that PBS can perform accounting and has com-
plete job control. If executed outside of a PBS job, it behaves exactly as if
standard mpirun.ch_mx had been used.

You use the same command as you would use outside of PBS, either
“mpirun.ch_mx” or “mpirun”.
PBS Professional 9.2 User’s Guide 237

Chapter 10 Multiprocessor Jobs
10.6.6.1 Options

Inside a PBS job script, all of the options to the PBS interface are the same
as mpirun.ch_mx except for the following:

-machinefile <file>
The file argument contents are ignored and
replaced by the contents of the $PBS_NODEFILE.

-np If not specified, the number of entries found in the
$PBS_NODEFILE is used. The maximum number
of ranks that can be launched is the number of
entries in $PBS_NODEFILE.

-pg The use of the -pg option, for having multiple exe-
cutables on multiple hosts, is allowed but it is up to
user to make sure only PBS hosts are specified in the
process group file; MPI processes spawned on non-
PBS hosts are not guaranteed to be under the control
of PBS.

10.6.6.2 Examples

1 Run a single-executable MPICH-MX job with 64 processes spread out
across the PBS-allocated hosts listed in $PBS_NODEFILE:

PBS_NODEFILE:
pbs-host1

pbs-host2

pbs-host3

qsub -l select=3:ncpus=1

mpirun.ch_mx -np 64 /path/myprog.x 1200

^D

<job-id>
238 PBS Professional 9.2 User’s Guide

Multiprocessor Jobs Chapter 10
2 Run an MPICH-MX job with multiple executables on multiple hosts
listed in the process group file “procgrp”:

qsub -l select=2:ncpus=1

echo "pbs-host1 1 username /x/y/a.exe \

arg1 arg2" > procgrp

echo "pbs-host2 1 username /x/x/b.exe arg1 \

arg2" >> procgrp

mpirun.ch_mx -pg procgrp /path/myprog.x

rm -f procgrp

^D

<job-id>

mpirun.ch_mx will give the warning message:

warning: “-pg” is allowed but it is up to user to make sure only PBS
hosts are specified; MPI processes spawned are not guaranteed to
be under PBS-control

The warning is issued because if any of the hosts listed in procgrp
are not under the control of PBS, then the processes on those hosts
will not be under the control of PBS.

10.6.7 PBS Jobs with MPICH-GM's mpirun Using MPD
(mpirun.mpd)

PBS provides an interface to MPICH-GM’s mpirun using MPD. If exe-
cuted inside a PBS job, this allows for PBS to track all MPICH-GM pro-
cesses started by the MPD daemons so that PBS can perform accounting
have and complete job control. If executed outside of a PBS job, it behaves
exactly as if standard mpirun.mpd with MPD had been used.

You use the same command as you would use outside of PBS, either
“mpirun.mpd” or “mpirun”. If the MPD daemons are not already running,
the PBS interface will take care of starting them for you.
PBS Professional 9.2 User’s Guide 239

Chapter 10 Multiprocessor Jobs
10.6.7.1 Options

Inside a PBS job script, all of the options to the PBS interface are the same
as mpirun.mpd with MPD except for the following:

-m <file> The file argument contents are ignored and
replaced by the contents of the $PBS_NODEFILE.

-np If not specified, the number of entries found in the
$PBS_NODEFILE is used. The maximum number
of ranks that can be launched is the number of
entries in $PBS_NODEFILE

-pg The use of the -pg option, for having multiple exe-
cutables on multiple hosts, is allowed but it is up to
user to make sure only PBS hosts are specified in the
process group file; MPI processes spawned on non-
PBS hosts are not guaranteed to be under the control
of PBS.

10.6.7.2 MPD Startup and Shutdown

The script starts MPD daemons on each of the unique hosts listed in
$PBS_NODEFILE, using either the rsh or ssh method based on the
value of the environment variable RSHCOMMAND. The default is rsh.
The script also takes care of shutting down the MPD daemons at the end of
a run.

If the MPD daemons are not running, the PBS interface to mpirun.mpd
will start GM's MPD daemons as this user on the allocated PBS hosts. The
MPD daemons may have been started already by the administrator or by
the user. MPD daemons are not started inside a PBS prologue script since
it won't have the path of mpirun.mpd that the user executed (GM or
MX), which would determine the path to the MPD binary.
240 PBS Professional 9.2 User’s Guide

Multiprocessor Jobs Chapter 10
10.6.7.3 Examples

1 Run a single-executable MPICH-GM job with 64 processes spread out
across the PBS-allocated hosts listed in $PBS_NODEFILE:

PBS_NODEFILE:
pbs-host1

pbs-host2

pbs-host3

qsub -l select=3:ncpus=1

[MPICH-GM-HOME]/bin/mpirun.mpd -np 64 \

/path/myprog.x 1200

^D

<job-id>

If the GM MPD daemons are not running, the PBS interface to
mpirun.mpd will start them as this user on the allocated PBS
hosts. The daemons may have been previously started by the
administrator or the user.

2 Run an MPICH-GM job with multiple executables on multiple hosts
listed in the process group file “procgrp”:

Job script:
qsub -l select=3:ncpus=1

echo "host1 1 user1 /x/y/a.exe arg1 arg2" \

> procgrp

echo "host2 1 user1 /x/x/b.exe arg1 arg2" \

>> procgrp
PBS Professional 9.2 User’s Guide 241

Chapter 10 Multiprocessor Jobs
[MPICH-GM-HOME]/bin/mpirun.mpd -pg procgrp \

/path/mypro.x 1200

rm -f procgrp

^D

<job-id>

When the job runs, mpirun.mpd will give the warning message:

warning: “-pg” is allowed but it is up to user to make sure only PBS
hosts are specified; MPI processes spawned are not guaranteed to
be under PBS-control.

The warning is issued because if any of the hosts listed in
procgrp are not under the control of PBS, then the processes on
those hosts will not be under the control of PBS.

10.6.8 PBS Jobs with MPICH-MX's mpirun Using MPD
(mpirun.mpd)

PBS provides an interface to MPICH-MX’s mpirun using MPD. If exe-
cuted inside a PBS job, this allows for PBS to track all MPICH-MX pro-
cesses started by the MPD daemons so that PBS can perform accounting
and have complete job control. If executed outside of a PBS job, it behaves
exactly as if standard mpirun.ch_mx with MPD was used.

You use the same command as you would use outside of PBS, either
“mpirun.mpd” or “mpirun”. If the MPD daemons are not already running,
the PBS interface will take care of starting them for you.

10.6.8.1 Options

Inside a PBS job script, all of the options to the PBS interface are the same
as mpirun.ch_gm with MPD except for the following:

-m <file> The file argument contents are ignored and
replaced by the contents of the $PBS_NODEFILE.
242 PBS Professional 9.2 User’s Guide

Multiprocessor Jobs Chapter 10
-np If not specified, the number of entries found in the
$PBS_NODEFILE is used. The maximum number
of ranks that can be launched is the number of
entries in $PBS_NODEFILE.

-pg The use of the -pg option, for having multiple exe-
cutables on multiple hosts, is allowed but it is up to
user to make sure only PBS hosts are specified in the
process group file; MPI processes spawned on non-
PBS hosts are not guaranteed to be under the control
of PBS.

10.6.8.2 MPD Startup and Shutdown

The PBS mpirun interface starts MPD daemons on each of the unique
hosts listed in $PBS_NODEFILE, using either the rsh or ssh method,
based on value of environment variable RSHCOMMAND. The default is
rsh. The interface also takes care of shutting down the MPD daemons at
the end of a run.

If the MPD daemons are not running, the PBS interface to mpirun.mpd
will start MX's MPD daemons as this user on the allocated PBS hosts. The
MPD daemons may already have been started by the administrator or by
the user. MPD daemons are not started inside a PBS prologue script since
it won't have the path of mpirun.mpd that the user executed (GM or
MX), which would determine the path to the MPD binary.

10.6.8.3 Examples

1 Run a single-executable MPICH-MX job with 64 processes spread out
across the PBS-allocated hosts listed in $PBS_NODEFILE:

PBS_NODEFILE:
pbs-host1

pbs-host2

pbs-host3
PBS Professional 9.2 User’s Guide 243

Chapter 10 Multiprocessor Jobs
qsub -l select=3:ncpus=1

[MPICH-MX-HOME]/bin/mpirun.mpd -np 64 /path/
myprog.x 1200

^D

<job-id>

If the MPD daemons are not running, the PBS interface to
mpirun.mpd will start GM's MPD daemons as this user on the
allocated PBS hosts. The MPD daemons may be already started by
the administrator or by the user.

2 Run an MPICH-MX job with multiple executables on multiple hosts
listed in the process group file “procgrp”:

qsub -l select=2:ncpus=1

echo "pbs-host1 1 username /x/y/a.exe \

arg1 arg2" > procgrp

echo "pbs-host2 1 username /x/x/b.exe \

arg1 arg2" >> procgrp

[MPICH-MX-HOME]/bin/mpirun.mpd -pg procgrp \

/path/myprog.x 1200

rm -f procgrp

^D

<job-id>

mpirun.mpd will print a warning message:

warning: “-pg” is allowed but it is up to user to make sure only PBS
hosts are specified; MPI processes spawned are not guaranteed to
be under PBS-control

The warning is issued because if any of the hosts listed in
procgrp are not under the control of PBS, then the processes on
those hosts will not be under the control of PBS.
244 PBS Professional 9.2 User’s Guide

Multiprocessor Jobs Chapter 10
10.6.9 PBS Jobs with MPICH2's mpirun

PBS provides an interface to MPICH2’s mpirun. If executed inside a
PBS job, this allows for PBS to track all MPICH2 processes so that PBS
can perform accounting and have complete job control. If executed outside
of a PBS job, it behaves exactly as if standard MPICH2's mpirun had
been used.

You use the same “mpirun” command as you would use outside of PBS.

When submitting PBS jobs that invoke the pbsrun wrapper script for
MPICH2's mpirun, be sure to explicitly specify the actual number of ranks
or MPI tasks in the qsub select specification. Otherwise, jobs will fail to
run with "too few entries in the machinefile".

For instance, specification of the following in 7.1:

#PBS -l select=1:ncpus=1:host=\

hostA+1:ncpus=2:host=hostB

mpirun -np 3 /tmp/mytask

would result in a 7.1 $PBS_NODEFILE listing:

hostA

hostB

hostB

but in 8.0 or later it would be:

hostA

hostB

which would conflict with the "-np 3" specification in mpirun as only 2
MPD daemons will be started.

The correct way now is to specify either a) or b) as follows:

a) #PBS -l select=1:ncpus=1:host=\
hostA+2:ncpus=1:host=hostB
PBS Professional 9.2 User’s Guide 245

Chapter 10 Multiprocessor Jobs
b) #PBS -l select=1:ncpus=1:host=
hostA+1:ncpus=2:host=hostB:mpiprocs=2

which would cause $PBS_NODEFILE to list:

hostA

hostB

hostB

and an "mpirun -np 3" would then be consistent.

10.6.9.1 Options

If executed inside a PBS job script, all of the options to the PBS interface
are the same as MPICH2's mpirun except for the following:

-host, -ghost For specifying the execution host to run on.
Ignored.

-machinefile <file>
The file argument contents are ignored and replaced
by the contents of the $PBS_NODEFILE.

-localonly <x>
For specifying the <x> number of processes to run
locally. Not supported. The user is advised instead to
use the equivalent arguments:

"-np <x> -localonly".

-np If the user does not specify a -np option, then no
default value is provided by the PBS wrapper
scripts. It is up to the local mpirun to decide what the
reasonable default value should be, which is usually
1. The maximum number of ranks that can be
launched is the number of entries in
$PBS_NODEFILE.
246 PBS Professional 9.2 User’s Guide

Multiprocessor Jobs Chapter 10
10.6.9.2 MPD Startup and Shutdown

The interface ensures that the MPD daemons are started on each of the
hosts listed in the $PBS_NODEFILE. It also ensures that the MPD dae-
mons are shut down at the end of MPI job execution.

10.6.9.3 Examples

1 Run a single-executable MPICH2 job with 6 processes spread out
across the PBS-allocated hosts listed in $PBS_NODEFILE:

PBS_NODEFILE:

pbs-host1

pbs-host2

pbs-host3

pbs-host1

pbs-host2

pbs-host3

Job.script:

mpirun runs 6 processes mapped to each host

listed in $PBS_NODEFILE

mpirun -np 6 /path/myprog.x 1200

Run job script:
qsub -l select=3:ncpus=2 job.script

<job-id>
PBS Professional 9.2 User’s Guide 247

Chapter 10 Multiprocessor Jobs
2 Run an MPICH2 job with multiple executables on multiple hosts using
$PBS_NODEFILE and mpiexec arguments in mpirun:

PBS_NODEFILE:

hostA

hostA

hostB

hostB

hostC

hostC

Job script:

#PBS -l select=3:ncpus=2

mpirun -np 2 /tmp/mpitest1 : \

-np 2 /tmp/mpitest2 : \

-np 2 /tmp/mpitest3

Run job:
qsub job.script
248 PBS Professional 9.2 User’s Guide

Multiprocessor Jobs Chapter 10
3 Run an MPICH2 job with multiple executables on multiple hosts using
mpirun -configfile option and $PBS_NODEFILE:

PBS_NODEFILE:
hostA

hostA

hostB

hostB

hostC

hostC

Job script:

#PBS -l select=3:ncpus=2

echo "-np 2 /tmp/mpitest1" > my_config_file

echo "-np 2 /tmp/mpitest2" >> my_config_file

echo "-np 2 /tmp/mpitest3" >> my_config_file

mpirun -configfile my_config_file

rm -f my_config_file

Run job:
qsub job.script

10.6.10 PBS Jobs with Intel MPI's mpirun

PBS provides an interface to Intel MPI’s mpirun. If executed inside a
PBS job, this allows for PBS to track all Intel MPI processes so that PBS
can perform accounting and have complete job control. If executed outside
of a PBS job, it behaves exactly as if standard Intel MPI's mpirun was
used.

You use the same “mpirun” command as you would use outside of PBS.

When submitting PBS jobs that invoke the pbsrun wrapper script for Intel
MPI, be sure to explicitly specify the actual number of ranks or MPI tasks
in the qsub select specification. Otherwise, jobs will fail to run with "too
few entries in the machinefile".
PBS Professional 9.2 User’s Guide 249

Chapter 10 Multiprocessor Jobs
For instance, specification of the following in 7.1:
#PBS -l select=1:ncpus=1:host=\

hostA+1:ncpus=2:host=hostB

mpirun -np 3 /tmp/mytask

would result in a 7.1 $PBS_NODEFILE listing:
hostA

hostB

hostB

but in 8.0 or later it would be:

hostA

hostB

which would conflict with the "-np 3" specification in mpirun as only 2
MPD daemons will be started.

The correct way now is to specify either a) or b) as follows:

a) #PBS -l select=1:ncpus=1:host=\
hostA+2:ncpus=1:host=hostB

b) #PBS -l select=1:ncpus=1:host=hostA+1:\
ncpus=2:host=hostB:mpiprocs=2

which would cause $PBS_NODEFILE to list:
hostA

hostB

hostB

and an "mpirun -np 3" would then be consistent.

10.6.10.1 Options

If executed inside a PBS job script, all of the options to the PBS interface
are the same as for Intel MPI’s mpirun except for the following:
250 PBS Professional 9.2 User’s Guide

Multiprocessor Jobs Chapter 10
-host, -ghost For specifying the execution host to run on.
Ignored.

-machinefile <file>
The file argument contents are ignored and replaced
by the contents of the $PBS_NODEFILE.

mpdboot option --totalnum=*
Ignored and replaced by the number of unique
entries in $PBS_NODEFILE.

mpdboot option --file=*
Ignored and replaced by the name of
$PBS_NODEFILE. The argument to this option is
replaced by $PBS_NODEFILE.

Argument to mpdboot option -f <mpd_hosts_file>
Replaced by $PBS_NODEFILE.

-s If the PBS interface to Intel MPI’s mpirun is
called inside a PBS job, Intel MPI’s mpirun -s
argument to mpdboot is not supported as this
closely matches the mpirun option "-s
<spec>". The user can simply run a separate
mpdboot -s before calling mpirun. A warning
message is issued by the PBS interface upon
encountering a -s option telling users of the sup-
ported form.

-np If the user does not specify a -np option, then no
default value is provided by the PBS interface. It is
up to the local mpirun to decide what the reason-
able default value should be, which is usually 1.
The maximum number of ranks that can be launched
is the number of entries in $PBS_NODEFILE.

10.6.10.2 MPD Startup and Shutdown

Intel MPI's mpirun takes care of starting/stopping the MPD daemons.
PBS Professional 9.2 User’s Guide 251

Chapter 10 Multiprocessor Jobs
The PBS interface to Intel MPI’s mpirun always passes the arguments -
totalnum=<number of mpds to start> and -
file=<mpd_hosts_file> to the actual mpirun, taking its input
from unique entries in $PBS_NODEFILE.

10.6.10.3 Examples

1 Run a single-executable Intel MPI job with 6 processes spread out
across the PBS-allocated hosts listed in $PBS_NODEFILE:

PBS_NODEFILE:

pbs-host1

pbs-host2

pbs-host3

pbs-host1

pbs-host2

pbs-host3

Job script:
mpirun takes care of starting the MPD

daemons on unique hosts listed in

$PBS_NODEFILE, and also runs 6 processes

mapped to each host listed in

$PBS_NODEFILE; mpirun takes care of

shutting down MPDs.

mpirun /path/myprog.x 1200

Run job script:
qsub -l select=3:ncpus=2 job.script

<job-id>
252 PBS Professional 9.2 User’s Guide

Multiprocessor Jobs Chapter 10
2 Run an Intel MPI job with multiple executables on multiple hosts using
$PBS_NODEFILE and mpiexec arguments to mpirun:

$PBS_NODEFILE

hostA

hostA

hostB

hostB

hostC

hostC

Job script:
mpirun runs MPD daemons on hosts listed

in $PBS_NODEFILE

mpirun runs 2 instances of mpitest1

on hostA; 2 instances of mpitest2 on

hostB; 2 instances of mpitest3 on

hostC.

mpirun takes care of shutting down the

MPDs at the end of MPI job run.

mpirun -np 2 /tmp/mpitest1 : \

-np 2 /tmp/mpitest2 : \

-np 2 /tmp/mpitest3

Run job script:
qsub -l select=3:ncpus=2 job.script

 <job-id>
PBS Professional 9.2 User’s Guide 253

Chapter 10 Multiprocessor Jobs
3 Run an Intel MPI job with multiple executables on multiple hosts via
the -configfile option and $PBS_NODEFILE:

$PBS_NODEFILE:

hostA

hostA

hostB

hostB

hostC

hostC

Job script:

echo “-np 2 /tmp/mpitest1” >> my_config_file

echo “-np 2 /tmp/mpitest2” >> my_config_file

echo “-np 2 /tmp/mpitest3” >> my_config_file

mpirun takes care of starting the MPD dae-
mons

config file says run 2 instances of
mpitest1

on hostA; 2 instances of mpitest2 on

hostB; 2 instances of mpitest3 on

hostC.

mpirun takes care of shutting down the MPD

daemons.

mpirun -configfile my_config_file

cleanup

rm -f my_config_file

Run job script:
qsub -l select=3:ncpus=2 job.script

<job-id>
254 PBS Professional 9.2 User’s Guide

Multiprocessor Jobs Chapter 10
10.6.11 PBS Jobs with MVAPICH1's mpirun

PBS provides an interface to MVAPICH1’s mpirun. MVAPICH1
allows use of InfiniBand. If executed inside a PBS job, this allows for PBS
to track all MVAPICH1 processes so that PBS can perform accounting and
have complete job control. If executed outside of a PBS job, it behaves
exactly as if standard MVAPICH1 mpirun had been used.

You use the same “mpirun” command as you would use outside of PBS.

10.6.11.1 Options

If executed inside a PBS job script, all of the options to the PBS interface
are the same as MVAPICH1's mpirun except for the following:

-map The map option is ignored.

-machinefile
<file>

The machinefile option is ignored.

-exclude The exclude option is ignored.

-np If the user does not specify a -np option, then PBS
uses the number of entries found in the
$PBS_NODEFILE. The maximum number of
ranks that can be launched is the number of entries
in $PBS_NODEFILE.

10.6.11.2 Examples

1 Run a single-executable MVAPICH1 job with 6 ranks spread out across
the PBS-allocated hosts listed in $PBS_NODEFILE:

PBS_NODEFILE:

pbs-host1

pbs-host1

pbs-host2

pbs-host2

pbs-host3

pbs-host3
PBS Professional 9.2 User’s Guide 255

Chapter 10 Multiprocessor Jobs

Job.script:
mpirun runs 6 processes mapped to each host
listed

in $PBS_NODEFILE

mpirun -np 6 /path/myprog

Run job script:
qsub -l select=3:ncpus=2:mpiprocs=2 \

job.script

<job-id>

10.6.12 PBS Jobs with MVAPICH2's mpiexec

PBS provides an interface to MVAPICH2’s mpiexec. MVAPICH2
allows the use of InfiniBand. If executed inside a PBS job, this allows for
PBS to track all MVAPICH2 processes so that PBS can perform accounting
and have complete job control. If executed outside of a PBS job, it behaves
exactly as if standard MVAPICH2's mpiexec had been used.

You use the same “mpiexec” command as you would use outside of PBS.

The maximum number of ranks that can be launched is the number of
entries in $PBS_NODEFILE.

10.6.12.1 Options

If executed inside a PBS job script, all of the options to the PBS interface
are the same as MVAPICH2's mpiexec except for the following:

-host The host option is ignored.

-machinefile
<file>

The file option is ignored.

-mpdboot If mpdboot is not called before mpiexec, it is called
automatically before mpiexec runs so that an MPD
daemon is started on each host assigned by PBS.
256 PBS Professional 9.2 User’s Guide

Multiprocessor Jobs Chapter 10
10.6.12.2 MPD Startup and Shutdown

The interface ensures that the MPD daemons are started on each of the
hosts listed in the $PBS_NODEFILE. It also ensures that the MPD dae-
mons are shut down at the end of MPI job execution.

10.6.12.3 Examples

1 Run a single-executable MVAPICH2 job with 6 ranks on hosts listed in
$PBS_NODEFILE:

PBS_NODEFILE:

pbs-host1

pbs-host2

pbs-host3

Job.script:
mpiexec -np 6 /path/mpiprog

Run job script:
qsub -l select=3:ncpus=2 job.script

<job-id>

2 Launch an MVAPICH2 MPI job with multiple executables on multiple
hosts listed in the default file "mpd.hosts". Here, run executables prog1
and prog2 with 2 ranks of prog1 on host1, 2 ranks of prog2 on host2
and 2 ranks of prog2 on host3 all specified on the command line.

PBS_NODEFILE:

pbs-host1

pbs-host2

pbs-host3

Job.script:
mpiexec -n 2 prog1 : -n 2 prog2 : -n 2 prog2

Run job script:
qsub -l select=3:ncpus=2 job.script

<job-id>
PBS Professional 9.2 User’s Guide 257

Chapter 10 Multiprocessor Jobs
3 Launch an MVAPICH2 MPI job with multiple executables on multiple
hosts listed in the default file "mpd.hosts". Run executables prog1 and
prog2 with 2 ranks of prog1 on host1, 2 ranks of prog2 on host2 and 2
ranks of prog2 on host3 all specified using the -configfile option.

PBS_NODEFILE:

pbs-host1

pbs-host2

pbs-host3

Job.script:
echo "-n 2 -host host1 prog1" > /tmp/jobconf

echo "-n 2 -host host2 prog2" >> /tmp/jobconf

echo "-n 2 -host host3 prog2" >> /tmp/jobconf

mpiexec -configfile /tmp/jobconf

rm /tmp/jobconf

Run job script:
qsub -l select=3:ncpus=2 job.script

<job-id>

10.6.13 PBS Jobs with HP MPI

In order to override the default rsh, set PBS_RSHCOMMAND in your job
script:

export PBS_RSHCOMMAND=<rsh_cmd>

10.7 MPI Jobs on the Altix

10.7.1 Jobs on an Altix Running ProPack 4/5

PBS has its own mpiexec for the Altix running ProPack 4 or greater. The
PBS mpiexec has the standard mpiexec interface. The PBS mpiexec does
require proper configuration of the Altix. See your administrator to find
out whether your system is configured for the PBS mpiexec.

You can launch an MPI job on a single Altix, or across multiple Altixes.
258 PBS Professional 9.2 User’s Guide

Multiprocessor Jobs Chapter 10
PBS will manage and track the processes. You can use CSA, if it is config-
ured, to collect accounting information on your jobs. PBS will run the MPI
tasks in the cpusets it manages.

You can run MPI jobs in the placement sets chosen by PBS. When a job is
finished, PBS will clean up after it.

For MPI jobs across multiple Altixes, PBS will manage the multihost jobs.
For example, if you have two Altixes named Alt1 and Alt2, and want to run
two applications called mympi1 and mympi2 on them, you can put this in
your job script:

mpiexec -host Alt1 -n 4 mympi1 : \

-host Alt2 -n 8 mympi2

You can specify the name of the array to use via the
PBS_MPI_SGIARRAY environment variable.

To verify how many CPUs are included in a cpuset created by PBS, use:
> $ cpuset -d <set name> | egrep cpus

This will work either from within a job or not.

The alt_id returned by MOM has the form cpuset=<name>. <name> is
the name of the cpuset, which is the $PBS_JOBID.

Jobs will share cpusets if the jobs request sharing and the cpusets’ sharing
attribute is not set to force_excl. Jobs can share the memory on a node-
board if they have a CPU from that nodeboard. To fit as many small jobs
as possible onto vnodes that already have shared jobs on them, request
sharing in the job resource requests.

PBS will try to put a job that will fit in a single nodeboard on just one node-
board. However, if the only CPUs available are on separate nodeboards,
and those vnodes are not allocated exclusively to existing jobs, and the job
can share a vnode, then the job will be run on the separate nodeboards.

If a job is suspended, its processes will be moved to the global cpuset.
When the job is restarted, they are restored.
PBS Professional 9.2 User’s Guide 259

Chapter 10 Multiprocessor Jobs
10.8 PVM Jobs with PBS

On a typical system, to execute a Parallel Virtual Machine (PVM) program
you can use the pvmexec command. The pvmexec command expects a
“hostfile” argument for the list of hosts on which to spawn the parallel job.

For example, here is a sample PBS script for a PVM job:
#PBS -N pvmjob

#

pvmexec a.out -inputfile data_in

To start the PVM daemons on the hosts listed in $PBS_NODEFILE, start
the PVM console on the first host in the list, and print the hosts to the stan-
dard output file named “jobname.o<PBS jobID>, use “echo conf | pvm
$PBS_NODEFILE”. To quit the PVM console but leave the PVM dae-
mons running, use “quit”. To stop the PVM daemons, restart the PVM
console, and quit, use “echo halt | pvm”.

To submit a PVM job to PBS, use
qsub your_pvm_job

Here is an example script for your_pvm_job:

#PBS -N pvmjob

#PBS -V

cd $PBS_O_WORKDIR

echo conf | pvm $PBS_NODEFILE

echo quit | pvm

./my_pvm_program

echo halt | pvm
260 PBS Professional 9.2 User’s Guide

Multiprocessor Jobs Chapter 10
10.9 Checkpointing SGI MPI Jobs

10.9.1 Jobs on an Altix

Jobs are suspended on the Altix using the PBS suspend feature. Jobs are
checkpointed on the Altix using application-level checkpointing. There is
no OS-level checkpoint. Suspended or checkpointed jobs will resume on
the original nodeboards.
PBS Professional 9.2 User’s Guide 261

Chapter 10 Multiprocessor Jobs
262 PBS Professional 9.2 User’s Guide

Appendix A: PBS
Environment Variables

Table 1: PBS Environment Variables

Variable Meaning

NCPUS Number of threads, defaulting to number of
CPUs, on the vnode

OMP_NUM_THREADS Same as NCPUS.

PBS_ARRAY_ID Identifier for job arrays. Consists of
sequence number.

PBS_ARRAY_INDEX Index number of subjob in job array.

PBS_ENVIRONMENT Indicates job type: PBS_BATCH or
PBS_INTERACTIVE

PBS_JOBCOOKIE Unique identifier for inter-MOM job-based
communication.
PBS Professional 9.2 User’s Guide 263

Appendix A: PBS Environment Variables
PBS_JOBID The job identifier assigned to the job or job
array by the batch system.

PBS_JOBDIR Pathname of job-specific staging and execu-
tion directory

PBS_JOBNAME The job name supplied by the user.

PBS_MOMPORT Port number on which this job’s MOMs will
communicate.

PBS_NODEFILE The filename containing a list of vnodes
assigned to the job.

PBS_NODENUM Logical vnode number of this vnode allo-
cated to the job.

PBS_O_HOME Value of HOME from submission environ-
ment.

PBS_O_HOST The host name on which the qsub com-
mand was executed.

PBS_O_LANG Value of LANG from submission environ-
ment

PBS_O_LOGNAME Value of LOGNAME from submission envi-
ronment

PBS_O_MAIL Value of MAIL from submission environ-
ment

PBS_O_PATH Value of PATH from submission environ-
ment

PBS_O_QUEUE The original queue name to which the job
was submitted.

PBS_O_SHELL Value of SHELL from submission environ-
ment

PBS_O_SYSTEM The operating system name where qsub
was executed.

Table 1: PBS Environment Variables

Variable Meaning
264 PBS Professional 9.2 User’s Guide

Appendix A: PBS Environment Variables Chapter 11
PBS_O_TZ Value of TZ from submission environment

PBS_O_WORKDIR The absolute path of directory where qsub
was executed.

PBS_QUEUE The name of the queue from which the job
is executed.

PBS_TASKNUM The task (process) number for the job on
this vnode.

TMPDIR The job-specific temporary directory for
this job.

Table 1: PBS Environment Variables

Variable Meaning
PBS Professional 9.2 User’s Guide 265

Chapter 11 Appendix A: PBS Environment Variables
266 PBS Professional 9.2 User’s Guide

Appendix B: Converting
From NQS to PBS

For those converting to PBS from NQS or NQE, PBS includes a utility
called nqs2pbs which converts an existing NQS job script so that it will
work with PBS. (In fact, the resulting script will be valid to both NQS and
PBS.) The existing script is copied and PBS directives (“#PBS”) are
inserted prior to each NQS directive (either “#QSUB” or “#Q$”) in the
original script.

Important: Converting NQS date specifications to the PBS
form may result in a warning message and an

nqs2pbs existing-NQS-script new-PBS-script
PBS Professional 9.2 User’s Guide 267

Appendix B: Converting From NQS to PBS
incomplete converted date. PBS does not support
date specifications of “today”, “tomorrow”, or the
name of the days of the week such as “Monday”. If
any of these are encountered in a script, the PBS
specification will contain only the time portion of
the NQS specification (i.e. #PBS -a
hhmm[.ss]). It is suggested that you specify the
execution time on the qsub command line rather
than in the script. All times are taken as local time. If
any unrecognizable NQS directives are encountered,
an error message is displayed. The new PBS script
will be deleted if any errors occur.

Section “Setting Up Your UNIX/Linux Environment” on page 24 discusses
PBS environment variables.

A queue complex in NQS was a grouping of queues within a batch Server.
The purpose of a complex was to provide additional control over resource
usage. The advanced scheduling features of PBS eliminate the requirement
for queue complexes.
268 PBS Professional 9.2 User’s Guide

Appendix C: License
Agreement
Altair Engineering, Inc.
Software License Agreement

This License Agreement is a legal agreement between Altair Engineering,
Inc. (“Altair”) and you (“Licensee”) governing the terms of use of the
Altair Software. Before you may download or use the Software, your con-
sent to the following terms and conditions is required by clicking on the 'I
Accept” button. If you do not have the authority to bind your organization
to these terms and conditions, you must click on the button that states “I do
not accept” and then have an authorized party in your organization consent
to these terms. In the event that your organization and Altair have a master
software license agreement, mutually agreed upon in writing, in place at
the time of your execution of this agreement, the terms of the master agree-
ment shall govern.
PBS Professional 9.2 User’s Guide 269

Appendix C: License Agreement
1. DEFINITIONS. In addition to terms defined elsewhere in this
Agreement, the following terms shall have the meanings defined below for
purposes of this Agreement:
Documentation. Documentation provided by Altair on any media for use
with the Software.
Execute. To load Software into a computer's RAM or other primary mem-
ory for execution by the computer.
Global Zone: Software is licensed based on three Global Zones: the Amer-
icas, Europe and Asia-Pacific. When Licensee has Licensed Workstations
located in multiple Global Zones, which are connected to a single License
(Network) Server, a premium is applied to the standard Software License
pricing for a single Global Zone.
License Log File. A computer file providing usage information on the
Software as gathered by the Software.
License Management System. The license management system that
accompanies the Software and limits its use in accordance with the usage
permitted under this Agreement, and which includes a License Log File.
License (Network) Server. A network file server that Licensee owns or
leases located on Licensee's premises and identified by machine serial
number on the Order Form.
License Units. A parameter used by the License Management System to
determine the usage of the Software permitted under this Agreement at any
one time.
Licensed Workstations. Single-user computers located in the same Glo-
bal Zone(s) that Licensee owns or leases that are connected to the License
(Network) Server via local area network or Licensee's private wide-area
network.
Maintenance Release. Any release of the Software made generally avail-
able by Altair to its Licensees with annual leases, or those with perpetual
licenses who have an active maintenance agreement in effect, that corrects
programming errors or makes other minor changes to the Software. The
fees for maintenance and support services are included in the annual
license fee but perpetual licenses require a separate fee.
Order Form. Altair's standard form in either hard copy or electronic for-
mat that contains the specific parameters (such as identifying Licensee's
contracting office, License Fees, Software, Support, and License (Net-
work) Servers) of the transaction governed by this Agreement.
Proprietary Rights Notices. Patent, copyright, trademark or other propri-
etary rights notices applied to the Software, Documentation or the packag-
ing or media of same.
Software. The software identified in the Order Form and any Updates or
270 PBS Professional 9.2 User’s Guide

Appendix C: License Agreement
Maintenance Releases.
Suppliers. Any person, corporation or other legal entity which may pro-
vide software or documents which are included in the Software.
Support. The maintenance and support services provided by Altair pursu-
ant to this Agreement.
Templates. Human readable ASCII files containing machine-interpretable
commands for use with the Software.
Term. The initial term of this Agreement or any renewal term. Annual
licenses shall have a 12-month term of use. Paid-up, or perpetual licenses,
shall have a term of twenty-five years.
Update. A new version of the Software made generally available by Altair
to its Licensee that includes additional features or functionalities but is sub-
stantially the same computer code as the existing Software.
2. PAYMENT. Licensee shall pay in full the fee for licensed Software
and Support within thirty (30) days of receipt of the invoice. Past due fees
shall bear interest at the maximum legal rate. Altair may condition its
delivery of any Maintenance Release or Update to Licensee on Licensee's
having paid all amounts then owed to Altair. Fees do not include taxes or
duties and Licensee is responsible for paying (or for reimbursing Altair if
Altair is required to pay) any federal, state or local taxes, or duties imposed
on this License or the possession or use by Licensee of the Software
excluding, however, all taxes on or measured by Altair's net income. Altair
shall be entitled to its reasonable costs of collection (including attorneys
fees and interest) if license fees are not paid to it on a timely basis.
3. TERM. Unless terminated earlier in accordance with the provi-
sions of this Agreement, this Agreement will be in force for a period as
stated on the Order Form. For annual licenses or Support provided for per-
petual licenses, renewal shall be automatic for a successive year (“Renewal
Term”), upon mutual written execution of a new Order Form. All charges
and fees for each Renewal Term shall be set forth in the Order Form exe-
cuted for each Renewal Term. All Software procured by Licensee may be
made coterminous at the request of Licensee and the consent of Altair.
4. LICENSE GRANT. Subject to the terms and conditions set forth
in this Agreement, Altair hereby grants Licensee, and Licensee hereby
accepts, a limited, non-exclusive, non-transferable license to: a) install the
Software on the License (Network) Server(s) identified on the Order Form
for use only at the sites identified on the Order Form; b) execute the Soft-
ware on Licensed Workstations in accordance with the License Manage-
ment System for use solely by Licensee's employees or its onsite
Contractors who have agreed to be bound by the terms of this Agreement,
for Licensee's internal business use on Licensed Workstations within the
PBS Professional 9.2 User’s Guide 271

Appendix C: License Agreement
Global Zone(s) as identified on the Order Form and for the term identified
on the Order Form; c) make backup copies of the Software, provided that
Altair's Proprietary Rights Notices are reproduced on each such backup
copy; d) freely modify and use Templates, provided that such modifica-
tions shall not be subject to Altair's warranties, indemnities, support or
other Altair obligations under this Agreement; and e) copy and distribute
Documentation inside Licensee's organization exclusively for use by Lic-
ensee's employees. A copy of the License Log File shall be made available
to Altair automatically on no less than a monthly basis. In the event that
Licensee uses a third party vendor to provide itself with information tech-
nology (IT) support, the IT company shall be permitted to access the Soft-
ware only upon its agreement to abide by the terms of this Agreement.
Licensee shall indemnify, defend and hold harmless Altair for the actions
of its IT vendor(s).
5. RESTRICTIONS ON USE. Notwithstanding the foregoing
license grant, Licensee shall not do (or allow others to do) any of the fol-
lowing: a) install, use, copy, modify, merge, or transfer copies of the Soft-
ware or Documentation, except as expressly authorized in this Agreement;
b) use any back-up copies of the Software for any purpose other than to
replace the original copy provided by Altair in the event it is destroyed or
damaged; c) disassemble, decompile or “unlock”, reverse translate, reverse
engineer, or in any manner decode the Software for any reason; d) subli-
cense, sell, lend, assign, rent, distribute, publicly display or publicly per-
form the Software or Documentation or Licensee's rights under this
Agreement; e) allow use outside the Global Zone(s) or User Sites identi-
fied on the Order Form; f) allow third parties to access or use the Software,
such as through a service bureau, wide area network, Internet location or
time-sharing arrangement except as expressly provided in Section 4(b); g)
remove any Proprietary Rights Notices from the Software; h) disable or
circumvent the License Management System provided with the Software;
or (i) develop, test or support software of Licensee or third parties.
6. OWNERSHIP AND CONFIDENTIALITY. Licensee acknowl-
edges that all applicable rights in patents, copyrights, trademarks, service
marks, and trade secrets embodied in the Software and Documentation are
owned by Altair and/or its Suppliers. Licensee further acknowledges that
the Software and Documentation, and all copies thereof, are and shall
remain the sole and exclusive property of Altair and/or its Suppliers. This
Agreement is a license and not a sale of the Software. Altair retains all
rights in the Software and Documentation not expressly granted to Lic-
ensee herein. Licensee acknowledges that the Software and accompanying
Documentation are confidential and constitute valuable assets and trade
272 PBS Professional 9.2 User’s Guide

Appendix C: License Agreement
secrets of Altair and/or its Suppliers. Licensee agrees to take the precau-
tions necessary to protect and maintain the confidentiality of the Software
and Documentation, and shall not disclose or make them available to any
person or entity except as expressly provided in this Agreement. Licensee
shall promptly notify Altair in the event any unauthorized person obtains
access to the Software. If Licensee is required by any governmental
authority or court of law to disclose Altair's confidential information, then
Licensee shall immediately notify Altair before making such disclosure so
that Altair may seek a protective order or other appropriate relief. Lic-
ensee's obligations set forth in Section 5 and Section 6 of this Agreement
shall survive termination of this Agreement for any reason. Altair's Suppli-
ers, as third party beneficiaries, shall be entitled to enforce the terms of this
Agreement directly against Licensee as necessary to protect Supplier's
intellectual property or other rights. Altair shall keep confidential all Lic-
ensee information provided to Altair in order that Altair may provide Sup-
port to Licensee shall be kept confidential and used only for the purpose of
assisting Licensee in its use of the licensed Software.
7. MAINTENANCE AND SUPPORT. Maintenance. Altair will
provide Licensee at no additional charge for annual licenses, and for a fee
for paid-up licenses, with any Maintenance Releases and Updates of the
Software or Documentation that are generally released by Altair during the
term of this Agreement, except that this shall not apply to any Renewal
Term for which full payment has not been received. Altair does not prom-
ise that there will be a certain number of Updates (or any Updates) during a
particular year. If there is any question or dispute as to whether a particular
release is a Maintenance Release, an Update or a new product, the categori-
zation of the release as determined by Altair shall be final. Licensee must
install Maintenance Releases and Updates promptly after receipt from
Altair. Maintenance Releases and Updates are Software subject to this
Agreement. Altair shall only be obligated to provide support and mainte-
nance for the most current release of the Software and its most recent prior
release Support. Altair will provide support via telephone and email to Lic-
ensee at the fees, if any, as listed on the Order Form.. If Support has not
been procured for any period of time for paid-up licenses, a reinstatement
fee shall apply. Support consists of responses to questions from Licensee's
personnel related to the use of the then-current and most recent prior
release version of the Software. Licensee agrees to provide Altair will suf-
ficient information to resolve technical issues as may be reasonably
requested by Altair. Licensee agrees to the best of its abilities to read, com-
prehend and follow operating instructions and procedures as specified in,
but not limited to, Altair's Documentation and other correspondence related
PBS Professional 9.2 User’s Guide 273

Appendix C: License Agreement
to the Software, and to follow procedures and recommendations provided
by Altair in an effort to correct problems. Licensee also agrees to notify
Altair of a programming error, malfunction and other problems in accor-
dance with Altair's then current problem reporting procedure. If Altair
believes that a problem reported by Licensee may not be due to an error in
the Software, Altair will so notify Licensee. Questions must be directed to
Altair's specially designated telephone support numbers and email
addresses. Support will also be available via email at Internet addresses
designated by Altair. Support is available Monday through Friday (exclud-
ing holidays) from 8:00 a.m. to 5:00 p.m local time in the Global Zone
where licensed. Exclusions. Altair shall have no obligation to maintain or
support (a) altered, damaged or Licensee-modified Software, or any por-
tion of the Software incorporated with or into other software; (b) any ver-
sion of the Software other than the current version of the Software or the
immediately previous version; (c) Software problems causes by Licensee's
negligence, abuse or misapplication of Software other than as specified in
the Documentation, or other causes beyond the reasonable control of
Altair; or (d) Software installed on any hardware, operating system version
or network environment that is not supported by Altair. Support also
excludes configuration of hardware, non Altair Software, and networking
services; consulting services; general solution provider related services;
and general computer system maintenance.
8. WARRANTY AND DISCLAIMER. Altair warrants for a period
of ninety (90) days after Licensee initially receives the Software that the
Software will perform under normal use substantially as described in then
current Documentation and this Agreement. Supplier software included in
the Software and provided to Licensee shall be warranted as stated by the
Supplier. Copies of the Suppliers' terms and conditions for software are
available on the Altair Support website. Support services shall be provided
in a workmanlike and professional manner, in accordance with the prevail-
ing standard of care for consulting support engineers at the time and place
the services are performed.
ALTAIR DOES NOT REPRESENT OR WARRANT THAT THE SOFT-
WARE WILL MEET LICENSEE'S REQUIREMENTS OR THAT ITS
OPERATION WILL BE UNINTERRUPTED OR ERROR-FREE, OR
THAT IT WILL BE COMPATIBLE WITH ANY PARTICULAR HARD-
WARE OR SOFTWARE. ALTAIR EXCLUDES AND DISCLAIMS ALL
EXPRESS AND IMPLIED WARRANTIES NOT STATED HEREIN,
INCLUDING THE IMPLIED WARRANTIES OF MERCHANT-
ABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-
INFRINGEMENT. THE ENTIRE RISK FOR THE PERFOR-
274 PBS Professional 9.2 User’s Guide

Appendix C: License Agreement
MANCE, NON-PERFORMANCE OR RESULTS OBTAINED FROM
USE OF THE SOFTWARE RESTS WITH LICENSEE AND NOT
ALTAIR. ALTAIR MAKES NO WARRANTIES WITH RESPECT TO
THE ACCURACY, COMPLETENESS, FUNCTIONALITY,
SAFETY, PERFORMANCE, OR ANY OTHER ASPECT OF ANY
DESIGN, PROTOTYPE OR FINAL PRODUCT DEVELOPED BY
LICENSEE USING THE SOFTWARE.
9. INDEMNITY. Altair will defend, at its expense, any claim made
against Licensee based on an allegation that the Software infringes a patent
or copyright (“Claim”); provided, however, that this indemnification does
not include claims based on Supplier software, and that Licensee has not
materially breached the terms of this Agreement, Licensee notifies Altair in
writing within ten (10) days after Licensee first learns of the Claim; and
Licensee cooperates fully in the defense of the claim. Altair shall have
sole control over such defense; provided, however, that it may not enter
into any settlement license binding upon Licensee without Licensee's con-
sent, which shall not be unreasonably withheld. If a Claim is made, Altair
may modify the Software to avoid the alleged infringement, provided,
however, that such modifications do not materially diminish the Software's
functionality. If such modifications are not commercially reasonably or
technically possible, Altair may terminate this Agreement and refund to
Licensee the prorated license fee that Licensee paid for the then current
Term. Perpetual licenses shall be pro-rated over a 36-month term. Altair
shall have no obligation under this Section 9, however, if the alleged
infringement arises from Altair's compliance with specifications or instruc-
tions prescribed by Licensee, modification of the Software by Licensee,
use of the Software in combination with other software not provided by
Altair and which use is not specifically described in the Documentation
and if Licenses is not using the most current version of the Software, if
such alleged infringement would not have occurred except for such exclu-
sions listed here. This section 9 states Altair's entire liability to Licensee in
the event a Claim is made.
10. LIMITATION OF REMEDIES AND LIABILITY. Licensee's
exclusive remedy (and Altair's sole liability) for Software that does not
meet the warranty set forth in Section 8 shall be, at Altair's option, either (i)
to correct the nonconforming Software within a reasonable time so that it
conforms to the warranty; or (ii) to terminate this Agreement and refund to
Licensee the license fees that Licensee has paid for the then current Term
for the nonconforming Software; provided, however that Licensee notifies
Altair of the problem in writing within the applicable Warranty Period
when the problem first occurs. Any corrected Software shall be warranted
PBS Professional 9.2 User’s Guide 275

Appendix C: License Agreement
in accordance with Section 8 for ninety (90) days after delivery to Lic-
ensee. The warranties hereunder are void if the Software has been misused
or improperly installed, or if Licensee has violated the terms of this Agree-
ment.
 Altair's entire liability for all claims arising under or related in any way
to this Agreement (regardless of legal theory), except as provided in Sec-
tion 9, shall be limited to direct damages, and shall not exceed, in the
aggregate for all claims, the license and maintenance fees paid under this
Agreement by Licensee in the 12 months prior to the claim on a prorated
basis. ALTAIR AND ITS SUPPLIERS SHALL NOT BE LIABLE TO
LICENSEE OR ANYONE ELSE FOR INDIRECT, SPECIAL, INCIDEN-
TAL, OR CONSEQUENTIAL DAMAGES ARISING HEREUNDER
(INCLUDING LOSS OF PROFITS OR DATA, DEFECTS IN DESIGN
OR PRODUCTS CREATED USING THE SOFTWARE, OR ANY
INJURY OR DAMAGE RESULTING FROM SUCH DEFECTS, SUF-
FERED BY LICENSEE OR ANY THIRD PARTY) EVEN IF ALTAIR OR
ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES. Licensee acknowledges that it is solely responsible for
the adequacy and accuracy of the input of data, including the output gener-
ated from such data, and agrees to defend, indemnify, and hold harmless
Altair and its Suppliers from any and all claims, including reasonable attor-
ney's fees, resulting from, or in connection with Licensee's use of the Soft-
ware. No action, regardless of form, arising out of the transactions under
this Agreement may be brought by either party against the other more than
two (2) years after the cause of action has accrued, except for actions
related to unpaid fees.
11. TERMINATION. Either party may terminate this Agreement upon
thirty (30) days prior written notice upon the occurrence of a default or
material breach by the other party of its obligations under this Agreement
(except for a breach by Altair of the warranty set forth in Section 8 for
which a remedy is provided under Section 10; or a breach by Licensee of
Section 5 or Section 6 for which no cure period is provided and Altair may
terminate this Agreement immediately) if such default or breach continues
for more than thirty (30) days after receipt of such notice. Upon termina-
tion of this Agreement, Licensee must cease using the Software and, at
Altair's option, return all copies to Altair, or certify it has destroyed all such
copies of the Software and Documentation.
12. UNITED STATES GOVERNMENT RESTRICTED RIGHTS.
This section applies to all acquisitions of the Software by or for the United
States government. By accepting delivery of the Software, the government
hereby agrees that the Software qualifies as “commercial” computer soft-
276 PBS Professional 9.2 User’s Guide

Appendix C: License Agreement
ware as that term is used in the acquisition regulations applicable to this
procurement and that the government's use and disclosure of the Software
is controlled by the terms and conditions of this Agreement to the maxi-
mum extent possible. This Agreement supersedes any contrary terms or
conditions in any statement of work, contract, or other document that are
not required by statute or regulation. If any provision of this Agreement is
unacceptable to the government, Vendor may be contacted at Altair Engi-
neering, Inc., 1820 E. Big Beaver Road, Troy, MI 48083-2031; telephone
(248) 614-2400. If any provision of this Agreement violates applicable
federal law or does not meet the government's actual, minimum needs, the
government agrees to return the Software for a full refund.
 For procurements governed by DFARS Part 227.72 (OCT 1998), Hyper-
Works Software is provided with only those rights specified in this Agree-
ment in accordance with the Rights in Commercial Computer Software or
Commercial Computer Software Documentation policy at DFARS
227.7202-3(a) (OCT 1998). For procurements other than for the Depart-
ment of Defense, use, reproduction, or disclosure of the Software is subject
to the restrictions set forth in this Agreement and in the Commercial Com-
puter Software - Restricted Rights FAR clause 52.227-19 (June 1987) and
any restrictions in successor regulations thereto.
Portions of Altair's PBS Professional Software and Documentation are pro-
vided with RESTRICTED RIGHTS. Use, duplication, or disclosure by the
Government is subject to restrictions as set forth in subdivision(c)(1)(ii) of
the rights in the Technical Data and Computer Software clause in DFARS
252.227-7013, or in subdivision (c)(1) and (2) of the Commercial Com-
puter Software-Restricted Rights clause at 48 CFR52.227-19, as applica-
ble.
13. CHOICE OF LAW AND VENUE. This Agreement shall be gov-
erned by and construed under the laws of the state of Michigan, without
regard to that state's conflict of laws principles except if the state of Michi-
gan adopts the Uniform Computer Information Transactions Act drafted by
the National Conference of Commissioners of Uniform State Laws as
revised or amended as of June 30, 2002 (“UCITA”) which is specifically
excluded. This Agreement shall not be governed by the United Nations
Convention on Contracts for the International Sale of Goods, the applica-
tion of which is expressly excluded. Each Party waives its right to a jury
trial in the event of any dispute arising under or relating to this Agreement.
Each party agrees that money damages may not be an adequate remedy for
breach of the provisions of this Agreement, and in the event of such breach,
the aggrieved party shall be entitled to seek specific performance and/or
injunctive relief (without posting a bond or other security) in order to
PBS Professional 9.2 User’s Guide 277

Appendix C: License Agreement
enforce or prevent any violation of this Agreement.
14. GENERAL PROVISIONS. Export Controls. Licensee acknowl-
edges that the Software may be subject to the export control laws and regu-
lations of the United States and any amendments thereof. Licensee agrees
that Licensee will not directly or indirectly export the Software into any
country or use the Software in any manner except in compliance with all
applicable U.S. export laws and regulations. Notice. All notices given by
one party to the other under this Agreement shall be sent by certified mail,
return receipt requested, or by overnight courier, to the respective
addresses set forth in this Agreement or to such other address either party
has specified in writing to the other. All notices shall be deemed given
when actually received. Assignment. Neither party shall assign this
Agreement without the prior written consent of other party, which shall not
be unreasonably withheld. All terms and conditions of this Agreement shall
be binding upon and inure to the benefit of the parties hereto and their
respective successors and permitted assigns. Waiver. The failure of a party
to enforce at any time any of the provisions of this Agreement shall not be
construed to be a waiver of the right of the party thereafter to enforce any
such provisions. Severability. If any provision of this Agreement is found
void and unenforceable, such provision shall be interpreted so as to best
accomplish the intent of the parties within the limits of applicable law, and
all remaining provisions shall continue to be valid and enforceable. Head-
ings. The section headings contained in this Agreement are for conve-
nience only and shall not be of any effect in constructing the meanings of
the Sections. Modification. No change or modification of this Agreement
will be valid unless it is in writing and is signed by a duly authorized repre-
sentative of each party. Conflict. In the event of any conflict between the
terms of this Agreement and any terms and conditions on a Purchase Order
or comparable document, the terms of this Agreement shall prevail. More-
over, each party agrees any additional terms on any Purchase Order other
than the transaction items of (a) item(s) ordered; (b) pricing; (c) quantity;
(d) delivery instructions and (e) invoicing directions, are not binding on the
parties. Entire Agreement. This Agreement and the Order Form(s) consti-
tute the entire understanding between the parties related to the subject mat-
ter hereto, and supersedes all proposals or prior agreements, whether
written or oral, and all other communications between the parties with
respect to such subject matter. This Agreement may be executed in one or
more counterparts, all of which together shall constitute one and the same
instrument.
278 PBS Professional 9.2 User’s Guide

Index
A
Access Control 6
Account 15
Account_Name 89
Accounting 6

job arrays 221
accounting 197
accounting_id 92
ACCT_TMPDIR 197
Administrator 15
Administrator Guide x, 22
Advance Reservation 15
advance reservation 172
Aerospace computing 3
AIX 230

Large Page Mode 199
alt_id 92
Altair Engineering 4, 5

Altair Grid Technologies 4
Altering

job arrays 217
Ames Research Center vii
API x, 6, 12, 15, 171
application licenses

floating 51
node-locked

per-CPU 52
per-host 52
per-use 52

arch 38
arrangement 57
array 92
array_id 93
array_index 93
array_indices_remaining 93
array_indices_submitted 93
array_state_count 93
PBS Professional 9.2 User’s Guide 279

Index
Attribute
account_string 86
defined 15
priority 7, 81
rerunnable 17, 80

attributes
modifying 137

B
Batch

job 21
processing 15

batch, job 16
block 89, 153
boolean 37
Boolean Resources 49
Bourne 43
Built-in Resources 38

C
Changing

order of jobs 146
Checking status

of jobs 116
of queues 120
of server 119

checkpoint 89
Checkpointable 82
Checkpointing

interval 82
job arrays 221
SGI MPI 261

checkpointing 142
Chunk 13
chunk 48
CLI 22
Cluster 13
Command line interface 22
Commands 10
comment 92, 125

Common User Environment 6
Complex 13, 15
Computational Grid Support 6
cput 38
credential 199
Cross-System Scheduling 7
CSA 197
csh 25
ctime 93
Custom resources 47

D
DCE 198, 199
Dedicated Time 196
Default Resources 50
Deleting

job array range 217
job arrays 217
subjob 217

Deleting Jobs 143
depend 89
dependencies

job arrays 220
Deprecations 20
Destination

defined 15
identifier 15
specifying 76

Directive 16
directive 21, 30, 68, 69, 70, 109,
170, 267, 268
Directives 43
directives 43
Display

nodes assigned to job 124
non-running jobs 123
queue limits 126
running jobs 123
size in gigabytes 124
size in megawords 124
280 PBS Professional 9.2 User’s Guide

Index
user-specific jobs 123
Distributed

clustering 6
workload management 9

E
egroup 94
eligible_time 93
Email

notification 79
Enterprise-wide Resource Sharing
5
Environment Variables 263
Error_Path 89
etime 93
euser 94
Exclusive

VP 13
exclusive 57
exec_host 93
Execution_Time 89
Executor 11
Exit Status

job arrays 221
External Reference Specification x,
15

F
Fairshare

job arrays 222
File

output 157
output and error 86
rhosts 28
specify name of 77
stage in 17
stage out 17
staging 6, 16, 158

file 38
Files

cshrc 24
hosts.equiv 29
login 24
pbs.conf 30, 112
profile 24
rhosts 29
xpbsrc 111

files
.login 25
.logout 25

float 37
floating licenses 51
free 57

G
Global Grid Forum 5
Graphical user interface 22
Grid 4, 5, 6
Group

defined 16
ID (GID) 16

group=resource 57
group_list 90
grouping 57
GUI 22

H
hashname 94
here document 45
Hitchhiker’s Guide 231
Hold

defined 16
job 82
or release job 141

Hold_Types 90
Holding a Job Array 218
Host 13
host 39
HPS

IP mode 230
PBS Professional 9.2 User’s Guide 281

Index
US mode 230

I
IBM POE 230
identifier 44
Identifier Syntax 203
InfiniBand 255, 256
Information Power Grid 5
instance of a standing reservation
173
Intel 249
Intel MPI 249

examples 252
interactive 94
Interactive job submission

job arrays 204
Interactive-batch jobs 87
Interdependency 6
IP mode HPS 230

J
ja 197
Job

batch 16
checkpoint 89
checkpointable 82
comment 92, 125
depend 89
dependencies 153
identifier 44
management ix
name 80
priority 91
selecting using xpbs 134
sending messages to 144
sending signals to 145
submission options 74
tracking 135

Job Array
Attributes 205

dependencies 220
identifier 202
range 202
States 206

Job Array Run Limits 220
Job Arrays 201

checkpointing 221
deleting 217
exit status 221
interactive submission 204
PBS commands 212
placement sets 222
prologues and epilogues 221
qalter 217
qdel 217
qhold 218
qmove 217
qorder 217
qrerun 218
qrls 218
qrun 218
qselect 219
run limits 220
starving 220
status 214
submitting 203
tracejob 218

Job Arrays and xpbs 220
job container 197
Job Script 43
job state 116
Job Submission Options 74
Job_Name 90
Job_Owner 94
job_state 94
jobdir 94
jobs

MPI 224
PVM 260
SMP 224

job-wide 49
282 PBS Professional 9.2 User’s Guide

Index
Join_Path 90

K
Keep_Files 90
Kerberos 199

qsub -W cred=DCE 198
KRB5 199
krb5 199

L
Large Page Mode 199
Limits on Resource Usage 55
Linux job container 197
Listbox 99
Load Balance 13
Load-Leveling 6
long 37

M
Mail_Points 91
Mail_Users 91
man pages

SGI 26
management ix
Manager 16
MANPATH 26
mem 39
Message Passing Interface 229
meta-computing 5
Modifying Job Attributes 137
MOM 11
Monitoring 10
Moving 217

jobs between queues 148
Moving a Job Array 217
MPI 228

AIX and POE 230
HP-UX and Linux 235
Intel MPI 249

examples 252

MPICH_GM
rsh/ssh

examples 236
MPICH2 245, 256

examples 247, 257
MPICH-GM

MPD 239
examples 241

rsh/ssh 235
MPICH-MX

MPD 242
examples 243

rsh/ssh 237
examples 238

MVAPICH1 255
examples 255

SGI
Altix 261

MPI jobs 224
MPICH 229
MPICH_GM

rsh/ssh
examples 236

MPICH2 245, 256
examples 247, 257

MPICH-GM
MPD 239

examples 241
rsh/ssh 235

MPICH-MX 237
MPD 242

examples 243
rsh/ssh 237

examples 238
MPI-OpenMP 226
mpiprocs 39
mpirun 229

Intel MPI 249
MPICH2 245
MPICH-GM (MPD) 239
MPICH-GM (rsh/ssh) 235
PBS Professional 9.2 User’s Guide 283

Index
MPICH-MX (MPD) 242
MPICH-MX (rsh/ssh) 237
MVAPICH1 255
MVAPICH2 256

mpirun.ch_gm 235
mpirun.ch_mx 237
mpirun.mpd 239, 242
MRJ Technology Solutions vii
MRJ-Veridian 4
mtime 95
MVAPICH1 255

examples 255

N
name 80
NASA

Ames Research Center 4
and PBS vii, 3
Information Power Grid 5
Metacenter 5

NCPUS 263
ncpus 41
Network Queueing System

NQS 4
nqs2pbs 267

network share 74
nice 41
no_stdio_sockets 91
Node

attribute 14
defined 12

Node Grouping
job arrays 222

Node Specification Conversion 65
Node specification format 65
nodect 41
nqs2pbs 22

O
Occurrence 16

occurrence of a standing reservation
173
OMP_NUM_THREADS 263
ompthreads 41
OpenMP 226
Operator 16
Ordering job arrays 217
Ordering Job Arrays in the Queue
217
Ordering Software and Publications
x
Output_Path 91
override 44
Owner 16

P
pack 57
Parallel

job support 6
Virtual Machine (PVM) 260

password 74
single-signon 72
Windows 72
xpbs 74

PBS 264
availability 7

PBS commands
job arrays 212

PBS Environmental Variables 207
PBS_ARRAY_ID 207, 263
PBS_ARRAY_INDEX 207, 263
PBS_DEFAULT 30, 119
PBS_DEFAULT_SERVER 111
PBS_DPREFIX 30
PBS_ENVIRONMENT 24, 25, 30,
263
PBS_HOME 16
pbs_hostn 22
PBS_JOBCOOKIE 263
PBS_JOBID 207, 264
284 PBS Professional 9.2 User’s Guide

Index
PBS_JOBNAME 264
pbs_migrate_users 22
PBS_MOMPORT 264
PBS_NODENUM 264
PBS_O_HOME 264
PBS_O_HOST 264
PBS_O_LANG 264
PBS_O_LOGNAME 264
PBS_O_MAIL 264
PBS_O_PATH 264
PBS_O_QUEUE 264
PBS_O_SHELL 264
PBS_O_SYSTEM 264
PBS_O_TZ 265
PBS_O_WORKDIR 30, 265
pbs_password 22, 72, 73
pbs_probe 22
PBS_QUEUE 265
pbs_rcp 22, 74, 157
pbs_rdel 22
pbs_rstat 22
pbs_rsub 22, 179
PBS_TASKNUM 265
pbs_tclsh 23
pbsdsh 22, 171
pbsfs 23
pbsnodes 23
pbs-report 22
pcput 41
Peer Scheduling

job arrays 222
per-CPU node-locked licenses 52
per-host node-locked licenses 52
per-use node-locked licenses 52
place statement 56
placement sets

job arrays 222
pmem 41
POE 230
poe

examples 232

Portable Batch System 14
POSIX

defined 16
Preemption

job arrays 222
printjob 23
priority 91
PROFILE_PATH 28
Prologues and Epilogues

job arrays 221
ProPack 197
PVM 260
pvmem 41

Q
qalter 23, 107

job array 217
qdel 23, 107, 143

job arrays 217
qdisable 23, 107
qenable 23, 107
qhold 23, 107, 141, 143

job arrays 218
qmgr 23
qmove 23, 107, 148

job array 217
qmsg 23, 107, 144, 219
qorder 23, 107, 146, 147

job arrays 217
qrerun 23, 107

job arrays 218
qrls 23, 107, 142, 143

job arrays 218
qrun 23, 107

job array 218
qselect 23, 112, 113, 129, 130, 133,
134

job arrays 219
qsig 23, 107, 145
qstart 23, 107
PBS Professional 9.2 User’s Guide 285

Index
qstat 23, 107, 115, 116, 117, 118,
119, 120, 121, 122, 123, 124, 125,
126, 128, 133, 140, 143, 147
qstop 23, 107
qsub 23, 24, 68, 70, 71, 73, 74, 88,
107, 152, 154, 199

Kerberos 198
qsub options 74
qterm 23, 107
qtime 95
Queue

defined 14
queue 95
queue_rank 95
Queuing ix, 9
Quick Start Guide ix

R
rcp 24, 74
recurrence rule 175
Releasing a Job Array 218
report 197
requeue 17
Requeuing a Job Array 218
rerunnable 91
Reservation

deleting 191
Resource Specification Conversion
67
Resource specification format 67
Resource_List 91
resource_list 75
resources 43
resources_used 95
rhosts 28
run limits

job arrays 220
Running a Job Array 218

S
sandbox 91
scatter 57
Scheduler 11
Scheduling 9

job Arrays 221
scp 24
Selection of Job Arrays 219
selection statement 48
Sequence number 201
Server 11
server 95
session_id 95
setting job attributes 44
SGI MPI 261
sh 43
share 57
sharing 57
shell 43
shell script 43
Shell_Path_List 91
SIGKILL 145
SIGNULL 145
SIGTERM 145
single-signon 72
Single-Signon Password Method 72
size 37
SMP jobs 224
software 42
soonest occurrence of a standing
reservation 173
spec 65
spec_list 65
stagein 92
stageout 76, 92
staging

Windows
job arrays 212

Standing Reservation 17, 172
standing reservation 172

instance 173
286 PBS Professional 9.2 User’s Guide

Index
occurrence 173
soonest occurrence 173

Starving
job arrays 220

state, job 116
States

job array 206
states 113, 134
Status

job arrays 214
stepping factor 203
stime 95
string 37
string array 38
Subjob 201
Subjob index 202
submission options 74
Submitting a job array 203
Submitting a PBS Job 33
suffix 65
Suppressing job identifier 87
syntax

identifier 203
System

integration 7
monitoring 6

T
Task 17
Task Manager 171
TCL 97
TGT 199
time 38
time between reservations 196
TK 97
tm(3) 171
TMPDIR 30, 265
tracejob 23

job arrays 218
tracejob on Job Arrays 218

tracking 135

U
umask 92, 152
Unset Resources 36
US mode HPS 230
User

defined 17
ID (UID) 17
interfaces 5
name mapping 7

user job accounting 197
User_List 92
username 27

maximum 24

V
Variable_List 92
Veridian 4
Viewing Job Information 121
Virtual Processor (VP) 14
vmem 42
Vnode 13
vnode 13, 42
Vnode Types 34

W
Wait for Job Completion 153
walltime 42
Widgets 99
Windows 26, 28

job arrays
staging 212

password 72
staging

job arrays 212
Windows 2000 7
Windows 2003 74
Windows command interpreter 44
Workload management 3
PBS Professional 9.2 User’s Guide 287

Index
X
xpbs 23, 74, 108, 111, 113, 114

buttons 107
configuration 111
job arrays 220
usage 97, 128, 134, 145, 146,

156
xpbsmon 23
xpbsrc 111
288 PBS Professional 9.2 User’s Guide

Chapter 15
290 PBS Professional 9.2 Administrator’s Guide

	Acknowledgements
	Preface
	Introduction
	1.1 Book Organization
	1.2 Supported Platforms
	1.3 What is PBS Professional?
	1.4 History of PBS
	1.5 About the PBS Team
	1.6 About Altair Engineering
	1.7 Why Use PBS?

	Concepts and Terms
	2.1 PBS Components
	2.2 Defining PBS Concepts and Terms

	Getting Started With PBS
	3.1 New Features in This Release
	3.1.1 Job-Specific Staging and Execution Directories
	3.1.2 Standing Reservations

	3.2 New Features in Recent Releases
	3.3 Deprecations
	3.4 Using PBS
	3.5 PBS Interfaces
	3.6 User’s PBS Environment
	3.7 Usernames Under PBS
	3.8 Setting Up Your UNIX/Linux Environment
	3.8.1 Setting MANPATH on SGI Systems

	3.9 Setting Up Your Windows Environment
	3.9.1 Windows User's HOMEDIR
	3.9.2 Windows Usernames and Job Submission
	3.9.3 Windows rhosts File
	3.9.4 Windows Mapped Drives and PBS

	3.10 Environment Variables
	3.11 Temporary Scratch Space: TMPDIR

	Submitting a PBS Job
	4.1 Vnodes: Virtual Nodes
	4.1.1 Relationship Between Hosts, Nodes, and Vnodes
	4.1.2 Vnode Types

	4.2 PBS Resources
	4.2.0.1 Unset Resources
	4.2.0.2 Resource Names and Values
	4.2.1 Resource Types
	4.2.2 Built-in Resources

	4.3 PBS Jobs
	4.3.1 Rules for Submitting Jobs
	4.3.2 PBS Job Script
	4.3.2.1 Specifying the Shell
	4.3.2.2 PBS Directives
	4.3.2.3 The User’s Tasks

	4.3.3 Setting Job Attributes

	4.4 Submitting a PBS Job
	4.4.1 Submitting a Job Script
	4.4.1.1 Overriding Directives
	4.4.1.2 Submitting a Simple Job
	4.4.1.3 Jobs Without a Job Script
	4.4.1.4 Passing Arguments to Job Scripts

	4.5 Requesting Resources
	4.5.1 Allocation
	4.5.2 Requesting Resources in Chunks
	4.5.3 Requesting Job-wide Resources
	4.5.4 Boolean Resources
	4.5.5 Default Resources
	4.5.6 Requesting Application Licenses
	4.5.6.1 Floating Licenses
	4.5.6.2 Node-locked Licenses

	4.5.7 Requesting Scratch Space
	4.5.8 Note About Submitting Jobs
	4.5.9 Submitting Jobs with Resource Specification (Old Syntax)
	4.5.10 Moving Jobs From One Queue to Another
	4.5.11 Resource Request Conversion Dependent on Where Resources are Defined
	4.5.12 Jobs Submitted with Undefined Resources
	4.5.13 Limits on Resource Usage
	4.5.14 Resource Permissions

	4.6 Placing Jobs on Vnodes
	4.6.1 Vnodes Allocated to a Job
	4.6.2 PBS_NODEFILE
	4.6.3 Resources Allocated from a Vnode
	4.6.3.1 Resources Assigned to a Job

	4.7 Submitting Jobs Using Select & Place: Examples
	4.7.1 Examples Using Old Syntax

	4.8 Backward Compatibility
	4.8.1 Node Specification Conversion
	4.8.2 Resource Specification Conversion

	4.9 How PBS Parses a Job Script
	4.10 A Sample PBS Job
	4.11 Changing the Job’s PBS Directive
	4.12 Windows Jobs
	4.12.1 Submitting Windows Jobs
	4.12.2 Passwords
	4.12.2.1 Single-Signon Password Method
	4.12.2.2 Per-job Password Method

	4.13 Job Submission Options
	4.13.1 Specifying Queue and/or Server
	4.13.2 Redirecting Output and Error Files
	4.13.3 Exporting Environment Variables
	4.13.4 Expanding Environment Variables
	4.13.5 Specifying Email Notification
	4.13.6 Setting Email Recipient List
	4.13.7 Specifying a Job Name
	4.13.8 Marking a Job as “Rerunnable” or Not
	4.13.9 Specifying Scripting Language to Use
	4.13.10 Setting a Job’s Priority
	4.13.11 Deferring Execution
	4.13.12 Holding a Job (Delaying Execution)
	4.13.13 Specifying Job Checkpoint Interval
	4.13.13.1 Checkpointable Jobs
	4.13.13.2 Checkpoint Interval

	4.13.14 Specifying Job User ID
	4.13.14.1 qsub -u: User ID with UNIX
	4.13.14.2 qsub -u: User ID with Windows

	4.13.15 Specifying Job Group ID
	4.13.16 Specifying a Local Account
	4.13.17 Merging Output and Error Files
	4.13.18 Retaining Output and Error Files on Execution Host
	4.13.19 Suppressing Job Identifier
	4.13.20 Interactive-batch Jobs

	4.14 Job Attributes

	Using the xpbs GUI
	5.1 Starting xpbs
	5.1.1 Running xpbs Under UNIX

	5.2 Using xpbs: Definitions of Terms
	5.3 Introducing the xpbs Main Display
	5.3.1 xpbs Menu Bar
	5.3.2 xpbs Hosts Panel
	5.3.3 xpbs Queues Panel
	5.3.4 xpbs Jobs Panel
	5.3.5 xpbs Info Panel
	5.3.6 xpbs Keyboard Tips

	5.4 Setting xpbs Preferences
	5.5 Relationship Between PBS and xpbs
	5.6 How to Submit a Job Using xpbs
	5.7 Exiting xpbs
	5.8 The xpbs Configuration File
	5.9 xpbs Preferences

	Checking Job / System Status
	6.1 The qstat Command
	6.1.1 Checking Job Status
	6.1.2 Viewing Specific Information
	6.1.3 Checking Server Status
	6.1.4 Checking Queue Status
	6.1.5 Viewing Job Information
	6.1.6 List User-Specific Jobs
	6.1.7 List Running Jobs
	6.1.8 List Non-Running Jobs
	6.1.9 Display Size in Gigabytes
	6.1.10 Display Size in Megawords
	6.1.11 List Hosts Assigned to Jobs
	6.1.12 Display Job Comments
	6.1.13 Display Queue Limits
	6.1.14 Show State of Job, Job Array or Subjob
	6.1.15 Viewing Job Status in Wide Format
	6.1.16 Show state of Job Arrays
	6.1.17 Print Job Array Percentage Completed
	6.1.18 Getting Information on Jobs Moved to Another Server
	6.1.19 Viewing Resources Allocated to a Job

	6.2 Viewing Job / System Status with xpbs
	6.3 The qselect Command
	6.4 Selecting Jobs Using xpbs
	6.5 Using xpbs TrackJob Feature

	Working With PBS Jobs
	7.1 Modifying Job Attributes
	7.1.1 Changing the Selection Directive
	7.1.2 Changing the Job-wide Limit

	7.2 Holding and Releasing Jobs
	7.3 Deleting Jobs
	7.4 Sending Messages to Jobs
	7.5 Sending Signals to Jobs
	7.6 Changing Order of Jobs
	7.7 Moving Jobs Between Queues
	7.8 Converting a Job into a Reservation Job

	Advanced PBS Features
	8.1 New Features
	8.1.1 Job-Specific Staging and Execution Directories
	8.1.2 Standing Reservations

	8.2 UNIX Job Exit Status
	8.3 Changing UNIX Job umask
	8.4 Requesting qsub Wait for Job Completion
	8.5 Specifying Job Dependencies
	8.5.1 Job Array Dependencies

	8.6 Delivery of Output Files
	8.7 Input/Output File Staging
	8.7.1 Staging and Execution Directory: User’s Home vs. Job-specific
	8.7.2 Using Job-specific Staging and Execution Directories
	8.7.2.1 Setting the Job’s Staging and Execution Directory
	8.7.2.2 The Job’s jobdir Attribute and the PBS_JOBDIR Environ ment Variable

	8.7.3 Attributes and Environment Variables Affecting Staging
	8.7.4 Specifying Files To Be Staged In or Staged Out
	8.7.4.1 Copying Directories Into and Out Of the Staging and Execu tion Directory
	8.7.4.2 Wildcards In File Staging
	8.7.4.3 Caveats
	8.7.4.4 Output Filenames

	8.7.5 Example of Using Job-specific Staging and Execution Directories
	8.7.6 Summary of the Job’s Lifecycle
	8.7.7 Detailed Description of Job’s Lifecycle
	8.7.7.1 Creation of TMPDIR
	8.7.7.2 Choice of Staging and Execution Directories
	8.7.7.3 Setting Environment Variables and Attributes
	8.7.7.4 Staging Files Into Staging and Execution Directories
	8.7.7.5 Running the Prologue
	8.7.7.6 Job Execution
	8.7.7.7 Standard Out and Standard Error
	8.7.7.8 Running the Epilogue
	8.7.7.9 Staging Files Out and Removing Execution Directory
	8.7.7.10 Removing TMPDIRs

	8.7.8 Staging with Job Arrays
	8.7.9 Using xpbs for File Staging
	8.7.10 Stagein and Stageout Failure

	8.8 The pbsdsh Command
	8.9 Advance and Standing Reservation of Resources
	8.9.1 Introduction to Creating and Using Reservations
	8.9.2 Creating Advance Reservations
	8.9.2.1 Examples of Creating Advance Reservations

	8.9.3 Creating Standing Reservations
	8.9.3.1 Setting Reservation Start Time and Duration
	8.9.3.2 Requirements for Creating Standing Reservations
	8.9.3.3 Examples of Creating Standing Reservations

	8.9.4 The pbs_rsub Command
	8.9.4.1 Getting Confirmation of a Reservation

	8.9.5 Viewing the Status of a Reservation
	8.9.5.1 Examples of Viewing Reservation Status Using pbs_rstat

	8.9.6 Deleting Reservations
	8.9.7 Submitting a Job to a Reservation
	8.9.7.1 Running Jobs in a Reservation
	8.9.7.2 Access to Reservations
	8.9.7.3 Viewing Status of a Job Submitted to a Reservation

	8.9.8 Reservation Caveats and Errors
	8.9.8.1 Setting the Submission Host’s Time Zone
	8.9.8.2 Reservation Errors
	8.9.8.3 Time Required Between Reservations

	8.9.9 Reservation Information in the Accounting Log

	8.10 Dedicated Time
	8.11 Using Comprehensive System Accounting
	8.12 Running PBS in a UNIX DCE Environment
	8.13 Running PBS in a UNIX Kerberos Environment
	8.14 Support for Large Page Mode on AIX

	Job Arrays
	9.1 Definitions
	9.1.1 Description
	9.1.2 Identifier Syntax

	9.2 qsub: Submitting a Job Array
	9.2.1 Interactive Job Submission

	9.3 Job Array Attributes
	9.4 Job Array States
	9.4.1 Subjob States

	9.5 PBS Environmental Variables
	9.6 File Staging
	9.6.1 Specifying Files To Be Staged In or Staged Out
	9.6.1.1 Scripts
	9.6.1.2 Output Filenames

	9.6.2 Job Array Staging Syntax on Windows

	9.7 PBS Commands
	9.7.1 PBS Commands Taking Job Arrays as Arguments
	9.7.2 qstat: Status of a Job Array
	9.7.3 qdel: Deleting a Job Array
	9.7.4 qalter: Altering a Job Array
	9.7.5 qorder: Ordering Job Arrays in the Queue
	9.7.6 qmove: Moving a Job Array
	9.7.7 qhold: Holding a Job Array
	9.7.8 qrls: Releasing a Job Array
	9.7.9 qrerun: Requeueing a Job Array
	9.7.10 qrun: Running a Job Array
	9.7.11 tracejob on Job Arrays
	9.7.12 qsig: Signaling a Job Array
	9.7.13 qmsg: Sending Messages

	9.8 Other PBS Commands Supported for Job Arrays
	9.8.1 qselect: Selection of Job Arrays

	9.9 Job Arrays and xpbs
	9.10 More on Job Arrays
	9.10.1 Job Array Run Limits
	9.10.2 Starving
	9.10.3 Job Array Dependencies
	9.10.4 Accounting
	9.10.5 Checkpointing
	9.10.6 Prologues and Epilogues
	9.10.7 Job Array Exit Status
	9.10.8 Scheduling Job Arrays
	9.10.8.1 Preemption
	9.10.8.2 Peer Scheduling
	9.10.8.3 Fairshare
	9.10.8.4 Placement Sets and Node Grouping

	Multiprocessor Jobs
	10.1 Job Placement
	10.2 Submitting SMP Jobs
	10.3 Submitting MPI Jobs
	10.3.1 The mpiprocs Resource

	10.4 OpenMP Jobs with PBS
	10.5 Hybrid MPI-OpenMP Jobs
	10.6 MPI Jobs with PBS
	10.6.1 MPICH Jobs With PBS
	10.6.2 MPI Jobs Using LAM MPI
	10.6.3 MPI Jobs Using AIX, POE
	10.6.3.1 Examples Using poe
	10.6.3.2 If Your Complex Contains Machines Not on the HPS

	10.6.4 PBS MPI Jobs on HP-UX and Linux
	10.6.5 PBS Jobs with MPICH-GM's mpirun Using rsh/ssh (mpirun.ch_gm)
	10.6.5.1 Options
	10.6.5.2 Examples

	10.6.6 PBS Jobs with MPICH-MX's mpirun Using rsh/ssh (mpirun.ch_mx)
	10.6.6.1 Options
	10.6.6.2 Examples

	10.6.7 PBS Jobs with MPICH-GM's mpirun Using MPD (mpirun.mpd)
	10.6.7.1 Options
	10.6.7.2 MPD Startup and Shutdown
	10.6.7.3 Examples

	10.6.8 PBS Jobs with MPICH-MX's mpirun Using MPD (mpirun.mpd)
	10.6.8.1 Options
	10.6.8.2 MPD Startup and Shutdown
	10.6.8.3 Examples

	10.6.9 PBS Jobs with MPICH2's mpirun
	10.6.9.1 Options
	10.6.9.2 MPD Startup and Shutdown
	10.6.9.3 Examples

	10.6.10 PBS Jobs with Intel MPI's mpirun
	10.6.10.1 Options
	10.6.10.2 MPD Startup and Shutdown
	10.6.10.3 Examples

	10.6.11 PBS Jobs with MVAPICH1's mpirun
	10.6.11.1 Options
	10.6.11.2 Examples

	10.6.12 PBS Jobs with MVAPICH2's mpiexec
	10.6.12.1 Options
	10.6.12.2 MPD Startup and Shutdown
	10.6.12.3 Examples

	10.6.13 PBS Jobs with HP MPI

	10.7 MPI Jobs on the Altix
	10.7.1 Jobs on an Altix Running ProPack 4/5

	10.8 PVM Jobs with PBS
	10.9 Checkpointing SGI MPI Jobs
	10.9.1 Jobs on an Altix

	Appendix A: PBS Environment Variables
	Appendix B: Converting From NQS to PBS
	Appendix C: License Agreement
	Index

