
On topologizable algebras

V. Müller, Prague

Let A be a linear associative algebra. By [3] it is always possible to define a
topology on A which makes of A a locally convex algebra with separately continuous
multiplication (i.e. xα, x, y ∈ A, xα → x implies xαy → xy, yxα → yx).

On the other hand (cf. [3]) in general it is not possible to introduce a topology
on A which makes of A a locally convex algebra with jointly continuous multiplication
(i.e. xα → x, yβ → y ⇒ xαyβ → xy). The aim of this note is to exhibit two examples
which continue these investigations.

In the first example we construct a commutative algebra which admits no topology.
This gives a negative answer to the question raised in [2]. In the second example we
construct a topological algebra which admits no locally convex topology.

All algebras in this paper will be complex (this condition, however, is not essential).
We say that an algebra A is topologizable (topologizable as a locally convex alge-

bra) if there exists a topology on A which makes of A a topological (locally convex)
algebra with jointly continuous multiplication.

It is easy to see that an algebra A is topologizable if and only if there exists a
system V of subset of A (zero-neighbourhoods in A) satisfying
(1)

⋂
V ∈V

V = {0}
(2) λV ⊂ V for every v ∈ V and complex number λ, |λ| ≤ 1
(3) each V ∈ V is absorbent
(4) for every V ∈ V there exists W ∈ V such that W + W ⊂ V
(5) for every W ∈ V there exists W ∈ V such that W ·W ⊂ V .

For basic properties of topological algebras see e.g. [1].

Theorem 1. There exists a commutative algebra which is not topologizable.

PROOF. Denote by N the set of all positive integers and by F the set of all sequences
f = {fj}∞j=1 of positive integers. Consider the linear space A of all formal linear
combinations of elements c, xi (i ∈ N) and af (f ∈ F). We define the multiplication in
A by

cz = zc = 0 for every z ∈ A,

xixj = 0 (i, j ∈ N),

afaf ′ = 0 (f, f ′ ∈ F),

xnaf = afxn = fn · c (n ∈ N, f ∈ F).

Clearly these relations define uniquely a multiplication on A which makes of A a com-
mutative algebra (for the associative law note that the product of any three of the basis
elements is equal to zero).

We prove that A is not topologizable. Suppose on the contrary that there exists
a system V of zero-neighbourhoods in A satisfying (1) - (5). Let V, W ∈ V satisfy c /∈ V
and W ·W ⊂ V .
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For n = 1, 2, · · · choose sn > 0 such that xn ∈ sn · W . Let f = {fn}∞n=1 be a
sequence of positive integers fn with fn > n · sn. Then af ∈ r ·W for some r > 0. We
have

c =
1
fn

(xn · af ) =
r · sn

fn

(
xn

sn
· af

r

)
∈ rsn

fn
·W ·W ⊂ rsn

fn
V.

Since c /∈ V we have

rsn

fn
> 1 and r >

fn

sn
> n (n ∈ N),

a contradiction.

Remark. Let x be a linear space of infinite dimension and let L(X) be the algebra of all
linear mappings acting in X. By [3], L(X) can not be topologized as a locally convex
algebra. Using analogous method as in example 1 it is possible to show that L(X) is
not topologizable. In fact even the algebra of all finite-dimensional operators in X is
not topologizable.

Theorem 2. There exists a commutative topological algebra which is not topologizable
as a locally convex algebra.

PROOF. Let K be an uncountable set. Denote by D the set of all functions
d : N ×K → N . For d ∈ D, n ∈ N and k ∈ K we shall write shortly dnk instead of
d(n, k).

Clearly for every d ∈ D and n ∈ N there exists a subset Kd,n ⊂ K and a positive
integer dn such that cardKd,n = dn and dnk = dn for every k ∈ Kdn. Let A be the linear
space of all (finite) linear combinations of elements c, xnk (n ∈ N, k ∈ K), ad (d ∈ D)
and ydnk (d ∈ D, n ∈ N, k ∈ Kdn ⊂ K).

We define the multiplication in A by

cz = zc = 0 (z ∈ A),

ydnkz = zydnk = 0 (z ∈ A, d ∈ D, n ∈ N, k ∈ Kdn),

adad′ = 0 (d, d′ ∈ D),

xnk · xn′k′ = 0 (n, n′ ∈ N, k, k′ ∈ K),

xnk · ad = ad · xnk =

{
dnydnk (d ∈ D, n ∈ N, k ∈ Kdn)

0 (k /∈ Kdn).

Clearly A is a commutative algebra. To define the topology on A we shall need
the following notations:

Let L be the set of all complex valued functions λ : k 7→ λk defined on K with a
finite support. For λ ∈ L and i ∈ {0, 1, 2, . . .} define

mi(λ) = min
M⊂K

cardM=i

max
j∈K−M

|λj |.
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Clearly max
j∈K

|λj | = m0(λ) ≥ m1(λ) ≥ . . . and card{j ∈ K, |λj | > mi(λ)} ≤ i.

Lemma 3. Let λ, µ ∈ L and let s, t ∈ {0, 1, 2, . . .}. Then

ms+t(λ + µ) ≤ ms(λ) + mt(µ)

where λ + µ ∈ L is defined by (λ + µ)k = λk + µk (k ∈ K).

PROOF. Suppose j ∈ K, |λj + µj | > ms(λ) + mt(µ). Then either |λj | > ms(λ) or
|µj | > mt(µ). Since

card{j, |λj+µj | > ms(λ)+mi(µ)} ≤ card{j, |λj | > ms(λ)}+card{j, |µj | > mt(λ)} ≤ s+t,

we conclude that ms+t(λ + µ) ≤ ms(λ) + mt(µ).

For λ ∈ L define h(λ) =
∞∑

i=0

(i + 1)mi(λ).

Lemma 4. If λ, µ ∈ L then

h(λ + µ) ≤ 4 [h(λ) + h(µ)] .

PROOF. We have

h(λ + µ) =
∞∑

r=0

(2r + 1)m2r(λ + µ) +
∞∑

r=0

(2r + 2)m2r+1(λ + µ) ≤

≤
∞∑

r=0

(2r + 1) [mr(λ) + mr(µ)] +
∞∑

r=0

(2r + 2) [mr(λ) + mr+1(µ)] ≤

≤
∞∑

r=0

(4r + 3) [mr(λ) + mr(µ)] ≤ 4 [h(λ) + h(µ)] .

(continuation of the proof of Theorem 2):
Let u ∈ A, i.e. u can be expressed as

(6) u = αc +
∑

n∈N

∑

k∈K

βnkXnk +
∑

d∈D
γdad +

∑

d∈D

∑

n∈N

∑

k∈Kdn

δdnkydnk

where α, βnk, γd, δdnk are complex numbers such that only a finite number of them is
non-zero. For u of form (6) define

f(u) = |α|+
∑

n∈N

h
(
{βnk}k∈K

)
+

∑

d∈D
|γd|+

∑

d∈D

∑

n∈N

2
dn + 1

h
(
{δdnk}k∈K

)

(we put formally δdnk = 0 for k ∈ K −Kdn).
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The function f : A →< 0,∞) has the following properties:
a) u ∈ A, u 6= 0 ⇒ f(u) 6= 0
b) f(εu) = |ε|f(u) for each complex number ε and u ∈ A
c) f(u + u′) ≤ 4[f(u) + f(u′)]
d) f(u, u′) ≤ 8f(u)f(u′).

The first two properties are evident, property c) follows from Lemma 4. To prove
d) suppose that u, u′ ∈ A are of form (6) (i.e. u′ = α′c +

∑
n

∑
k β′nkxnk + . . .). Then

f(uu′) = f


∑

d,n

∑

k∈Kdn

dnydnk(βnkγ′d + β′nkγd)


 =

=
∑

d,n

2dn

dn+1
h
(
{βnkγ′d + β′nkγd}k∈Kdn

)
≤

≤ 8
∑

d,n

[
|γ′d|h

(
{βnk}k∈Kdn

)
+ |γd|h

(
{β′nk}k∈Kdn

)]
≤ 8f(u)f(u′).

Let V = {u ∈ A, f(u) < 1} and V = {tV, t ∈ (0,∞)}. Then V satisfies conditions
(1) – (5) so A with the topology given by V is a topological algebra.

Let M ⊂ A be the subspace generated by the elements of form c− 1
dn

∑
k∈Kdn

ydnk ,

d ∈ D, n ∈ N . Clearly M is a two-sided ideal in A.
Let u ∈ A be of form (6). If βnk 6= 0 for some n ∈ N , k ∈ K or γd 6= 0 for

some d ∈ D then (u + tV ) ∩ M = φ for a suitable ε > 0, so u /∈ M̄ . Similarly,
u /∈ M̄ if δdnk 6= δdnk′ for some d, n, k, k′. Finally, if u = αc − ∑

d,n

∑
k∈Kdn

εdnydnk and

α 6= ∑
d,n dnεdn we have u /∈ M̄ as f( 1

dn

∑
k∈Kdn

ydnk) = 1 (d ∈ D, n ∈ N).

Hence M is a closed ideal in A and c /∈ M . Let B = A/M and let π : A −→ B be
the canonical homomorphism. Then B is a topological algebra and π(c) 6= 0.

We prove that B is not topologizable as a locally convex algebra. Suppose on the
contrary that there exists a system W of convex zero-neighbourhoods in B satisfying
(1) - (5). We shall need the following lemma:

Lemma 5. For every W ∈ W there exists d ∈ D and n ∈ N such that π(ydnk) ∈ W for
every k ∈ Kdn.

PROOF. Let W ∈ W. Suppose on the contrary that for every d ∈ D and n ∈ N there
exists k ∈ Kdn with π(ydnk) /∈ W . Let W ′ ∈ W satisfy W ′W ′ ⊂ W . For n ∈ N and
k ∈ K choose snk > 0 such that π(xnk) ∈ snkW ′.

Choose d = {dnk}n∈N ∈ D such that dnk > nsnk (n ∈ N, k ∈ K). Then ad ∈ rW ′

for some r > 0.
We supposed that for every n ∈ N there exists k ∈ Kdn such that π(ydnk) /∈ W .

On the other hand we have

π(ydnk) =
1
dn

π(xnk)π(ad) ∈ 1
dn

snkW ′rW ′ ⊂ snkr

dn
W.

So snkr/dn > 1, r > dn/snk > n for every n ∈ N which is a contradiction.
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(continuation of the proof of Theorem 2):
Let W ∈ W. Let d ∈ D and n ∈ N be given by Lemma 5. Then

π(c) =
1
dn

∑

k∈Kdn

π(ydnk)

and π(ydnk) ∈ W for every k ∈ Kdn. Since W is convex and cardKdn = dn we have
π(c) ∈ W for every W ∈ W, a contradiction with condition (1).

Problem: Is it possible to construct separable algebras with properties of Theorem 1
(Theorem 2)?
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