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ABSTRACT. It is known that each normal operator on a Hilbert space with non-

empty interior of the spectrum admits vectors with bounded local resolvent. We

generalize this result for Banach space operators with the decomposition property

(δ) (in particular for decomposable operators). Moreover, the same result holds

for operators with interior points in the localizable spectrum.

Let X be a complex Banach space and B(X) the Banach algebra of all bounded
linear operators on X. Let T ∈ B(X). It is well known that the resolvent mapping
(T − z)−1, which is defined and analytic on the resolvent set ρ(T ), is unbounded.
On the other hand, the behavior of local resolvent functions may be quite different. In
[BG], Bermúdez and González [BG] have shown that a normal operator N on a separable
Hilbert space has a non-trivial bounded local resolvent function if and only if the interior
of the spectrum of N is not empty, i.e., Int σ(N) 6= ∅. Neumann [N] extended this
result to non-separable spaces, and proved a similar result for multiplication operators
induced by a given continuous function on the Banach algebra C(Ω) of all continuous
complex-valued functions on a compact Hausdorff space Ω.

In this article we show that there is a quite large class of bounded operators on
a complex Banach space that have non-trivial bounded local resolvent functions. In
particular, every decomposable operator T with Int σ(T ) 6= ∅ has this property. On
the other hand, there is a decomposable operator T with Int σ(T ) = ∅, which admits a
local resolvent funcion that is not only bounded but can be even continuously extended
to the whole complex plane.

Before we state our main results we are going to introduce some notation and
terminology from local spectral theory (the reader is referred to [LN] for details).

An operator T ∈ B(X) is said to have the single-valued extension property (SVEP)
if, for every open set U ⊆ C, the only analytic solution f : U → X of the equation

(T − z)f(λ) = 0 (z ∈ U)

is the function f ≡ 0.
The local resolvent set ρT (x) of an operator T with SVEP at x ∈ X is defined

as the set of all w ∈ C, for which there exists an analytic function f : U → X
on an open neighbourhood U of w such that (T − z)f(z) = x for all z ∈ U. Let
f(z) =

∑∞
i=1 xi(z − w)i (z ∈ U) be the Taylor expansion of f . Comparing the

coefficients, it is easy to see that w ∈ ρT (x) if and only if there are vectors x1, x2, . . . ∈ X
such that (T − w)xi+1 = xi (i ≥ 1), (T − w)x1 = x and supi ‖xi‖1/i < ∞.
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The set σT (x) = C \ ρT (x) is called the local spectrum of T at x. It is well known
that, for any x ∈ X, the local spectrum of T at x is contained in the spectrum σ(T ),
or, equivalently, ρ(T ) ⊆ ρT (x). It is well known that σT (x) is always closed; if x 6= 0
then σT (x) is also nonempty. It is easy to see that σT (x + y) ⊂ σT (x) ∪ σT (y) for all
x, y ∈ X. Moreover, if σT (x) ∩ σT (y) = ∅, then σT (x + y) = σT (x) ∪ σT (y).

If T has SVEP, then, for every x ∈ X, there exists a unique analytic function
RT (·, x) : ρT (x) → X such that (T − z)RT (z, x) = x for all z ∈ ρT (x). This function
is called the local resolvent function of T at x, and satisfies RT (z, x) = (T − z)−1x for
all z ∈ ρ(T ).

An operator T ∈ B(X) is said to have the decomposition property (δ) if, given an
arbitrary open cover {U1, U2} of C, every x ∈ X admits a decomposition x = u1 + u2

where uk (k = 1, 2) satisfies uk = (T − z)fk(z) for all z ∈ C \ Uk and some analytic
function fk : C \ Uk → X. If for every open cover {U1, U2} of C there exists a pair
of closed linear subspaces Y1 and Y2 in X such that they are invariant for T ∈ B(X),
their sum is X, and the spectrum of the restricted operator T |Yk is contained in Uk

(k = 1, 2), then T is said to be decomposable.
Denote by Im S the range of an operator S ∈ B(X).
Our first theorem says that an operator on a Banach space that has nice spectral

properties and whose spectrum has nonempty interior admits a non-trivial bounded
local resolvent function.

Theorem 1. Let T ∈ B(X) have SVEP and the decomposition property (δ). Assume
that there exists a nonempty open set U ⊂ σ(T ). Then there exists x ∈ X such that
σT (x) = U and the local resolvent function RT (z, x) is bounded on ρT (x).

Proof. Choose a sequence (λn)∞n=1 ⊂ U which is dense in U and such that λi 6=
λj (i 6= j). We shall construct a sequence of vectors (xn)∞n=1 ⊂ X such that λn ∈
σT (xn) ⊂ U , xn /∈ Im (T − λn), and xn ∈ Im (T − λj), for all 1 ≤ j < n.

Let n ∈ N. The property SVEP implies that Im (T − λn) 6= X ([LN], Proposition
1.3.2 (f)). Choose u ∈ X \ Im (T − λn). Let V and V ′ be open sets such that

λn ∈ V ⊂ V ⊂ V ′ ⊂ V ′ ⊂ U.

Consider the open cover {V ′,C \ V } of the complex plane. Since T has property (δ),
there are v, w ∈ X and analytic functions f : C \ V ′ → X and g : V → X such
that u = v + w, v = (T − z)f(z) (z ∈ C \ V ′), and w = (T − z)g(z) (z ∈ V ).
Therefore w = (T − λn)g(λn) ∈ Im (T − λn). For n = 1, let x1 = v. For n ≥ 2, let
xn = (T − λ1) · · · (T − λn−1)v. Then σT (xn) ⊂ σT (v) ⊂ V ′ ⊂ U and xn ∈ Im (T − λj)
for all j < n.

Note that u /∈ Im (T − λn), w ∈ Im (T − λn), and so v /∈ Im (T − λn). Since the
polynomials z−λn and (z−λ1) · · · (z−λn−1) are relatively prime, there are polynomials
q1(z) and q2(z) such that

(z − λn)q1(z) + (z − λ1) · · · (z − λn−1)q2(z) = 1.

Thus
(T − λn)q1(T )v + (T − λ1) · · · (T − λn−1)q2(T )v = v.

Hence q2(T )xn = (T −λ1) · · · (T −λn−1)q2(T )v /∈ Im (T −λn), and so xn /∈ Im (T −λn).
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Since σT (xn) ⊂ U , we have supz/∈U ‖RT (z, xn)‖ < ∞.
Now we construct inductively a sequence of positive numbers (αn)∞n=1 such that

‖αnxn‖ ≤ 2−n,

sup
z/∈U

‖RT (z, αnxn)‖ ≤ 2−n,

n∑

i=1

αnxn /∈ Im (T − λn),

αnxn ∈ 2−n(T − λj)BX (j < n),

(1)

where BX denotes the closed unit ball in X.
It is obvious that there exists a positive number α1 that satisfies (1). Suppose

that the numbers α1, . . . , αn−1 satisfying (1) have already been constructed. Since
xn /∈ Im (T −λn), there is at most one µ > 0 such that

∑n−1
i=1 αixi +µxn ∈ Im (T −λn).

Thus (1) is satisfied for all positive αn which are small enough.
Let the numbers αn be constructed in the above described way. Set x =

∑∞
i=1 αixi.

For z /∈ U we have ∞∑

i=1

‖RT (z, αixi)‖ ≤
∞∑

i=1

2−i = 1.

Consequently, σT (x) ⊂ U and supz/∈U ‖RT (z, x)‖ ≤ 1. It remains to show that σT (x) =
U .

For each n ∈ N we have
∑n

i=1 αixi /∈ Im (T − λn) and

∞∑

i=n+1

αixi ∈
∞∑

i=n+1

2−i(T − λn)BX ⊂ 2−n(T − λn)BX ⊂ Im (T − λn).

Hence x /∈ Im (T − λn), and therefore λn ∈ σT (x). We conclude that σT (x) = U and
consequently that the local resolvent function of T at x is bounded.

An immediate consequence of the previous theorem is the following corollary.

Corollary 2. Let T ∈ B(X) be a decomposable operator. If Int σ(T ) 6= ∅, then there
exists a nonzero x ∈ X such that RT (z, x) is bounded on ρT (x).

In the proof of Theorem 1 we have not used the full strength of property (δ). In
fact it is sufficient that the points of the set U are separated by local spectra. For this
purpose it can be used the concept of localizable spectrum, see [EP].

Let T ∈ B(X) be an operator with SVEP. The localizable spectrum σloc(T ) of
T is the set of all complex numbers λ with the following property: for each open
neighbourhood V of λ there exists a nonzero vector x ∈ X such that σT (x) ⊂ V .

Clearly σloc(T ) is a closed subset of σ(T ). For operators with property (δ) it
is easy to see that σloc(T ) = σ(T ). On the other hand, for an arbitrary operator
T ∈ B(X), the localizable spectrum σloc(T ) is always contained in the approximate
point spectrum σap(T ). Indeed, let λ ∈ σloc(T ). For each open neighbourhood V
there is a nonzero vector x ∈ X with σT (x) ⊂ V . Take µ ∈ ∂σT (x). By Theorem
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3.1.12 in [LN], µ ∈ σap(T ). Since V was an arbitrary neighbourhood of λ, we conclude
that λ ∈ σap(T ). In particular, this observation implies the well known fact that
σap(T ) = σ(T ) whenever T has property (δ).

On the other hand, there exist operators with empty localizable spectrum. Namely,
let T ∈ B(X) be an operator with more than two points in the spectrum and with the
property that σT (x) = σ(T ) for all nonzero vectors x (the existence of such an operator
follows, for instance, from Proposition 1.6.9 in [LN]). It is clear that σloc(T ) is empty.

Denote by σp(T ) the point spectrum of an operator T ∈ B(X).

Lemma 3. Let T ∈ B(X) be an operator with SVEP. Then for each λ ∈ Int σloc(T )
and an open neighbourhood V of λ there is a vector x ∈ X such that λ ∈ σT (x) ⊂ V .

Proof. Choose a positive number r0 such that {z ∈ C : |z− λ| ≤ r0} ⊂ V ∩ Int σloc(T )
and let (rn)∞n=1 be a sequence of positive numbers such that r0 > r1 > r2 > · · ·
and limn→∞ rn = 0. For n ∈ N let Vn = {z ∈ C : rn < |z − λ| < rn−1}. Since
Vn ⊂ σloc(T ) for each n, there exist, by the assumption, unit vectors xn ∈ X such that
σT (xn) ⊂ Vn (n ∈ N).

Choose positive numbers α1, α2, . . . such that αn ≤ 2−n and

sup
{‖RT (z, αnxn)‖ : |z − λ| ≥ rn−1

} ≤ 2−n.

Set x =
∑∞

i=1 αixi. Clearly

sup
{‖RT (z, x)‖ : z ∈ C \ V

} ≤
∞∑

i=1

sup
{‖RT (z, αixi)‖ : z ∈ C \ V

} ≤
∞∑

i=1

2−i < ∞,

and so σT (x) ⊂ V .
For each n we have in the same way that

sup
{∥∥∥RT

(
z,

∞∑

i=n+1

αixi

)∥∥∥ : |z − λ| ≥ rn

}
< ∞,

and so σT (
∑∞

i=n+1 αixi) ⊂ {z : |z − λ| ≤ rn}. Since the local spectra of the elements
α1x1, . . . , αnxn and

∑∞
i=n+1 αixi are mutually disjoint, we have

σT (x) =
n⋃

i=1

σT (xi) ∪ σT

( ∞∑

i=n+1

αixi

)
⊃ σT (xn).

Thus there exists a number µn ∈ σT (xn) which is also in σT (x) ∩ Vn. Since µn → λ,
we conclude that λ ∈ σT (x).

Theorem 4. Let T ∈ B(X), let the point spectrum of T have empty interior and
assume that U ⊂ σloc(T ) is a nonempty open subset. Then there exists x ∈ X such
that σT (x) = U and RT (z, x) is bounded on ρT (x). Moreover, for every u ∈ X with
σT (u) ⊂ U and every ε > 0 there exists x ∈ X such that ‖x− u‖ ≤ ε, σT (x) = U , and
the local resolvent function of T at x is bounded.

4



Proof. Note first that T has SVEP since the interior of the point spectrum is empty.
By the same reason we can choose a dense sequence (λn)∞n=1 ⊂ U such that the kernel
of T − λn is trivial for each n. Moreover, we can assume that λi 6= λj (i 6= j).

Let ε > 0 and let u ∈ X satisfy σT (u) ⊂ U . By assumption, we can find a vector
x1 ∈ X with ‖x1‖ = 1 and λ1 ∈ σT (x1) ⊂ U . Similarly, for each n ≥ 2, there exists a
vector xn ∈ X of norm one such that λn ∈ σT (xn) ⊂ U \ {λ1, . . . , λn−1}.

Now we construct inductively a sequence (αn)∞n=1 of non-negative numbers, a sub-
set M ⊂ N, for each n ∈ M a nonnegative integer an, and, for every n ∈ N \M and
k ∈ N, a positive integer m(n, k) such that the following conditions will be fulfilled.
(i) ‖αnxn‖ ≤ 2−nε;

(ii) supz/∈U ‖RT (z, αnxn)‖ ≤ 2−n;

(iii) λn ∈ σT

(
u +

∑n
i=1 αixi

)
;

(iv) αnxn ∈ 2−n(T − λj)aj+1BX (j < n, j ∈ M);

(v)
∥∥(T − λj)−m(j,k)αnxn

∥∥ ≤ 2−nkm(j,k) (j < n, j /∈ M,k ∈ N);

(vi) n ∈ M ⇔ u +
∑n

i=1 αixi /∈ ⋂∞
k=1 Im (T − λj)k,

and, if n ∈ M , then an = max{k : u +
∑n

i=1 αixi ∈ Im (T − λn)k};
(vii)

∥∥∥(T − λn)−m(n,k)
(
u +

∑n
i=1 αixi

)∥∥∥ ≥ km(n,k) (n /∈ M, k ∈ N).

Let n ≥ 1 and suppose that the numbers α1, . . . , αn−1, the set M ∩ {1, . . . , n− 1}
and the numbers aj (j ≤ n − 1, j ∈ M) and m(j, k) (j ≤ n − 1, j ∈ N \M, k ∈ N)
satisfying (i)-(vii) have already been constructed. We distinguish two cases:

(a) If λn ∈ σT

(
u +

∑n−1
i=1 αixi

)
, set αn = 0. Then (i)-(v) are satisfied trivially.

(b) Suppose that λn /∈ σT

(
u +

∑n−1
i=1 αixi

)
. Since λn ∈ σT (xn), (iii) is satisfied

for each positive αn. Since σT (xn) ⊂ U \{λ1, . . . , λn−1}, we have xn ∈
⋂

k Im (T −λj)k

for all j < n. Thus (i), (ii) and (iv) are satisfied for all αn > 0 which are small enough.
For each j < n, j /∈ M , we have λj /∈ σT (xn), and therefore xn ∈

⋂∞
k=1 Im (T−λj)k

and
sup
m

∥∥(T − λj)−mxn

∥∥1/m
< ∞.

Thus there is a positive constant cj such that ‖(T − λj)−mxn‖ ≤ cm
j for all m ≥ 1.

Hence for αn > 0 small enough we have

‖(T − λj)−m(j,k)αnxn‖ ≤ αnc
m(j,k)
j ≤ 2−nkm(j,k)

for all k ∈ N. Consequently, (v) is satisfied for all αn > 0 which are small enough.
In both cases (a) and (b) we can choose the number αn ≥ 0 satisfying (i) – (v).
We include the number n into the set M if and only if

u +
n∑

i=1

αixi /∈
∞⋂

k=1

Im (T − λn)k.

In this case we define an = max
{

k : u +
∑n

i=1 αixi ∈ Im (T − λn)k
}

.
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Suppose that n /∈ M , that is, u +
∑n

i=1 αixi ∈
⋂

k Im (T − λn)k. Since T − λn is

injective and λn ∈ σT

(
u +

∑n
i=1 αixi

)
, we have

sup
m

∥∥∥(T − λn)−m
(
u +

n∑

i=1

αixi

)∥∥∥
1/m

= ∞.

Therefore for each k ∈ N there is an m(n, k) ∈ N such that

∥∥∥(T − λn)−m(n,k)
(
u +

n∑

i=1

αixi

)∥∥∥ ≥ km(1,k).

Let the sequence (αn)∞n=1 be constructed in the above described way. Set x =

u +
∑∞

i=1 αixi. Clearly ‖x− u‖ =
∥∥∥∑∞

i=1 αixi‖ ≤
∑∞

i=1 2−iε = ε. Furthermore,

sup
z/∈U

‖RT (z, x)‖ ≤ sup
z/∈U

‖RT (z, u)‖+
∞∑

i=1

sup
z/∈U

‖RT (z, αixi)‖

≤ sup
z/∈U

‖RT (z, u)‖+
∞∑

i=1

2−i < ∞.

Hence σT (x) ⊂ U and the local resolvent RT (z, x) is bounded on C \ U .
It is sufficient to show that σT (x) = U . Let n ∈ N. If n ∈ M then u+

∑n
i=1 αixi /∈

Im (T − λn)an+1 and, by (iv),

∞∑

i=n+1

αixi ∈
∞∑

i=n+1

2−i(T − λn)an+1BX ⊂ (T − λn)an+1BX .

Consequently, x /∈ Im (T − λn)an+1, and so λn ∈ σT (x).
Let n ∈ N \M . Then the kernel of T − λn is trivial and

sup
m

∥∥(T − λn)−mx
∥∥1/m ≥ sup

k

∥∥(T − λn)−m(n,k)x
∥∥1/m(n,k)

≥ sup
k

(∥∥∥(T − λn)−m(n,k)
(
u +

n∑

i=1

αixi

)∥∥∥−
∥∥∥(T − λn)−m(n,k)

∞∑

i=n+1

αixi

∥∥∥
)1/m(n,k)

≥ sup
k

(
km(n,k) −

∞∑

i=n+1

2−ikm(n,k)
)1/m(n,k)

≥ sup
k

2−1/m(n,k) · k = ∞.

Hence λn ∈ σT (x). Thus σT (x) = U and RT (z, x) is bounded on ρT (x).

Problem. Is it possible to replace in Theorem 4 the assumption that the point spec-
trum of T has empty interior by the condition SVEP?

We have seen that there is quite large class of operators that admit a nontrivial
bounded local resolvent function. In the opposite direction we have the following result.
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Let X be a Banach space. We consider X to be canonically embedded into its
second dual X∗∗.

Theorem 5. Suppose that T ∈ B(X) has SVEP. If the local resolvent function of T
at x ∈ X is bounded, then

x ∈
⋂

z∈∂σ(T )

Im (T ∗∗ − z). (2)

Proof. Let λ ∈ ∂σ(T ). If λ /∈ ∂σT (x), then λ /∈ σT (x), which gives x ∈ Im (T − λ) ⊂
Im (T ∗∗ − λ).

Suppose now that λ ∈ ∂σT (x). Then there is a sequence of complex numbers
λn /∈ σT (x) converging to λ. Since RT (z, x) is bounded, the vectors xn = RT (λn, x)
form a bounded sequence in X. Let u ∈ X∗∗ be a w∗-accumulation point of this
sequence. Then lim infn→∞ |〈v∗, u−xn〉| = 0 for all v∗ ∈ X∗. Note that (T−λn)xn = x
for all n. Thus, for an arbitrary x∗ ∈ X∗, we have

0 = lim inf
n→∞

∣∣〈(T ∗ − λ)x∗, u− xn

〉∣∣ = lim inf
n→∞

∣∣〈x∗, (T ∗∗ − λ)u− (T − λ)xn

〉∣∣

= lim inf
n→∞

∣∣〈x∗, (T ∗∗ − λ)u− (T − λn)xn + (λ− λn)xn

〉∣∣

= lim inf
n→∞

∣∣〈x∗, (T ∗∗ − λ)u− x + (λ− λn)xn

〉∣∣ = |〈x∗, (T ∗∗ − λ)u− x〉|.

Hence 〈x∗, (T ∗∗−λ)u−x〉 = 0. Since x∗ ∈ X∗ was arbitrary, we have x = (T ∗∗−λ)u ∈
Im (T ∗∗ − λ). This completes the proof of Theorem 5.

Note that, by Example 1 in [BG], (2) cannot be replaced by x ∈ ⋂
z∈∂σ(T ) Im (T−z).

Of course, if X is reflexive, then
⋂

z∈∂σ(T ) Im (T − z) =
⋂

z∈∂σ(T ) Im (T ∗∗ − z).

Corollary 6. Let T ∈ B(X) have SVEP. Then the set of all vectors x ∈ X with
bounded local resolvent is of the first category in X.

Proof. Denote by M the set of all vectors x ∈ X with bounded local resolvent. Choose
λ ∈ ∂σ(T ). Then M ⊂ Im (T ∗∗ − λ) ∩X. It is enough to show that Im (T ∗∗ − λ) ∩X
is of the first category in X.

Let X0 = (T ∗∗ − λ)−1X. Clearly X0 is a closed subspace of X∗∗ and Im (T ∗∗ −
λ) ∩X = (T ∗∗ − λ)X0. It is sufficient to show that (T ∗∗ − λ)X0 6= X. Suppose on the
contrary that (T ∗∗ − λ)X0 = X. By the open mapping theorem, there is a constant
c > 0 such that for each x ∈ BX there is an x∗∗ ∈ X0 with (T ∗∗ − λ)x∗∗ = x and
‖x∗∗‖ ≤ c.

Let u∗ ∈ X∗, ‖u∗‖ = 1. Then 1 = ‖u∗‖ = supx∈BX
|〈u∗, x〉|. For x ∈ BX let

x∗∗ ∈ X0 be the element described above. Then

|〈u∗, x〉| = |〈u∗, (T ∗∗ − λ)x∗∗〉| = |〈(T ∗ − λ)u∗, x∗∗〉| ≤ c · ‖(T ∗ − λ)u∗‖.

Thus ‖(T ∗ − λ)u∗‖ ≥ c−1 and (T ∗ − λ) is bounded below. This is a contradiction with
the assumption that λ ∈ ∂σ(T ) = ∂σ(T ∗).
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By Theorem 1.5.7 in [LN], we have
⋂

z∈C Im (N − z) = {0}, for a normal operator
N on a Hilbert space. Thus, a combination of Theorems 1 and 5 gives the following
corollary, see [BG], [N].

Corollary 7. A normal operator N on a Hilbert space has a non-trivial bounded local
resolvent function if and only if Int σ(N) 6= ∅.

An analogous statement for decomposable operators is not true. An example of
a decomposable operator whose spectrum has no interior points but which admits
bounded local resolvent functions was constructed in [BG], Example 1 (note that the
operator constructed there is decomposable since it is an invertible isometry). We give
below another example of this kind. Moreover, the example has an additional property
that the local resolvent is not only bounded but admits a continuous extension to the
whole complex plane.

The authors are indebted to Dan Timotin for the main argument in the following
construction.

Example 8. Let m denote the Lebesgue measure in C. For λ ∈ C and r > 0 let
D(λ, r) = {z ∈ C : |z − λ| < r}.

Let M ⊂ C be a compact set such that Int M = ∅ and m(T ) > 0 (for example, set
M = D(0, 1) \⋃

n D(λn, 2−n), where (λn) is a dense sequence in D(0, 1) ).
Let µ be the restriction of m to M , X = `1(µ) and let T ∈ B(X) be the multipli-

cation operator defined by (Tf)(z) = zf(z) (z ∈ M, f ∈ X). Then T is decomposable
and σ(T ) = supp µ ⊂ M . So Int σ(T ) = ∅. Let g ∈ X be the constant function equal
to 1. For λ ∈ C define H(λ) ∈ X by H(λ) = 1

z−λ .
For each λ ∈ C we have

‖H(λ)‖X =
∫

d µ(z)
|z − λ| ≤

∫

D(λ,1)

d m(z)
|z − λ| +

∫

M\D(λ,1)

d µ(z)
|z − λ| ≤ 2π + m(M).

Hence H : C → X is a well-defined bounded function. Since σp(T ) = ∅, H is an
extension of the local resolvent RT (·, g). Moreover, the function H is continuous. Let
λ, λ′ ∈ C. Let a = λ+λ′

2 , ε = λ−λ′
2 and R = diam M . Then

‖H(λ)−H(λ′)‖X =
∫ ∣∣∣ 1

z − λ
− 1

z − λ′

∣∣∣d µ(z) ≤
∫

D(a,R)

∣∣∣ 1
z − λ

− 1
z − λ′

∣∣∣d m(z)

≤
∫

|z|≤R

∣∣∣ 1
z − ε

− 1
z + ε

∣∣∣d m(z)

≤
∫

|z|≤2|ε|

∣∣∣ 1
z − ε

− 1
z + ε

∣∣∣d m(z) + 2|ε|
∫

2|ε|≤|z|≤R

d m(z)
|z2 − ε2|

≤2
∫

|z|≤3|ε|

d m(z)
|z| + 2|ε| · 4

3

∫

2|ε|≤|z|≤R

d m(z)
|z2| ≤ 12π|ε|+ 8|ε|

3

∫ R

2|ε|

2πd r

r

=12π|ε|+ 16π|ε|
3

(ln R− ln |ε|) → 0

as |ε| → 0. Hence H is continuous.
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Problem. Does there exist an operator T ∈ B(X) with Int σ(T ) = ∅ and a nonzero
vector x ∈ X such that the local resolvent function RT (·, x) admits a smooth extension
to the complex plane? It is well-known, that it is not possible to have an analytic
extension.

We have seen that the set of all vectors with bounded local resolvent is always of
the first category. However, this set can be dense.

Theorem 9. Let N be a normal operator on a Hilbert space H. Then the following
two conditions are equivalent:
(i) the set of all vectors with bounded local resolvent is dense in H;

(ii) E(∂σ(N)) = {0}, where E(·) denotes the spectral measure of N .

Proof. (i)⇒(ii): Let H1 = E(∂σ(N)) and H2 = H ª H1 = E(Int σ(N)). Suppose
that H1 6= {0}. Let x = x1 + x2 with xi ∈ Hi (i = 1, 2) and x1 6= 0. Then
the local resolvent of x is not bounded. Namely, if it were bounded, we would have
x ∈ ⋂

z∈∂σ(N) Im (N − z), by Theorem 5. This would imply x1 ∈
⋂

z∈∂σ(N)(N − z)H1,
and therefore x1 = 0, which is a contradiction. Hence the set of all vectors x ∈ H with
bounded local resolvent is not dense.

(ii)⇒(i): Let M be the set of all vectors x ∈ H with bounded local resolvent. By
Theorem 4, we have M ⊃ {x ∈ H : σN (x) ⊂ Int σ(N)}. However, this set is dense in
H.
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