Spectral commutativity of multioperators

M. Chō ${ }^{*}$ and V. Müller **
Dedicated to Professor Tadasi Huruya on his 60th birthday

Abstract

We give an example of pairs $A=\left(A_{1}, A_{2}\right), B=\left(B_{1}, B_{2}\right)$ of operators such that $A B=\left(A_{1} B_{1}, A_{2}, B_{2}\right)$ and $B A=\left(B_{1} A_{1}, B_{2} A_{2}\right)$ are commuting pairs but $\sigma_{T}(A B) \backslash\{(0,0)\} \neq \sigma_{T}(B A) \backslash\{(0,0)\}$. This gives a negative answer to a problem posed by S. Li. Further, we show that $\sigma_{T}(A B)=\sigma_{T}(B A)$ if A and B are criss-cross commuting n-tuples and A is normal. This gives a positive answer to a problem studied in $[\mathrm{ChCH}]$.

Denote by $\mathcal{B}(X)$ the set of all bounded linear operators on a Banach space X.
It is well-known for two operators $A, B \in \mathcal{B}(X)$ that the spectra of $A B$ and $B A$ are almost equal,

$$
\begin{equation*}
\sigma(A B) \backslash\{0\}=\sigma(B A) \backslash\{0\} \tag{1}
\end{equation*}
$$

Let $A=\left(A_{n}, \ldots, A_{n}\right)$ and $B=\left(B_{1}, \ldots, B_{n}\right)$ be two n-tuples of operators on a Banach space X. We denote by $A B$ the n-tuple

$$
\begin{equation*}
A B=\left(A_{1} B_{1}, A_{2} B_{2}, \ldots, A_{n} B_{n}\right) \tag{2}
\end{equation*}
$$

In [L1], S. Li posed the following problem:
Is it true that

$$
\sigma_{T}(A B) \backslash\{(0, \ldots, 0)\}=\sigma_{T}(B A) \backslash\{(0, \ldots, 0)\}
$$

for all n-tuples A, B such that the n-tuples $A B$ and $B A$ are commuting (so that the Taylor spectrum σ_{T} is defined)?

In [L1], a positive answer was given under the assumption that the n-tuples $\left(A_{1}, \ldots, A_{n}\right)$ and $\left(B_{1}, \ldots, B_{n}\right)$ are criss-cross commuting, i.e.,

$$
\begin{equation*}
A_{i} B_{j} A_{k}=A_{k} B_{j} A_{i}, \quad B_{i} A_{j} B_{k}=B_{k} A_{j} B_{i} \tag{3}
\end{equation*}
$$

for all i, j, k. Criss-cross commuting tuples were further studied in $[\mathrm{L} 2],[\mathrm{H}],[\mathrm{ChCH}]$.
Remark 1. Let $A=\left(A_{1}, \ldots, A_{n}\right)$ and $B=\left(B_{1}, \ldots, B_{m}\right)$ be two tuples of operators on a Banach space X. Another natural possibility how to define the product of A and B is to consider the $n m$-tuple consisting of all products

$$
\left(A_{1} B_{1}, A_{1} B_{2}, \ldots, A_{1} B_{m}, A_{2} B_{1}, \ldots, A_{2} B_{m}, \ldots, A_{n} B_{m}\right)
$$

[^0]This $m n$-tuple is commuting if A and B are criss-cross commuting in the sense of (3). However, this $m n$-tuple can be expressed as $\tilde{A} \tilde{B}$ where

$$
\tilde{A}=\left(A_{1}, \ldots, A_{1}, A_{2}, \ldots, A_{2}, \ldots, A_{n} \ldots, A_{n}\right)
$$

and

$$
\tilde{B}=\left(B_{1}, B_{2}, \ldots, B_{m}, B_{1}, \ldots, B_{m}, \ldots, B_{1}, \ldots, B_{m}\right) .
$$

Thus all problems concerning this more general type of product can be reduced to the case of $m=n$ and the product defined by (2).

The first result of this paper gives a negative answer to the above mentioned problem of S. Li.

Example 2. We give an example of pairs $A=\left(A_{1}, A_{2}\right)$ and $B=\left(B_{1}, B_{2}\right)$ of operators such that $A B=\left(A_{1} B_{1}, A_{2} B_{2}\right)$ and $B A=\left(B_{1} A_{1}, B_{2} A_{2}\right)$ are commuting pairs but $\sigma_{T}(A B) \backslash\{(0,0)\} \neq \sigma_{T}(B A) \backslash\{(0,0)\}$.

Let H be a separable Hilbert space with an orthonormal basis $\left\{e_{i}, f_{i}, g_{i}\right\}_{i \in \mathbb{Z}}$. Define operators $A_{1}, A_{2}, B_{1}, B_{2} \in \mathcal{B}(H)$ by

$$
\begin{array}{cccc}
A_{1} e_{i}=0, & A_{2} e_{i}=0, & B_{1} e_{i}=f_{i}, & B_{2} e_{i}=g_{i}, \\
A_{1} f_{i}=e_{i}, & A_{2} f_{i}=0, & B_{1} f_{i}=0, & B_{2} f_{i}=0, \\
A_{1} g_{i}=0, & A_{2} g_{i}=e_{i+1}, & B_{1} g_{i}=0, & B_{2} g_{i}=0
\end{array}
$$

It is easy to check that $A_{1} B_{1}$ and $A_{2} B_{2}$ are commuting. Similarly, $B_{1} A_{1}$ and $B_{2} A_{2}$ are commuting. However, A and B are not criss-cross commuting since $A_{2} B_{1} A_{1} \neq A_{1} B_{1} A_{2}$ and $B_{1} A_{2} B_{2} \neq B_{2} A_{2} B_{1}$.

For $i \in \mathbb{Z}$ we have $B_{2} A_{2} f_{i}=0$ and $\left(B_{1} A_{1}-I\right) f_{i}=0$, so the pair $\left(B_{1} A_{1}-I, B_{2} A_{2}\right)$ is Taylor singular and $(1,0) \in \sigma_{T}(B A)$.

We show that $\left(A_{1} B_{1}-I, A_{2} B_{2}\right)$ is Taylor regular. We have

$$
\begin{aligned}
\left(A_{1} B_{1}-I\right) e_{i} & =0, \\
\left(A_{1} B_{1}-I\right) f_{i} & =-f_{i}, \\
\left(A_{1} B_{1}-I\right) g_{i} & =-g_{i}
\end{aligned}
$$

and

$$
\begin{aligned}
& A_{2} B_{2} e_{i}=e_{i+1}, \\
& A_{2} B_{2} f_{i}=0, \\
& A_{2} B_{2} g_{i}=0 .
\end{aligned}
$$

Thus $\operatorname{Ker}\left(A_{1} B_{1}-I\right) \cap \operatorname{Ker}\left(A_{2} B_{2}\right)=\{0\}$ and $\operatorname{Ran}\left(A_{1} B_{1}-I\right)+\operatorname{Ran}\left(A_{2} B_{2}\right)=H$.
It is sufficient to show that the Koszul complex of the pair $\left(A_{1} B_{1}-I, A_{2} B_{2}\right)$ is exact in the middle. Let $x=\sum_{i \in \mathbb{Z}}\left(\alpha_{i} e_{i}+\beta_{i} f_{i}+\gamma_{i} g_{i}\right)$ and $y=\sum_{i \in \mathbb{Z}}\left(\alpha_{i}^{\prime} e_{i}+\beta_{i}^{\prime} f_{i}+\gamma_{i}^{\prime} g_{i}\right)$ be vectors in H satisfying $A_{2} B_{2} x=\left(A_{1} B_{1}-I\right) y$. Thus

$$
A_{2} B_{2} x=\sum_{i \in \mathbb{Z}} \alpha_{i} e_{i+1}=\left(A_{1} B_{1}-I\right) y=\sum_{i \in \mathbb{Z}}\left(-\beta_{i}^{\prime} f_{i}-\gamma_{i}^{\prime} g_{i}\right) .
$$

So $\alpha_{i}=0, \beta_{i}^{\prime}=0$ and $\gamma_{i}^{\prime}=0$ for all i. Set $u=\sum_{i \in \mathbb{Z}}\left(\alpha_{i+1}^{\prime} e_{i}-\beta_{i} f_{i}-\gamma_{i} g_{i}\right)$. Then $A_{2} B_{2} u=$ $\sum_{i \in \mathbb{Z}} \alpha_{i}^{\prime} e_{i}=y$ and $\left(A_{1} B_{1}-I\right) u=\sum_{i \in \mathbb{Z}}\left(\beta_{i} f_{i}+\gamma_{i} g_{i}\right)=x$. Hence $\left(A_{1} B_{1}-I, A_{2} B_{2}\right)$ is Taylor regular and $(1,0) \notin \sigma_{T}(A B)$.

In the second half of this paper we consider criss-cross commuting normal tuples. Note that if A, B are operators on a Hilbert space and A is normal then the equality (1) is true in a stronger form: $\sigma(A B)=\sigma(B A)$. The analogous question for n-tuples of operators was investigated in $[\mathrm{ChCH}]$ and partial results were obtained. We show that $\sigma_{T}(A B)=\sigma_{T}(B A)$ whenever A and B are criss-cross commuting tuples and A is normal, i.e., A consists of mutually commuting normal operators. This gives a positive answer to a problem studied in $[\mathrm{ChCH}]$.

We start with a version of the Fuglede-Putnam theorem.
Theorem 3. Let H, K be Hilbert spaces, let $A=\left(A_{1}, A_{2}\right) \in \mathcal{B}(H)^{2}$ and $B=$ $\left(B_{1}, B_{2}\right) \in \mathcal{B}(K)^{2}$ be commuting pairs of normal operators, let $S: H \rightarrow K$ be a bounded linear operator. Then the following statements are equivalent:
(i) $B_{1} S A_{1}+B_{2} S A_{2}=0$;
(ii) $S H_{A}(F) \subset K_{B}\left(F^{\perp}\right)$ for each closed subset $F \subset \mathbb{C}^{2}$, where

$$
F^{\perp}=\left\{\left(\mu_{1}, \mu_{2}\right) \in \mathbb{C}^{2}: \lambda_{1} \mu_{1}+\lambda_{2} \mu_{2}=0 \text { for some }\left(\lambda_{1}, \lambda_{2}\right) \in F\right\}
$$

and $H_{A}(\cdot), K_{B}(\cdot)$ are the spectral subspaces of A and B, respectively.
Proof. Without loss of generality we can assume that $A_{1}, A_{2}, B_{1}, B_{2}$ are contractions. Denote by $E_{A}(\cdot)$ and $E_{B}(\cdot)$ the spectral projections corresponding to A and B, respectively.
(i) \Rightarrow (ii): Suppose on the contrary that there is a closed subset $F \subset \sigma_{T}(A)$ such that $S H_{A}(F) \not \subset K_{B}\left(F^{\perp}\right)$. Equivalently, $E_{B}\left(\sigma_{T}(B) \backslash F^{\perp}\right) S E_{A}(F) \neq 0$.

Since

$$
\sigma_{T}(B) \backslash F^{\perp}=\bigcup_{n=1}^{\infty}\left\{\left(\mu_{1}, \mu_{2}\right) \in \sigma_{T}(B): \inf _{\left(\lambda_{1}, \lambda_{2}\right) \in F}\left|\lambda_{1} \mu_{1}+\lambda_{2} \mu_{2}\right| \geq n^{-1}\right\}
$$

it is easy to see that there are $\varepsilon>0$ and a closed subset $M \subset \sigma_{T}(B)$ such that $E_{B}(M) S E_{A}(F) \neq 0$ and $\left|\lambda_{1} \mu_{1}+\lambda_{2} \mu_{2}\right| \geq \varepsilon$ for all $\left(\lambda_{1}, \lambda_{2}\right) \in F$ and $\left(\mu_{1}, \mu_{2}\right) \in M$.

Choose a positive number $\delta<\varepsilon / 8$. Since F and M can be covered by a finite number of balls of radius δ, there are $\left(\lambda_{1}, \lambda_{2}\right) \in F,\left(\mu_{1}, \mu_{2}\right) \in M$ and Borel sets F^{\prime}, M^{\prime} such that $E_{B}\left(M^{\prime}\right) S E_{A}\left(F^{\prime}\right) \neq 0, M^{\prime} \subset M \cap\left\{(z, w):\left|z-\mu_{1}\right| \leq \delta,\left|w-\mu_{2}\right| \leq \delta\right\}$ and $F^{\prime} \subset F \cap\left\{(z, w):\left|z-\lambda_{1}\right| \leq \delta,\left|w-\lambda_{2}\right| \leq \delta\right\}$. Set $S^{\prime}=E_{B}\left(M^{\prime}\right) S E_{A}\left(F^{\prime}\right)$.

Choose $x \in H_{A}\left(F^{\prime}\right)$ of norm one such that $\left\|S^{\prime} x\right\|>\left\|S^{\prime}\right\| / 2$. We have

$$
\left\|B_{1} S^{\prime} A_{1} x-\lambda_{1} \mu_{1} S^{\prime} x\right\| \leq\left\|\left(B_{1}-\mu_{1}\right) S^{\prime} A_{1} x\right\|+\left\|\mu_{1} S^{\prime}\left(A_{1} x-\lambda_{1} x\right)\right\| \leq 2 \delta\left\|S^{\prime}\right\|,
$$

and similarly, $\left\|B_{2} S^{\prime} A_{2} x-\lambda_{2} \mu_{2} S^{\prime} x\right\| \leq 2 \delta\left\|S^{\prime}\right\|$. Since

$$
B_{1} S^{\prime} A_{1}+B_{2} S^{\prime} A_{2}=E_{B}\left(M^{\prime}\right)\left(B_{1} S A_{1}+B_{2} S A_{2}\right) E_{A}\left(F^{\prime}\right)=0
$$

we have $\left\|\left(\lambda_{1} \mu_{1}+\lambda_{2} \mu_{2}\right) S^{\prime} x\right\| \leq 4 \delta\left\|S^{\prime}\right\|$. On the other hand,

$$
\left\|\left(\lambda_{1} \mu_{1}+\lambda_{2} \mu_{2}\right) S^{\prime} x\right\| \geq\left\|S^{\prime} x\right\| \cdot\left|\lambda_{1} \mu_{1}+\lambda_{2} \mu_{2}\right| \geq \varepsilon\left\|S^{\prime} x\right\|>4 \delta\left\|S^{\prime}\right\|,
$$

a contradiction.
$(\mathrm{ii}) \Rightarrow(\mathrm{i}):$ Let $\varepsilon>0$. Let $\left(C_{i}\right)_{i=1}^{\infty}$ be nonempty disjoint Borel sets with diameters $<\varepsilon$ such that $\bigcup_{i} C_{i}=\mathbb{C}$. For each i fix $\lambda_{i} \in C_{i}$. Thus $C_{i} \subset\left\{z \in \mathbb{C}:\left|z-\lambda_{i}\right|<\varepsilon\right\}$. Set $F_{0}=\{(0, w): w \in \mathbb{C}\}$ and, for $i \in \mathbb{N}, F_{i}=\left\{(z, c z): z \neq 0, c \in C_{i}\right\}$. Then $\left(F_{i}\right)_{i=0}^{\infty}$ are disjoint sets, $\bigcup_{i=0}^{\infty} F_{i}=\mathbb{C}^{2}, F_{0}^{\perp}=\{(z, 0): z \in \mathbb{C}\}$ and $F_{i}^{\perp}=\left\{(-c z, z): c \in C_{i}, z \in\right.$ $\mathbb{C}\} \quad(i \geq 1)$.

We have $E_{B}\left(F_{0}^{\perp}\right)\left(B_{1} S A_{1}+B_{2} S A_{2}\right) E_{A}\left(F_{0}\right)=0$. Clearly for each $i \geq 1$ we have $\left\|\left(A_{2}-\lambda_{i} A_{1}\right) \mid H_{A}\left(F_{i}\right)\right\|<\varepsilon$ and $\left\|\left(B_{1}+\lambda_{i} B_{2}\right) \mid K_{B}\left(F_{i}^{\perp}\right)\right\|<\varepsilon$. For $x \in H_{A}\left(F_{i}\right)$ we have

$$
\begin{aligned}
& \left\|B_{1} S A_{1} x+B_{2} S A_{2} x\right\|=\left\|B_{1} S A_{1} x+\lambda_{i} B_{2} S A_{1} x-\lambda_{i} B_{2} S A_{1} x+B_{2} S A_{2} x\right\| \\
\leq & \left\|\left(B_{1}+\lambda_{i} B_{2}\right) S A_{1} x\right\|+\left\|B_{2} S\left(A_{2}-\lambda_{i} A_{1}\right) x\right\|<2 \varepsilon\|S\| \cdot\|x\| .
\end{aligned}
$$

Thus $\left\|\left(B_{1} S A_{1}+B_{2} S A_{2}\right) \mid H_{A}\left(F_{i}\right)\right\| \leq 2 \varepsilon\|S\|$ for all i.
For $x \in H_{A}\left(F_{i}\right)$ we have $S A_{1} x \in K_{B}\left(F_{i}^{\perp}\right)$ and

$$
B_{1} S A_{1} x=B_{1} E_{B}\left(F_{i}^{\perp} \backslash\{(0,0)\}\right) S A_{1} x+B_{1} E_{B}(\{(0,0)\}) S A_{1} x \in K_{B}\left(F_{i}^{\perp} \backslash\{(0,0)\}\right) .
$$

Similarly $B_{2} S A_{2} x \in K_{B}\left(F_{i}^{\perp} \backslash\{(0,0)\}\right)$ and we have $\left(B_{1} S A_{1}+B_{2} S A_{2}\right) H_{A}\left(F_{j}\right) \subset$ $K_{B}\left(F_{j}^{\perp} \backslash\{(0,0)\}\right)$. Since the sets $F_{j} \backslash\{(0,0)\}$ are mutually disjoint, the spaces $K_{B}\left(F_{j} \backslash\right.$ $\{(0,0)\})$ are orthogonal. Thus $\left\|B_{1} S A_{1}+B_{2} S A_{2}\right\| \leq 2 \varepsilon\|S\|$. Since ε was arbitrary, we have $B_{1} S A_{1}+B_{2} S A_{2}=0$.

Remark 4. Let $A_{1}, A_{2}, B_{1}, B_{2}, S$ satisfy the conditions of the previous theorem. Since the spectral subspaces of A and A^{*} coincide and satisfy $H_{A}(F)=H_{A^{*}}(\bar{F})$ where $\bar{F}=$ $\{\bar{z}: z \in F\}$, and similar relations hold for B and B^{*}, Theorem 3 implies the following general form of the Fuglede-Putnam theorem, see [P], [W]: if $B_{1} S A_{1}+B_{2} S A_{2}=0$ then $B_{1}^{*} S A_{1}^{*}+B_{2}^{*} S A_{2}^{*}=0$.

Theorem 5. Let $A=\left(A_{1}, \ldots, A_{n}\right), B=\left(B_{1}, \ldots, B_{n}\right)$ be criss-cross commuting tuples, let A be normal (i.e, A_{1}, \ldots, A_{n} are commuting normal operators). Then $\sigma_{T}(A B)=$ $\sigma_{T}(B A)$.
Proof. If $0 \in \sigma_{T}(A)$ then both $A B$ and $B A$ are Taylor singular by [ChCH], Theorem 2.1. Thus we may assume that A is Taylor regular. For $j=1, \ldots, n$ write

$$
M_{j}=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \sigma(A):\left|z_{j}\right|>\left|z_{i}\right| \quad(i<j) \text { and }\left|z_{j}\right| \geq\left|z_{i}\right| \quad(i>j)\right\} .
$$

Let H_{j} be the corresponding spectral subspaces $H_{j}=H_{A}\left(M_{j}\right)$. Clearly $H=\bigoplus_{j=1}^{n} H_{j}$ and $A_{i} H_{j} \subset H_{j} \quad(i, j=1, \ldots, n)$. Set $c_{j}=\min \left\{\left|z_{j}\right|:\left(z_{1}, \ldots, z_{n}\right) \in M_{j}\right\}$. Then $c_{j}>0$ and $A_{j} \mid H_{j}$ is invertible for each $j=1, \ldots, n$.

Fix $k, i, j, 1 \leq k, i, j \leq n, i \neq j$. We have $A_{i} B_{k} A_{j}-A_{j} B_{k} A_{i}=0$. By Theorem 3 for the pairs $\left(A_{i}, A_{j}\right),\left(A_{j},-A_{i}\right)$ we have

$$
B_{k} H_{A}\left(\left\{\left(z_{1}, \ldots, z_{n}\right):\left|z_{i}\right| \leq\left|z_{j}\right|,\left\|z_{j}\right\| \geq c_{j} / 2\right\}\right) \subset H_{A}\left(\left\{\left(z_{1}, \ldots, z_{n}\right):\left|z_{i}\right| \leq\left|z_{j}\right|\right\}\right)
$$

and

$$
\begin{aligned}
B_{k} H_{A}\left(\left\{\left(z_{1}, \ldots, z_{n}\right):\left|z_{i}\right|<\left|z_{j}\right|\right\}\right) & =\bigcup_{r=1}^{\infty} B_{k} H_{A}\left(\left\{\left(z_{1}, \ldots, z_{n}\right):\left|z_{i}\right|+r^{-1} \leq\left|z_{j}\right|\right\}\right) \\
& \subset H_{A}\left(\left\{\left(z_{1}, \ldots, z_{n}\right):\left|z_{i}\right|<\left|z_{j}\right| \text { or } z_{i}=z_{j}=0\right\}\right)
\end{aligned}
$$

Hence the spaces $H_{j} \quad(j=1, \ldots, n)$ are invariant with respect to the operators B_{k} for all k, and therefore also to all products $A_{k} B_{k}, B_{k} A_{k}$. Thus

$$
\sigma_{T}(A B)=\bigcup_{j=1}^{n} \sigma_{T}\left(A B \mid H_{j}\right) \quad \text { and } \quad \sigma_{T}(B A)=\bigcup_{j=1}^{n} \sigma_{T}\left(B A \mid H_{j}\right)
$$

Since $A_{j} \mid H_{j}$ is invertible for all j, by $[\mathrm{ChCH}]$, Theorem 3.3 we have $\sigma_{T}\left(A B \mid H_{j}\right)=$ $\sigma_{T}\left(B A \mid H_{j}\right)$. Hence $\sigma_{T}(A B)=\sigma_{T}(B A)$.

Acknowledgment. The paper was written during the second author's stay at the Kanagawa University. The author would like to thank for perfect working conditions and warm hospitality there.

References

$[\mathrm{ChCH}]$ M. Chō, R.E. Curto, T. Huruya, n-Tuples of operators satisfying $\sigma_{T}(A B)=$ $\sigma_{T}(B A)$, Lin. Alg. Appl. 341 (2002), 291-298.
[H] R. Harte, On criss-cross commutativity, J. Operator theory 37 (1997), 303309.
[L1] S. Li, On the commuting properties of Taylor's spectrum, Chinese Sci. Bull. 37 (1992), 1849-1852.
[L2] S. Li, Taylor spectral invariance for crisscross commuting pairs on Banach spaces, Proc. Amer. Math. Soc. 124 (1996), 2069-2071.
[P] C.R. Putnam, Normal operators and strong limit approximations, Indiana Univ. Math. J. 32 (1983), 377-379.
[W] G. Weiss, The Fuglede commutativity theorem modulo the Hilbert-Schmidt class and generating functions for matrix operators II, J. Operator Theory 5 (1981), 3-16.

Department of Mathematics
Kanagawa University
Yokohama 221-8686 Japan
chiyom01@kanagawa-u.ac.jp

Institute of Mathematics AV ČR Zitna 25, 11567 Prague 1
Czech Republic
muller@math.cas.cz

[^0]: Keywords and phrases: criss-cross commuting, spectral commutativity.
 2000 Mathematics Subject Classification: Primary 47A10.

 * partially supported by the Grant-in-Aid No. 14540190.
 ** partially supported by the grant No. 201/00/0208 of GA ČR.

