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MORSE-SARD THEOREM FOR DELTA-CONVEX CURVES

D. PavLica, Praha

(Received December 20, 2006)

Abstract. Let f: I — X be a delta-convex mapping, where I C R is an open interval
and X a Banach space. Let Cy be the set of critical points of f. We prove that f(Cy) has
zero 1/2-dimensional Hausdorff measure.
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Let Z and X be Banach spaces, U C Z an open convex set and f: U — X a
mapping. We say that f is a delta-convex mapping (d.c. mapping) if there exists
a continuous convex function h on U such that y* o f + h is a continuous convex
function for each y* € Y*, ||y*|| = 1. We say that f: U — X is locally d.c. if for
each z € U there exists an open convex U’ such that © € U’ C U and f|y- is d.c.

This notion of d.c. mappings between Banach spaces (see [7]) generalizes Hart-
man’s [3] notion of d.c. mappings between Euclidean spaces. Note that in this case
it is easy to see that F'is d. c. if and only if all its components are d. c. (i.e., they are
differences of two convex functions).

For f: U — X we denote Cy :={z € U: f'(z)=0}.

A special case of [2, Theorem 3.4.3] says that for a mapping f: R™ — X of class
C?, where X is a normed vector space, the set f(Cy) has zero (m/2)-dimensional
Hausdorff measure.

We will generalize this result in the case m = 1 showing that it is sufficient to
suppose that f is d.c. on I (equivalently: f is continuous and f is locally of bounded

variation on I).
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A similar generalization of the above mentioned result on C? mappings holds for
m = 2 as is shown (by a completely different method) in [6] where it is proved that
f(Cy) has zero 1-dimensional Hausdorff measure for any d.c. mapping f: R? — X.

Whether f(Cy) has zero (m/2)-dimensional Hausdorff measure for each d.c. map-
ping f: R™ — X for m > 3 remains open even for X Euclidean space.

We denote a-dimensional Hausdorff measure (on a metric space X) by H* and
for each Y C X we put (see [5])

H&(Y}:%g-mf{E:dmmaML):Y(:LJAL},
=1 =1
where w, = (I'(1/2))* - (T'(a/2 4+ 1))~ %
For an open interval I, a Banach space X, g: I — X and = € I, we denote

lg(z +7) — g(2)]|
7] '

md(g, ) := lim

If ¢ is Lipschitz, then md(g, z) exists a.e. on I. This fact is a special case of Kirch-
heim’s theorem [4, Theorem 2| on a.e. metric differentiability of Lipschitz mappings
(from R™ to X). In a standard way we obtain the following more general fact.

Lemma 1. Let I be an open interval, X a Banach space, and let g: I — X have
bounded variation on I. Then md(g,x) exists almost everywhere on I.

x
Proof. We may suppose I = R. Denote s(z) = \/ g, = € R. By [2, 2.5.16.]
0

there exists a Lipschitz mapping H: R — X such that g = Hos. By [4, Theorem 2],
md(H, z) exists a.e. on R. Now, changing in the obvious way the last argument of
[2, 2.9.22.], we obtain our assertion. O

Theorem 2. Let X be a Banach space, I C R an open interval and f: I — X a
locally d. c. mapping. Let C := {x € I: f'(x) = 0}. Then H'/?(f(C)) = 0.

Proof. Note that f is continuous on I (see [7, Proposition 1.10.]). By [7,
Theorem 2.3], f/ exists and has locally bounded variation on I. Consider an ar-
bitrary interval [a,b] C I. Tt is clearly sufficient to prove H'/2(f(C})) = 0, where
Cy:=Cn(a,b).

Let Ny be the set of all isolated points of Cy and Ny := {x € C: md(f/,z) does
not exist}. Since N; is countable, H'/2(f(N)) = 0.

To prove H/?(f(N3)) = 0, consider an arbitrary ¢ > 0. By Lemma 1, we find a
countable disjoint system of open intervals {(a;,b;): i € J} such that

N, C U(ai,bi) C (a,b), Z(bi —a;) <e and (a;, b)) N Na#0, i€ J.
i€J i€J
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b;
Clearly || fi (x)|| <V fi for each i € J and = € (a;,b;). Using the continuity of f

a;
and [1, Chap. I, par. 2, Proposition 3|, we obtain

b;
diam(f((as, b)) < (b —ai) - \/ fi.

Therefore, using the Cauchy-Schwartz inequality, we obtain

b; 1/2
HLP(f(N)) < % ((bi —a;)-\/ f-/i->

i€J
w1 /2 1/2 b; 1/2 w1/ b 1/2
~l/e . / ~i/2 1/2 /
<sE(Ze-w) (SVR) <mEen(Ve)
ieJ e a; a

Since £ > 0 is arbitrary, we have H})f(f(Ng)) = 0; consequently (see [5, Lemma 4.6.])
we obtain H'/2(f(Ny)) = 0.

To complete the proof, it is sufficient to prove H'/2(f(Cy)) = 0, where Cy =
C1\ (N1 UN3). Let € > 0 be arbitrary. Clearly md(f/\,z) = 0 for each z € Cj.
Therefore, for each z € Cy we can choose d, > 0 such that [x — d,,2 + d,] C (a,b)
and ||f} ()| < ely — x| for each y € [x — 65,z + J,]. Using the continuity of f and
[1, Chap. I, par. 2, Proposition 3], we obtain diam(f([z — 8., + d,])) < 2e(6.)%

Besicovitch’s Covering Theorem (see [5]) easily implies that we can choose a count-
able set A C Cy such that

Cy C U[x—ém,x—i—égg] and Z%mgc(b—a),

z€A TEA

where ¢ is an absolute constant (not depending on ¢). Since ¢ > 0 is arbitrary,

F(Co) c | f(lx = b2+ 6],

€A
and
> (diam(f (e = 8y + L)Y < Y Vb, < V2ze(b - a),
T€EA z€A
we have HL2(f(Cs)) = 0, hence HY/2(f(Cs)) = 0. O

Remark 3. Since each C2-function on I is a locally d.c. function (see [7]),
[2, 3.4.4.] implies that the conclusion of Theorem 2 does not hold with H* (o < 1/2)

in general.
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