V. Müller, Prague

Let A be a linear associative algebra. By [3] it is always possible to define a topology on A which makes of A a locally convex algebra with separately continuous multiplication (i.e. $x_{\alpha}, x, y \in A, x_{\alpha} \rightarrow x$ implies $\left.x_{\alpha} y \rightarrow x y, y x_{\alpha} \rightarrow y x\right)$.

On the other hand (cf. [3]) in general it is not possible to introduce a topology on A which makes of A a locally convex algebra with jointly continuous multiplication (i.e. $x_{\alpha} \rightarrow x, y_{\beta} \rightarrow y \Rightarrow x_{\alpha} y_{\beta} \rightarrow x y$). The aim of this note is to exhibit two examples which continue these investigations.

In the first example we construct a commutative algebra which admits no topology. This gives a negative answer to the question raised in [2]. In the second example we construct a topological algebra which admits no locally convex topology.

All algebras in this paper will be complex (this condition, however, is not essential).
We say that an algebra A is topologizable (topologizable as a locally convex algebra) if there exists a topology on A which makes of A a topological (locally convex) algebra with jointly continuous multiplication.

It is easy to see that an algebra A is topologizable if and only if there exists a system \mathcal{V} of subset of A (zero-neighbourhoods in A) satisfying
(1) $\bigcap_{V \in \mathcal{V}} V=\{0\}$
(2) $\lambda V \subset V$ for every $v \in \mathcal{V}$ and complex number $\lambda,|\lambda| \leq 1$
(3) each $V \in \mathcal{V}$ is absorbent
(4) for every $V \in \mathcal{V}$ there exists $W \in \mathcal{V}$ such that $W+W \subset V$
(5) for every $W \in \mathcal{V}$ there exists $W \in \mathcal{V}$ such that $W \cdot W \subset V$.

For basic properties of topological algebras see e.g. [1].
Theorem 1. There exists a commutative algebra which is not topologizable.
PROOF. Denote by N the set of all positive integers and by \mathcal{F} the set of all sequences $f=\left\{f_{j}\right\}_{j=1}^{\infty}$ of positive integers. Consider the linear space A of all formal linear combinations of elements $c, x_{i}(i \in N)$ and $a_{f}(f \in \mathcal{F})$. We define the multiplication in A by

$$
\begin{aligned}
c z=z c=0 & \text { for every } z \in A, \\
x_{i} x_{j}=0 & (i, j \in N), \\
a_{f} a_{f^{\prime}}=0 & \left(f, f^{\prime} \in \mathcal{F}\right), \\
x_{n} a_{f}=a_{f} x_{n}=f_{n} \cdot c & (n \in N, f \in \mathcal{F}) .
\end{aligned}
$$

Clearly these relations define uniquely a multiplication on A which makes of A a commutative algebra (for the associative law note that the product of any three of the basis elements is equal to zero).

We prove that A is not topologizable. Suppose on the contrary that there exists a system \mathcal{V} of zero-neighbourhoods in A satisfying (1) - (5). Let $V, W \in \mathcal{V}$ satisfy $c \notin V$ and $W \cdot W \subset V$.

For $n=1,2, \cdots$ choose $s_{n}>0$ such that $x_{n} \in s_{n} \cdot W$. Let $f=\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence of positive integers f_{n} with $f_{n}>n \cdot s_{n}$. Then $a_{f} \in r \cdot W$ for some $r>0$. We have

$$
c=\frac{1}{f_{n}}\left(x_{n} \cdot a_{f}\right)=\frac{r \cdot s_{n}}{f_{n}}\left(\frac{x_{n}}{s_{n}} \cdot \frac{a_{f}}{r}\right) \in \frac{r s_{n}}{f_{n}} \cdot W \cdot W \subset \frac{r s_{n}}{f_{n}} V .
$$

Since $c \notin V$ we have

$$
\frac{r s_{n}}{f_{n}}>1 \quad \text { and } r>\frac{f_{n}}{s_{n}}>n \quad(n \in N)
$$

a contradiction.

Remark. Let x be a linear space of infinite dimension and let $\mathcal{L}(X)$ be the algebra of all linear mappings acting in X. By [3], $\mathcal{L}(X)$ can not be topologized as a locally convex algebra. Using analogous method as in example 1 it is possible to show that $\mathcal{L}(X)$ is not topologizable. In fact even the algebra of all finite-dimensional operators in X is not topologizable.

THEOREM 2. There exists a commutative topological algebra which is not topologizable as a locally convex algebra.

PROOF. Let K be an uncountable set. Denote by \mathcal{D} the set of all functions $d: N \times K \rightarrow N$. For $d \in \mathcal{D}, n \in N$ and $k \in K$ we shall write shortly $d_{n k}$ instead of $d(n, k)$.

Clearly for every $d \in \mathcal{D}$ and $n \in N$ there exists a subset $K_{d, n} \subset K$ and a positive integer d_{n} such that $\operatorname{card} K_{d, n}=d_{n}$ and $d_{n k}=d_{n}$ for every $k \in K_{d n}$. Let A be the linear space of all (finite) linear combinations of elements $c, x_{n k}(n \in N, k \in K), a_{d}(d \in \mathcal{D})$ and $y_{d n k}\left(d \in \mathcal{D}, n \in N, k \in K_{d n} \subset K\right)$.

We define the multiplication in A by

$$
\begin{aligned}
& c z=z c=0 \quad(z \in A), \\
& y_{d n k} z=z y_{d n k}=0 \quad\left(z \in A, d \in D, n \in N, k \in K_{d n}\right), \\
& a_{d} a_{d^{\prime}}=0 \quad\left(d, d^{\prime} \in D\right), \\
& x_{n k} \cdot x_{n^{\prime} k^{\prime}}=0 \quad\left(n, n^{\prime} \in N, k, k^{\prime} \in K\right), \\
& x_{n k} \cdot a_{d}=a_{d} \cdot x_{n k}= \begin{cases}d_{n} y_{d n k} & \left(d \in D, n \in N, k \in K_{d n}\right) \\
0 & \left(k \notin K_{d n}\right) .\end{cases}
\end{aligned}
$$

Clearly A is a commutative algebra. To define the topology on A we shall need the following notations:

Let \mathcal{L} be the set of all complex valued functions $\lambda: k \mapsto \lambda_{k}$ defined on K with a finite support. For $\lambda \in \mathcal{L}$ and $i \in\{0,1,2, \ldots\}$ define

$$
m_{i}(\lambda)=\min _{\underset{M C K}{M C K}}^{\operatorname{cardM=i}} \max _{j \in K-M}\left|\lambda_{j}\right| .
$$

Clearly $\max _{j \in K}\left|\lambda_{j}\right|=m_{0}(\lambda) \geq m_{1}(\lambda) \geq \ldots \quad$ and $\operatorname{card}\left\{j \in K,\left|\lambda_{j}\right|>m_{i}(\lambda)\right\} \leq i$.
Lemma 3. Let $\lambda, \mu \in \mathcal{L}$ and let $s, t \in\{0,1,2, \ldots\}$. Then

$$
m_{s+t}(\lambda+\mu) \leq m_{s}(\lambda)+m_{t}(\mu)
$$

where $\lambda+\mu \in \mathcal{L}$ is defined by $(\lambda+\mu)_{k}=\lambda_{k}+\mu_{k} \quad(k \in K)$.

PROOF. Suppose $j \in K,\left|\lambda_{j}+\mu_{j}\right|>m_{s}(\lambda)+m_{t}(\mu)$. Then either $\left|\lambda_{j}\right|>m_{s}(\lambda)$ or $\left|\mu_{j}\right|>m_{t}(\mu)$. Since
$\operatorname{card}\left\{j,\left|\lambda_{j}+\mu_{j}\right|>m_{s}(\lambda)+m_{i}(\mu)\right\} \leq \operatorname{card}\left\{j,\left|\lambda_{j}\right|>m_{s}(\lambda)\right\}+\operatorname{card}\left\{j,\left|\mu_{j}\right|>m_{t}(\lambda)\right\} \leq s+t$, we conclude that $m_{s+t}(\lambda+\mu) \leq m_{s}(\lambda)+m_{t}(\mu)$.

$$
\text { For } \lambda \in \mathcal{L} \text { define } h(\lambda)=\sum_{i=0}^{\infty}(i+1) m_{i}(\lambda)
$$

Lemma 4. If $\lambda, \mu \in \mathcal{L}$ then

$$
h(\lambda+\mu) \leq 4[h(\lambda)+h(\mu)] .
$$

PROOF. We have

$$
\begin{aligned}
h(\lambda+\mu) & =\sum_{r=0}^{\infty}(2 r+1) m_{2 r}(\lambda+\mu)+\sum_{r=0}^{\infty}(2 r+2) m_{2 r+1}(\lambda+\mu) \leq \\
& \leq \sum_{r=0}^{\infty}(2 r+1)\left[m_{r}(\lambda)+m_{r}(\mu)\right]+\sum_{r=0}^{\infty}(2 r+2)\left[m_{r}(\lambda)+m_{r+1}(\mu)\right] \leq \\
& \leq \sum_{r=0}^{\infty}(4 r+3)\left[m_{r}(\lambda)+m_{r}(\mu)\right] \leq 4[h(\lambda)+h(\mu)] .
\end{aligned}
$$

(continuation of the proof of Theorem 2):
Let $u \in A$, i.e. u can be expressed as

$$
\begin{equation*}
u=\alpha c+\sum_{n \in N} \sum_{k \in K} \beta_{n k} X_{n k}+\sum_{d \in \mathcal{D}} \gamma_{d} a_{d}+\sum_{d \in \mathcal{D}} \sum_{n \in N} \sum_{k \in K_{d n}} \delta_{d n k} y_{d n k} \tag{6}
\end{equation*}
$$

where $\alpha, \beta_{n k}, \gamma_{d}, \delta_{d n k}$ are complex numbers such that only a finite number of them is non-zero. For u of form (6) define

$$
f(u)=|\alpha|+\sum_{n \in N} h\left(\left\{\beta_{n k}\right\}_{k \in K}\right)+\sum_{d \in \mathcal{D}}\left|\gamma_{d}\right|+\sum_{d \in \mathcal{D}} \sum_{n \in N} \frac{2}{d_{n}+1} h\left(\left\{\delta_{d n k}\right\}_{k \in K}\right)
$$

(we put formally $\delta_{d n k}=0$ for $k \in K-K_{d n}$).

The function $f: A \rightarrow<0, \infty)$ has the following properties:
a) $u \in A, u \neq 0 \Rightarrow f(u) \neq 0$
b) $f(\varepsilon u)=|\varepsilon| f(u)$ for each complex number ε and $u \in A$
c) $f\left(u+u^{\prime}\right) \leq 4\left[f(u)+f\left(u^{\prime}\right)\right]$
d) $f\left(u, u^{\prime}\right) \leq 8 f(u) f\left(u^{\prime}\right)$.

The first two properties are evident, property c) follows from Lemma 4. To prove d) suppose that $u, u^{\prime} \in A$ are of form (6) (i.e. $u^{\prime}=\alpha^{\prime} c+\sum_{n} \sum_{k} \beta_{n k}^{\prime} x_{n k}+\ldots$). Then

$$
\begin{aligned}
f\left(u u^{\prime}\right) & =f\left(\sum_{d, n} \sum_{k \in K_{d n}} d_{n} y_{d n k}\left(\beta_{n k} \gamma_{d}^{\prime}+\beta_{n k}^{\prime} \gamma_{d}\right)\right)= \\
& =\sum_{d, n} \frac{2 d_{n}}{d_{n+1}} h\left(\left\{\beta_{n k} \gamma_{d}^{\prime}+\beta_{n k}^{\prime} \gamma_{d}\right\}_{k \in K_{d n}}\right) \leq \\
& \leq 8 \sum_{d, n}\left[\left|\gamma_{d}^{\prime}\right| h\left(\left\{\beta_{n k}\right\}_{k \in K_{d n}}\right)+\left|\gamma_{d}\right| h\left(\left\{\beta_{n k}^{\prime}\right\}_{k \in K_{d n}}\right)\right] \leq 8 f(u) f\left(u^{\prime}\right) .
\end{aligned}
$$

Let $V=\{u \in A, f(u)<1\}$ and $\mathcal{V}=\{t V, t \in(0, \infty)\}$. Then \mathcal{V} satisfies conditions (1) - (5) so A with the topology given by \mathcal{V} is a topological algebra.

Let $M \subset A$ be the subspace generated by the elements of form $c-\frac{1}{d_{n}} \sum_{k \in K_{d n}} y_{d n k}$, $d \in \mathcal{D}, n \in N$. Clearly M is a two-sided ideal in A.

Let $u \in A$ be of form (6). If $\beta_{n k} \neq 0$ for some $n \in N, k \in K$ or $\gamma_{d} \neq 0$ for some $d \in \mathcal{D}$ then $(u+t V) \cap M=\phi$ for a suitable $\epsilon>0$, so $u \notin \bar{M}$. Similarly, $u \notin \bar{M}$ if $\delta_{d n k} \neq \delta_{d n k^{\prime}}$ for some d, n, k, k^{\prime}. Finally, if $u=\alpha c-\sum_{d, n} \sum_{k \in K_{d n}} \varepsilon_{d n} y_{d n k}$ and $\alpha \neq \sum_{d, n} d_{n} \varepsilon_{d n}$ we have $u \notin \bar{M}$ as $f\left(\frac{1}{d_{n}} \sum_{k \in K_{d n}} y_{d n k}\right)=1 \quad(d \in \mathcal{D}, n \in N)$.

Hence M is a closed ideal in A and $c \notin M$. Let $B=A / M$ and let $\pi: A \longrightarrow B$ be the canonical homomorphism. Then B is a topological algebra and $\pi(c) \neq 0$.

We prove that B is not topologizable as a locally convex algebra. Suppose on the contrary that there exists a system \mathcal{W} of convex zero-neighbourhoods in B satisfying (1) - (5). We shall need the following lemma:

Lemma 5. For every $W \in \mathcal{W}$ there exists $d \in \mathcal{D}$ and $n \in N$ such that $\pi\left(y_{d n k}\right) \in W$ for every $k \in K_{d n}$.

PROOF. Let $W \in \mathcal{W}$. Suppose on the contrary that for every $d \in \mathcal{D}$ and $n \in N$ there exists $k \in K_{d n}$ with $\pi\left(y_{d n k}\right) \notin W$. Let $W^{\prime} \in \mathcal{W}$ satisfy $W^{\prime} W^{\prime} \subset W$. For $n \in N$ and $k \in K$ choose $s_{n k}>0$ such that $\pi\left(x_{n k}\right) \in s_{n k} W^{\prime}$.

Choose $d=\left\{d_{n k}\right\}_{n \in N} \in \mathcal{D}$ such that $d_{n k}>n s_{n k} \quad(n \in N, k \in K)$. Then $a_{d} \in r W^{\prime}$ for some $r>0$.

We supposed that for every $n \in N$ there exists $k \in K_{d n}$ such that $\pi\left(y_{d n k}\right) \notin W$. On the other hand we have

$$
\pi\left(y_{d n k}\right)=\frac{1}{d_{n}} \pi\left(x_{n k}\right) \pi\left(a_{d}\right) \in \frac{1}{d_{n}} s_{n k} W^{\prime} r W^{\prime} \subset \frac{s_{n k} r}{d_{n}} W .
$$

So $s_{n k} r / d_{n}>1, \quad r>d_{n} / s_{n k}>n$ for every $n \in N$ which is a contradiction.
(continuation of the proof of Theorem 2):
Let $W \in \mathcal{W}$. Let $d \in \mathcal{D}$ and $n \in N$ be given by Lemma 5 . Then

$$
\pi(c)=\frac{1}{d_{n}} \sum_{k \in K_{d n}} \pi\left(y_{d n k}\right)
$$

and $\pi\left(y_{d n k}\right) \in W$ for every $k \in K_{d n}$. Since W is convex and $\operatorname{card} K_{d n}=d_{n}$ we have $\pi(c) \in W$ for every $W \in \mathcal{W}$, a contradiction with condition (1).

Problem: Is it possible to construct separable algebras with properties of Theorem 1 (Theorem 2)?

REFERENCES

[1] W.Żelazko, Selected topics in topological algebras, Aarhus University Lecture Notes, Series No 31 (1971).
[2] W.Żelazko, On certain open problems in topological algebras, Rend. Sem. Mat. Fis. Milano (in print).
[3] W.Żelazko, Example of an algebra which is non-topologizable as a locally convex topological algebra, Proc. Amer. Math. Soc. (in print).

Institute of Mathematics ČSAV
Žitná 25, 11567 Praha 1
Czechoslovakia

