Spectral commutativity of multioperators

M. Chō* and V. Müller **

Dedicated to Professor Tadasi Huruya on his 60th birthday

Abstract. We give an example of pairs $A = (A_1, A_2)$, $B = (B_1, B_2)$ of operators such that $AB = (A_1B_1, A_2, B_2)$ and $BA = (B_1A_1, B_2A_2)$ are commuting pairs but $\sigma_T(AB) \setminus \{(0,0)\} \neq \sigma_T(BA) \setminus \{(0,0)\}$. This gives a negative answer to a problem posed by S. Li. Further, we show that $\sigma_T(AB) = \sigma_T(BA)$ if A and B are criss-cross commuting n-tuples and A is normal. This gives a positive answer to a problem studied in [ChCH].

Denote by $\mathcal{B}(X)$ the set of all bounded linear operators on a Banach space X.

It is well-known for two operators $A, B \in \mathcal{B}(X)$ that the spectra of AB and BA are almost equal,

$$\sigma(AB) \setminus \{0\} = \sigma(BA) \setminus \{0\}. \tag{1}$$

Let $A = (A_n, ..., A_n)$ and $B = (B_1, ..., B_n)$ be two *n*-tuples of operators on a Banach space X. We denote by AB the *n*-tuple

$$AB = (A_1B_1, A_2B_2, \dots, A_nB_n).$$
 (2)

In [L1], S. Li posed the following problem:

Is it true that

$$\sigma_T(AB) \setminus \{(0,\ldots,0)\} = \sigma_T(BA) \setminus \{(0,\ldots,0)\}$$

for all *n*-tuples A, B such that the *n*-tuples AB and BA are commuting (so that the Taylor spectrum σ_T is defined)?

In [L1], a positive answer was given under the assumption that the *n*-tuples (A_1, \ldots, A_n) and (B_1, \ldots, B_n) are criss-cross commuting, i.e.,

$$A_i B_j A_k = A_k B_j A_i, \qquad B_i A_j B_k = B_k A_j B_i \tag{3}$$

for all i, j, k. Criss-cross commuting tuples were further studied in [L2], [H], [ChCH].

Remark 1. Let $A = (A_1, \ldots, A_n)$ and $B = (B_1, \ldots, B_m)$ be two tuples of operators on a Banach space X. Another natural possibility how to define the product of A and B is to consider the nm-tuple consisting of all products

$$(A_1B_1, A_1B_2, \dots, A_1B_m, A_2B_1, \dots, A_2B_m, \dots, A_nB_m).$$

Keywords and phrases: criss-cross commuting, spectral commutativity.

²⁰⁰⁰ Mathematics Subject Classification: Primary 47A10.

^{*} partially supported by the Grant-in-Aid No. 14540190.

^{**} partially supported by the grant No. 201/00/0208 of GA ČR.

This mn-tuple is commuting if A and B are criss-cross commuting in the sense of (3). However, this mn-tuple can be expressed as $\tilde{A}\tilde{B}$ where

$$\tilde{A} = (A_1, \dots, A_1, A_2, \dots, A_2, \dots, A_n, \dots, A_n)$$

and

$$\tilde{B} = (B_1, B_2, \dots, B_m, B_1, \dots, B_m, \dots, B_1, \dots, B_m).$$

Thus all problems concerning this more general type of product can be reduced to the case of m = n and the product defined by (2).

The first result of this paper gives a negative answer to the above mentioned problem of S. Li.

Example 2. We give an example of pairs $A = (A_1, A_2)$ and $B = (B_1, B_2)$ of operators such that $AB = (A_1B_1, A_2B_2)$ and $BA = (B_1A_1, B_2A_2)$ are commuting pairs but $\sigma_T(AB) \setminus \{(0,0)\} \neq \sigma_T(BA) \setminus \{(0,0)\}.$

Let H be a separable Hilbert space with an orthonormal basis $\{e_i, f_i, g_i\}_{i \in \mathbb{Z}}$. Define operators $A_1, A_2, B_1, B_2 \in \mathcal{B}(H)$ by

$$\begin{array}{lll} A_1e_i=0, & A_2e_i=0, & B_1e_i=f_i, & B_2e_i=g_i, \\ A_1f_i=e_i, & A_2f_i=0, & B_1f_i=0, & B_2f_i=0, \\ A_1g_i=0, & A_2g_i=e_{i+1}, & B_1g_i=0, & B_2g_i=0. \end{array}$$

It is easy to check that A_1B_1 and A_2B_2 are commuting. Similarly, B_1A_1 and B_2A_2 are commuting. However, A and B are not criss-cross commuting since $A_2B_1A_1 \neq A_1B_1A_2$ and $B_1A_2B_2 \neq B_2A_2B_1$.

For $i \in \mathbb{Z}$ we have $B_2A_2f_i = 0$ and $(B_1A_1 - I)f_i = 0$, so the pair $(B_1A_1 - I, B_2A_2)$ is Taylor singular and $(1,0) \in \sigma_T(BA)$.

We show that $(A_1B_1 - I, A_2B_2)$ is Taylor regular. We have

$$(A_1B_1 - I)e_i = 0,$$

 $(A_1B_1 - I)f_i = -f_i,$
 $(A_1B_1 - I)q_i = -q_i$

and

$$A_2B_2e_i = e_{i+1},$$

 $A_2B_2f_i = 0,$
 $A_2B_2q_i = 0.$

Thus $Ker(A_1B_1 - I) \cap Ker(A_2B_2) = \{0\}$ and $Ran(A_1B_1 - I) + Ran(A_2B_2) = H$.

It is sufficient to show that the Koszul complex of the pair $(A_1B_1 - I, A_2B_2)$ is exact in the middle. Let $x = \sum_{i \in \mathbb{Z}} (\alpha_i e_i + \beta_i f_i + \gamma_i g_i)$ and $y = \sum_{i \in \mathbb{Z}} (\alpha_i' e_i + \beta_i' f_i + \gamma_i' g_i)$ be vectors in H satisfying $A_2B_2x = (A_1B_1 - I)y$. Thus

$$A_2 B_2 x = \sum_{i \in \mathbb{Z}} \alpha_i e_{i+1} = (A_1 B_1 - I) y = \sum_{i \in \mathbb{Z}} (-\beta_i' f_i - \gamma_i' g_i).$$

So $\alpha_i = 0$, $\beta_i' = 0$ and $\gamma_i' = 0$ for all i. Set $u = \sum_{i \in \mathbb{Z}} (\alpha_{i+1}' e_i - \beta_i f_i - \gamma_i g_i)$. Then $A_2 B_2 u = \sum_{i \in \mathbb{Z}} \alpha_i' e_i = y$ and $(A_1 B_1 - I)u = \sum_{i \in \mathbb{Z}} (\beta_i f_i + \gamma_i g_i) = x$. Hence $(A_1 B_1 - I, A_2 B_2)$ is Taylor regular and $(1, 0) \notin \sigma_T(AB)$.

In the second half of this paper we consider criss-cross commuting normal tuples. Note that if A, B are operators on a Hilbert space and A is normal then the equality (1) is true in a stronger form: $\sigma(AB) = \sigma(BA)$. The analogous question for n-tuples of operators was investigated in [ChCH] and partial results were obtained. We show that $\sigma_T(AB) = \sigma_T(BA)$ whenever A and B are criss-cross commuting tuples and A is normal, i.e., A consists of mutually commuting normal operators. This gives a positive answer to a problem studied in [ChCH].

We start with a version of the Fuglede-Putnam theorem.

Theorem 3. Let H, K be Hilbert spaces, let $A = (A_1, A_2) \in \mathcal{B}(H)^2$ and $B = (B_1, B_2) \in \mathcal{B}(K)^2$ be commuting pairs of normal operators, let $S : H \to K$ be a bounded linear operator. Then the following statements are equivalent:

- (i) $B_1SA_1 + B_2SA_2 = 0$;
- (ii) $SH_A(F) \subset K_B(F^{\perp})$ for each closed subset $F \subset \mathbb{C}^2$, where

$$F^{\perp} = \{(\mu_1, \mu_2) \in \mathbb{C}^2 : \lambda_1 \mu_1 + \lambda_2 \mu_2 = 0 \text{ for some } (\lambda_1, \lambda_2) \in F\}$$

and $H_A(\cdot)$, $K_B(\cdot)$ are the spectral subspaces of A and B, respectively.

Proof. Without loss of generality we can assume that A_1, A_2, B_1, B_2 are contractions. Denote by $E_A(\cdot)$ and $E_B(\cdot)$ the spectral projections corresponding to A and B, respectively.

(i) \Rightarrow (ii): Suppose on the contrary that there is a closed subset $F \subset \sigma_T(A)$ such that $SH_A(F) \not\subset K_B(F^{\perp})$. Equivalently, $E_B(\sigma_T(B) \setminus F^{\perp})SE_A(F) \neq 0$. Since

$$\sigma_T(B) \setminus F^{\perp} = \bigcup_{n=1}^{\infty} \{ (\mu_1, \mu_2) \in \sigma_T(B) : \inf_{(\lambda_1, \lambda_2) \in F} |\lambda_1 \mu_1 + \lambda_2 \mu_2| \ge n^{-1} \},$$

it is easy to see that there are $\varepsilon > 0$ and a closed subset $M \subset \sigma_T(B)$ such that $E_B(M)SE_A(F) \neq 0$ and $|\lambda_1\mu_1 + \lambda_2\mu_2| \geq \varepsilon$ for all $(\lambda_1, \lambda_2) \in F$ and $(\mu_1, \mu_2) \in M$.

Choose a positive number $\delta < \varepsilon/8$. Since F and M can be covered by a finite number of balls of radius δ , there are $(\lambda_1, \lambda_2) \in F$, $(\mu_1, \mu_2) \in M$ and Borel sets F', M' such that $E_B(M')SE_A(F') \neq 0$, $M' \subset M \cap \{(z, w) : |z - \mu_1| \leq \delta, |w - \mu_2| \leq \delta\}$ and $F' \subset F \cap \{(z, w) : |z - \lambda_1| \leq \delta, |w - \lambda_2| \leq \delta\}$. Set $S' = E_B(M')SE_A(F')$.

Choose $x \in H_A(F')$ of norm one such that ||S'x|| > ||S'||/2. We have

$$||B_1S'A_1x - \lambda_1\mu_1S'x|| \le ||(B_1 - \mu_1)S'A_1x|| + ||\mu_1S'(A_1x - \lambda_1x)|| \le 2\delta||S'||,$$

and similarly, $||B_2S'A_2x - \lambda_2\mu_2S'x|| \leq 2\delta||S'||$. Since

$$B_1S'A_1 + B_2S'A_2 = E_B(M')(B_1SA_1 + B_2SA_2)E_A(F') = 0,$$

we have $\|(\lambda_1\mu_1 + \lambda_2\mu_2)S'x\| \le 4\delta\|S'\|$. On the other hand,

$$\|(\lambda_1\mu_1 + \lambda_2\mu_2)S'x\| \ge \|S'x\| \cdot |\lambda_1\mu_1 + \lambda_2\mu_2| \ge \varepsilon \|S'x\| > 4\delta \|S'\|,$$

a contradiction.

(ii) \Rightarrow (i): Let $\varepsilon > 0$. Let $(C_i)_{i=1}^{\infty}$ be nonempty disjoint Borel sets with diameters $< \varepsilon$ such that $\bigcup_i C_i = \mathbb{C}$. For each i fix $\lambda_i \in C_i$. Thus $C_i \subset \{z \in \mathbb{C} : |z - \lambda_i| < \varepsilon\}$. Set $F_0 = \{(0, w) : w \in \mathbb{C}\}$ and, for $i \in \mathbb{N}$, $F_i = \{(z, cz) : z \neq 0, c \in C_i\}$. Then $(F_i)_{i=0}^{\infty}$ are disjoint sets, $\bigcup_{i=0}^{\infty} F_i = \mathbb{C}^2$, $F_0^{\perp} = \{(z, 0) : z \in \mathbb{C}\}$ and $F_i^{\perp} = \{(-cz, z) : c \in C_i, z \in \mathbb{C}\}$ $(i \geq 1)$.

We have $E_B(F_0^{\perp})(B_1SA_1 + B_2SA_2)E_A(F_0) = 0$. Clearly for each $i \geq 1$ we have $\|(A_2 - \lambda_i A_1)|H_A(F_i)\| < \varepsilon$ and $\|(B_1 + \lambda_i B_2)|K_B(F_i^{\perp})\| < \varepsilon$. For $x \in H_A(F_i)$ we have

$$||B_1SA_1x + B_2SA_2x|| = ||B_1SA_1x + \lambda_iB_2SA_1x - \lambda_iB_2SA_1x + B_2SA_2x||$$

$$\leq ||(B_1 + \lambda_iB_2)SA_1x|| + ||B_2S(A_2 - \lambda_iA_1)x|| < 2\varepsilon||S|| \cdot ||x||.$$

Thus $||(B_1SA_1 + B_2SA_2)|H_A(F_i)|| \le 2\varepsilon ||S||$ for all i. For $x \in H_A(F_i)$ we have $SA_1x \in K_B(F_i^{\perp})$ and

$$B_1SA_1x = B_1E_B(F_i^{\perp} \setminus \{(0,0)\})SA_1x + B_1E_B(\{(0,0)\})SA_1x \in K_B(F_i^{\perp} \setminus \{(0,0)\}).$$

Similarly $B_2SA_2x \in K_B(F_i^{\perp} \setminus \{(0,0)\})$ and we have $(B_1SA_1 + B_2SA_2)H_A(F_j) \subset K_B(F_j^{\perp} \setminus \{(0,0)\})$. Since the sets $F_j \setminus \{(0,0)\}$ are mutually disjoint, the spaces $K_B(F_j \setminus \{(0,0)\})$ are orthogonal. Thus $||B_1SA_1 + B_2SA_2|| \leq 2\varepsilon ||S||$. Since ε was arbitrary, we have $B_1SA_1 + B_2SA_2 = 0$.

Remark 4. Let A_1, A_2, B_1, B_2, S satisfy the conditions of the previous theorem. Since the spectral subspaces of A and A^* coincide and satisfy $H_A(F) = H_{A^*}(\bar{F})$ where $\bar{F} = \{\bar{z} : z \in F\}$, and similar relations hold for B and B^* , Theorem 3 implies the following general form of the Fuglede-Putnam theorem, see [P], [W]: if $B_1SA_1 + B_2SA_2 = 0$ then $B_1^*SA_1^* + B_2^*SA_2^* = 0$.

Theorem 5. Let $A = (A_1, \ldots, A_n)$, $B = (B_1, \ldots, B_n)$ be criss-cross commuting tuples, let A be normal (i.e, A_1, \ldots, A_n are commuting normal operators). Then $\sigma_T(AB) = \sigma_T(BA)$.

Proof. If $0 \in \sigma_T(A)$ then both AB and BA are Taylor singular by [ChCH], Theorem 2.1. Thus we may assume that A is Taylor regular. For j = 1, ..., n write

$$M_j = \{(z_1, \dots, z_n) \in \sigma(A) : |z_j| > |z_i| \quad (i < j) \text{ and } |z_j| \ge |z_i| \quad (i > j)\}.$$

Let H_j be the corresponding spectral subspaces $H_j = H_A(M_j)$. Clearly $H = \bigoplus_{j=1}^n H_j$ and $A_iH_j \subset H_j$ (i, j = 1, ..., n). Set $c_j = \min\{|z_j| : (z_1, ..., z_n) \in M_j\}$. Then $c_j > 0$ and $A_j|H_j$ is invertible for each j = 1, ..., n.

Fix $k, i, j, 1 \le k, i, j \le n, i \ne j$. We have $A_i B_k A_j - A_j B_k A_i = 0$. By Theorem 3 for the pairs $(A_i, A_j), (A_j, -A_i)$ we have

$$B_k H_A(\{(z_1,\ldots,z_n):|z_i|\leq |z_j|,||z_j||\geq c_j/2\})\subset H_A(\{(z_1,\ldots,z_n):|z_i|\leq |z_j|\})$$

and

$$B_k H_A (\{(z_1, \dots, z_n) : |z_i| < |z_j|\}) = \bigcup_{r=1}^{\infty} B_k H_A (\{(z_1, \dots, z_n) : |z_i| + r^{-1} \le |z_j|\})$$

$$\subset H_A (\{(z_1, \dots, z_n) : |z_i| < |z_j| \text{ or } z_i = z_j = 0\}).$$

Hence the spaces H_j (j = 1, ..., n) are invariant with respect to the operators B_k for all k, and therefore also to all products $A_k B_k, B_k A_k$. Thus

$$\sigma_T(AB) = \bigcup_{j=1}^n \sigma_T(AB|H_j)$$
 and $\sigma_T(BA) = \bigcup_{j=1}^n \sigma_T(BA|H_j)$.

Since $A_j|H_j$ is invertible for all j, by [ChCH], Theorem 3.3 we have $\sigma_T(AB|H_j) = \sigma_T(BA|H_j)$. Hence $\sigma_T(AB) = \sigma_T(BA)$.

Acknowledgment. The paper was written during the second author's stay at the Kanagawa University. The author would like to thank for perfect working conditions and warm hospitality there.

References

- [ChCH] M. Chō, R.E. Curto, T. Huruya, n-Tuples of operators satisfying $\sigma_T(AB) = \sigma_T(BA)$, Lin. Alg. Appl. 341 (2002), 291–298.
 - [H] R. Harte, On criss-cross commutativity, J. Operator theory 37 (1997), 303–309.
 - [L1] S. Li, On the commuting properties of Taylor's spectrum, Chinese Sci. Bull. 37 (1992), 1849–1852.
 - [L2] S. Li, Taylor spectral invariance for crisscross commuting pairs on Banach spaces, Proc. Amer. Math. Soc. 124 (1996), 2069–2071.
 - [P] C.R. Putnam, Normal operators and strong limit approximations, Indiana Univ. Math. J. 32 (1983), 377–379.
 - [W] G. Weiss, The Fuglede commutativity theorem modulo the Hilbert-Schmidt class and generating functions for matrix operators II, J. Operator Theory 5 (1981), 3–16.

Department of Mathematics Kanagawa University Yokohama 221-8686 Japan chiyom01@kanagawa-u.ac.jp Institute of Mathematics AV CR Zitna 25, 115 67 Prague 1 Czech Republic muller@math.cas.cz