
Local behaviour of operators

Vladimı́r Müller

Introduction

Let T be a bounded operator in a Banach space X and let x ∈ X. Denote by P
the set of all complex polynomials. We are going to study the following problem:

A. What can we say about the set {p(T )x : p ∈ P}?
A weaker version of this problem is:

B. What can we say about the set {T kx : k = 0, 1, . . .}?
The sets {T kx : k = 0, 1, . . .} for operators in Hilbert spaces were called ”orbits”

by Rolewicz [15] and intensively studied by Beauzamy [2].
Questions of type A or B appear naturally in many problems of operator theory.

Examples:
1) Local spectral radius r(T, x) of an operator T at a point x ∈ X can be defined

by r(T, x) = lim supk→∞ ‖T kx‖1/k, i.e. it is a quantity defined in terms of B. The local
spectral radius plays an important role in the local spectral theory.

2) As an analogy to the local spectral radius for the set of all polynomials can be
considered the local capacity (see later).

3) The invariant subspace problem can be also easily reformulated by using the
sets {p(T )x : p ∈ P}: An operator T in X has no non-trivial invariant subspace if and
only if {p(T )x : p ∈ P} is dense for all x ∈ X. Many of the positive results (e.g. results
based on the Scott Brown technique) consist in finding x ∈ X such that ‖p(T )x‖ ≥ 1
for all polynomials p with p(0) = 1.

The present paper is a survey of results obtained in [8]–[14]. The results show
that for every Banach space X and every bounded linear operator T on X there exists
x ∈ X such that ‖p(T )x‖ is big enough for all polynomials p.

I. Essential approximate point spectrum

Denote by B(X) the algebra of all bounded operators in a Banach space X. Denote
by C and N the set of all complex numbers and positive integers, respectively.

Let T be a bounded operator in a Banach space X. If x is an eigenvalue of T ,
Tx = λx for some complex λ, then p(T )x = p(λ)x for every polynomial p so that we
have a complete information about the set {p(T )x : p ∈ P}. Unfortunately, operators
in infinite dimensional Banach spaces have usually no eigenvalues. The proper tool
appears to be the notion of the essential approximate point spectrum of T .

Denote by σe(T ) the essential spectrum of T ∈ B(X), i.e. the spectrum of ρ(T ) in
the Calkin algebra B(X)|K(X), where K(X) is the ideal of all compact operators in X
and ρ : B(X) −→ B(X)|K(X) is the canonical projection. Denote further by σπe(T )
the essential approximate point spectrum of T , i.e. σπe(T ) is the set of all complex λ
such that

inf {‖(T − λ)x‖ : x ∈ M, ‖x‖ = 1} = 0
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for every subspace M ⊂ X with codim M < ∞.
It is easy to see that λ /∈ σπe(T ) if and only if dim Ker (T− λ) < ∞ and T − λ has

closed range, i.e. if T − λ is upper semi-Fredholm.
The terminology is not unified, the essential approximate point spectrum was stud-

ied under various names (see e.g. [1], [3], [7]).
By [7], σπe(T ) contains the topological boundary of the essential spectrum, in

particular it is always a non-empty compact subset of σe(T ).
We start with studying the elements λ ∈ σπe(T ) for operators in Hilbert spaces. We

show that, for given k ∈ N, there always exists x such that the powers T ix (0 ≤ i ≤ k)
are smaller and smaller and almost orthogonal to each other.

Proposition 1. Let T be an operator in a Hilbert space H such that 0 ∈ σπe(T ) and
codim TH < ∞. Let k ∈ N and ε > 0. Then there exists x ∈ X with ‖x‖ = 1 such that
(1) ‖T i+1x‖ ≤ ε‖T ix‖ (i = 0, 1, . . . , k − 1),
(2) ‖p(T )x‖ ≥ (1− ε)|p(0)| (p ∈ P, deg p ≤ k).
(3) |〈T ix, T jx〉| ≤ ε‖T ix‖ · ‖T jx‖ (0 ≤ i, j ≤ k, i 6= j).

Remark. The condition codim TH < ∞ is only technical and rather weak. If this
condition is not satisfied then 0 is an eigenvalue of T ∗. In particular T has a non-trivial
invariant subspace, so that this case is not interesting (at least from the point of view
of the invariant subspace problem).

The following lemma is an important tool for various constructions in Banach
spaces. It enables to generalize constructions in Hilbert spaces which use the orthogonal
complement of a finite-dimensional subspace to general Banach spaces.

Lemma 2. Let E be a finite-dimensional subspace of a Banach space X and let ε > 0.
Then there exists a subspace Y ⊂ X with codim Y < ∞ such that

‖e + y‖ ≥ (1− ε) max
{
‖e‖, 1

2
‖y‖

}

for every e ∈ E and y ∈ Y .

By using Lemma 2 we can get an analogue to Proposition 1 for operators in Banach
spaces.

Proposition 3. Let T be an operator in a Banach space X such that 0 ∈ σπe(T ) and
codim TX < ∞. Let k ∈ N and ε > 0. Then there exists x ∈ X with ‖x‖ = 1 such that
(1) ‖T i+1x‖ ≤ ε‖T ix‖ (i = 0, 1, . . . , k − 1),
(2) ‖p(T )x‖ ≥ 1−ε

2 |p(0)| (p ∈ P, deg p ≤ k).

By an inductive costruction which uses the previous proposition we can construct
a point x ∈ X (actually, a dense subset of X) such that ‖p(T )x‖ is big enough for all
polynomials p (see [11]).

Theorem 4. Let T ∈ B(X), λ ∈ σπe(T ). Let {ak}∞k=0 be a sequence of positive
numbers with limk→∞ ak = 0. Then there exists x ∈ X such that

‖p(T )x‖ ≥ adeg p · |p(λ)|
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for every polynomial p.

Theorem 5. Let T ∈ B(X), λ ∈ σπe(T ), x ∈ X, ε > 0. Let {ak}∞k=0 be a sequence of
positive numbers with limk→∞ ak = 0. Then there exists y ∈ X and a positive constant
C = C(ε) such that ‖y − x‖ ≤ ε and

‖p(T )y‖ ≥ Cadeg p · |p(λ)|

for every polynomial p.

Remark. Let T ∈ B(X), λ ∈ σπe(T ) and suppose that there exist y ∈ X and
a constant c > 0 such that ‖p(T )y‖ ≥ c · |p(λ)| for every polynomial p. Then either

(T−λ)y = 0 or M = {(T − λ)p(T )y : p ∈ P} is a non-trivial invariant subspace. Indeed,
y 6∈ M as ‖y − (T − λ)p(T )y‖ ≥ c for every polynomial p.

As there are examples of operators in Banach spaces without non-trivial invariant
subspaces, in general it is not possible to replace the sequence {ak} by a constant c > 0.
Thus Theorems 4 and 5 are the best possible, at least for Banach spaces.

Denote by r(T ) and re(T ) the spectral radius and the essential spectral radius of
an operator T ∈ B(X), respectively.

From Theorems 4 and 5 follow easily corresponding results for powers T ix, cf. [9]
or [2].

Corollary 6. Let T ∈ B(X) and let {ak}∞k=0 be a sequence of positive numbers with
limk→∞ ak = 0. Then there exists x ∈ X such that

‖T kx‖ ≥ ak · r(T )k (k = 0, 1, . . .).

Proof. Let λ ∈ σπe(T ) with |λ| = max {|z| : z ∈ σ(T )} = r(T ). Then either λ is an
eigenvalue of T and ‖T kx‖ = r(T )k for the corresponding eigenvector x or λ ∈ σπe(T )
and we can apply Theorem 4.

Corollary 7. Let T ∈ B(X), x ∈ X, ε > 0 and let {ak}∞k=0 be a sequence of positive
numbers with limk→∞ ak = 0. Then there exists y ∈ X and a positive constant
C = C(ε) such that ‖y − x‖ ≤ ε and

‖T ky‖ ≥ Cak · r(T )k (k = 0, 1, . . .).

Corollary 8 (see [17]) . Let T ∈ B(X). Then the set {x ∈ X : r(T, x) = r(T )} is
dense in X.

As another corollary we get that the infimum and the supremum in the spectral
radius formula

r(T ) = inf
k∈N

‖T k‖1/k = inf
k∈N

sup
‖x‖=1

‖T kx‖1/k
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can be exchanged.

Corollary 9. Let T ∈ B(X). Then

r(T ) = inf
k∈N

sup
‖x‖=1

‖T kx‖1/k = sup
‖x‖=1

inf
k∈N

‖T kx‖1/k.

II. Capacity

In the previous section we expressed the estimate of ‖p(T )x‖ by means of |p(λ)|
where λ was a fixed element of σπe(T ). In this section we are looking for an estimate in
terms of max{|p(λ)| : λ ∈ σπe(T )}. As δσe(T ) ⊃ σπe(T ) and by the spectral mapping
theorem for σe we have

max
λ∈σπe(T )

|p(λ)| = max
λ∈σe(T )

|p(λ)| = max {|z| : z ∈ σe(p(T ))} = re(p(T )).

An important tool for the results in this section is the following classical lemma of
Fekete [4]:

Lemma 10. Let K be a non-empty compact subset of the complex plane and let k ≥ 1.
Then there exist points u0, u1, . . . , uk ∈ K such that

max{|p(z)| : z ∈ K} ≤ (k + 1) · max
0≤i≤k

|p(ui)|

for every polynomial p with deg p ≤ k.

By using the previous lemma and results of the previous section we can get (see
[10])

Proposition 11. Let T ∈ B(X), ε ≥ 0 and k ≥ 1. Then there exists x ∈ X with
‖x‖ = 1 and

‖p(T )x‖ ≥ 1− ε

2(k + 1)2
re(p(T ))

for every polynomial p with deg p ≤ k.

Theorem 12. Let T ∈ B(X), x ∈ X and ε > 0. Then there exists y ∈ X and a
positive constant C = C(ε) such that ‖y − x‖ ≤ ε and

‖p(T )y‖ ≥ C · (1 + deg p)−(2+ε) re(p(T ))

for every polynomial p.

Remark. In case of a Hilbert space operator one can get a better estimate

‖p(T )y‖ ≥ C · (1 + deg p)−(1+ε) re(p(T )).
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The notion of capacity of an operator was defined by Halmos in [5]. If T ∈ B(X)
then

cap T = lim
k→∞

(capkT )1/k = inf
k

(capkT )1/k

where
capkT = inf

{‖p(T )‖ : p ∈ P1
k

}

and P1
k is the set of all monic (i.e. with leading coefficient equal to 1) polynomials of

degree k.
This is a generalization of the classical notion of capacity of a compact subset K

of the complex plane:

cap K = lim
k→∞

(capkK)1/k = inf
k

(capkK)1/k

where

capkK = inf
{‖p‖K : p ∈ P1

k

}
and ‖p‖K = sup{|p(z)| : z ∈ K}.

By the main result of [5], cap T = cap σ(T ).
The local capacity of T at x can be defined analogously:

capk(T, x) = inf
{‖p(T )x‖ : p ∈ P1

k

}

and
cap (T, x) = lim sup

k→∞
capk(T, x)1/k

(in general the limit does not exist).
It is easy to see that cap(T, x) ≤ cap T for every x ∈ X.

Corollary 13. Let T ∈ B(X). Then the set {x ∈ X : cap(T, x) = cap T} is dense in
X.

Proof. By Theorem 12 there exists a dense subset Y ⊂ X such that

‖p(T )y‖ ≥ C

(deg p + 1)3
re(p(T ))

for every polynomial p. Then

capk(T, y) = inf{‖p(T )y‖ : p ∈ P1
k} ≥ inf

p∈P1
k

C

(k + 1)3
re(p(T ))

= inf
p∈P1

k

C

(n + 1)3
sup{|p(λ)| : λ ∈ σe(T )} =

C

(n + 1)3
capkσe(T ).

Thus

cap (T, y) = lim sup
k→∞

capk(T, y)1/k ≥ lim sup
k→∞

(
C

(k + 1)3

)1/k

(capkσe(T ))1/k = cap σe(T ).

5



Further cap σe(T ) = cap σ(T ) as σ(T ) − σe(T ) contains only countably many isolated
points in the unbounded component of the complement of σe(T ) and cap σ(T ) = cap T
by [5]. Hence cap (T, x) = cap T for every y ∈ Y .

An operator T ∈ B(X) is called quasialgebraic if and only if cap T = 0. Similarly
T is called locally quasialgebraic if cap (T, x) = 0 for every x ∈ X.

It follows from Corollary 13 that these two notions are equivalent (see [8]). This
gives a positive answer to a problem of Halmos [5].

Theorem 14. An operator is quasialgebraic if and only if it is locally quasialgebraic.

Theorem 14 is an analogy to the well-known result of Kaplansky: an operator is
algebraic (i.e. p(T ) = 0 for some non-zero polynomial p) if and only if it is locally
algebraic (i.e. for every x ∈ X there exists a polynomial px 6= 0 such that px(T )x = 0).

III. n-tuples of commuting operators

The results of previous section admit a generalization for n-tuples of commuting
operators.

Let T = (T1, . . . , Tn) be an n-tuple of mutually commuting operators in a Banach
space X We denote by σ(T ) ⊂ Cn the Harte spectrum [6] of T , i.e. λ = (λ1, . . . , λn) ∈
Cn does not belong to σ(T ) if and only if there exist operators L1, . . . , Ln, R1, . . . , Rn ∈
B(X) such that

n∑

i=1

Li(Ti − λi) = I =
n∑

i=1

(Ti − λi)Ri.

Denote further by σπe(T ) the essential approximate point spectrum of the n-tuple T ,
i.e. λ = (λ1, . . . , λn) ∈ σπe(T ) if and only if

inf

{
n∑

i=1

‖(Ti − λi)x‖ : x ∈ M, ‖x‖ = 1

}
= 0

for every subspace M of finite codimension.
The following result is a generalization of Theorem 12 for n-tuples of commuting

operators (see [14]):

Theorem 15. Let T = (T1, . . . , Tn) ∈ B(X)n be a mutually commuting n-tuple of
operators. Let x ∈ X and ε > 0. Then there exists y ∈ X and a positive constant
C = C(ε) such that ‖y − x‖ ≤ ε and

‖p(T )y‖ ≥ C

(1 + deg p)2n+ε
re(p(T ))

for every polynomial p with n variables.

Every polynomial p in n complex variables with deg p ≤ k can be written in the
form

p(z) =
∑

|α|≤k

cα(p)zα

6



where α = (α1, . . . , αn) is an n-tuple of non-negative integers, |α| = α1 + · · ·+ αn, the
coefficients cα(p) are complex, z = (z1, . . . , zn) ∈ Cn and zα = zα1

1 · · · zαn
n .

The notion of capacity of commuting n-tuples of operators was introduced by
Stirling [16]:

Denote by P1
k(n) the set of all ”monic” polynomials p(z) =

∑
|µ|≤k cµ(p)zµ of

degree k in n variables with
∑
|µ|=k |cµ(p)| = 1.

Let T = (T1, . . . , Tn) be an n-tuple of mutually commuting operators in a Banach
space X. The joint capacity of T was defined in [16] by

cap T = lim inf
k→∞

capk(T )1/k where capk(T ) = inf
{‖p(T )‖ : p ∈ P1

k(n)
}

(in fact the liminf in the definition of cap T can be replaced by limit, see [12]]).
For a compact subset K ⊂ Cn define the corresponding capacity by

cap K = lim
k→∞

capk(K)1/k where capk(K) = inf
{‖p‖K : p ∈ P1

k(n)
}

.

This capacity was studied in [16] and called the ”homogeneous Tshebyshev constant”
of K.

By [16], cap σ(T ) ≤ cap T ≤ 2ncap σ(T ). Actually, the equality holds here, see
[12].

Theorem 16. Let T = (T1, . . . , Tn) be an n-tuple of mutually commuting operators
in a Banach space X. Then cap T = cap σ(T ).

Theorem 17 (see [13]). Let T be an n-tuple of mutually commuting operators in a
Banach space X. Then σ(T )− σ̂πe(T ) consist of at most countable isolated joint eigen-
values, where σ̂πe(T ) denotes the polynomially convex hull of σπe(T ). In particular,
cap σ(T ) = cap σπe(T ) (actually all reasonable joint spectra have the same capacity).

Let T = (T1, . . . , Tn) be a commuting n-tuple of operators in a Banach space X
and let x ∈ X. We define the local capacity cap (T, x) by

cap (T, x) = lim sup
k→∞

capk(T, x)1/k

where
capk(T, x) = inf

{‖p(T )x‖ : p ∈ P1
k(n)

}
.

Clearly cap (T, x) ≤ cap T for every x ∈ X.

Theorem 18 (see [14]). Let T be an n-tuple of mutually commuting operators in a
Banach space X. Then the set of all y ∈ X with cap (T, y) = cap T is dense in X.
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