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Abstract. Let λ1, . . . , λn be elements of the essential approximate point spectrum of
a bounded Banach space operator. Then there are corresponding approximate eigen-
vectors x1, . . . , xn such that the norm on the subspace generated by them is almost
symmetric.

The result can be used in the Scott Brown technique for Banach space operators.
Another application is for the local behaviour of operators.

By the Dvoretzky theorem, each infinite dimensional Banach space contains ”nice”
finite dimensional subspaces. More precisely,

Theorem 0. Let k ∈ N and ε > 0. Then there exists n ∈ N such that each Banach
space X with dim X ≥ n contains an ε-Hilbert subspace Y with dim Y = k.

By saying that Y is an ε-Hilbert space we mean that there are a Hilbert space H
and an invertible operator S : Y → H such that ‖S‖ · ‖S−1‖ < 1 + ε.

The aim of this paper is to study an analogous question for operators on Banach
spaces.

The author wishes to thank to the referee for careful reading of the manuscript
and discovering many misprints.

All Banach spaces are considered to be complex. Denote by L(X) the set of all
bounded operators on a Banach space X. Let dim X = ∞ and T ∈ L(X). Clearly the
question whether there are finite dimensional subspaces Y ⊂ X such that the restriction
T |Y behaves ”nicely” (in the sense of Theorem 0) is closely connected with approximate
eigenvalues (= elements of the approximate point spectrum σπ(T )).

Even more appropriate notion in many situations is the essential approximate point
spectrum

σπe(T ) = {λ ∈ C : T − λ is not upper semi-Fredholm}.
Equivalently, λ ∈ σπe(T ) if and only if

inf
{‖(T − λ)x‖ : x ∈ M, ‖x‖ = 1

}
= 0

for each subspace M ⊂ X with codim M < ∞.
It is well-known that σπe(T ) is a nonempty compact subset of C. Further σπe(T )

contains the topological boundary of the essential spectrum σe(T ).
The following technical lemma will be used frequently:

Lemma 1. ([M1], Lemma 1) Let X be an infinite dimensional Banach space, F ⊂ X a
finite dimensional subspace and ε > 0. Then there exists a subspace M ⊂ X of a finite
codimension such that

‖f + m‖ ≥ (1− ε) max{‖f‖, ‖m‖/2}
for all f ∈ F and m ∈ M .

* The research was supported by the grant No. A1019801 of GA AV.
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Corollary 2. Let T ∈ L(X), λ ∈ σπe(T ), k ∈ N and ε > 0. Let M be a subspace
of X of a finite codimension. Then there exists an ε-Hilbert subspace Y ⊂ M with
dim Y = k such that

‖(T − λ)y‖ ≤ ε · ‖y‖ (y ∈ Y ).

Proof. By the Dvoretzky theorem, there is n ∈ N such that each n-dimensional Banach
space contains a k-dimensional ε-Hilbert subspace.

Using Lemma 1 inductively we can find vectors x1, . . . , xn ∈ M of norm one such
that ‖(T − λ)xi‖ < ε

3n (i = 1, . . . , n) and

∥∥∥
n∑

i=1

αixi

∥∥∥ ≥ 1
3

max
1≤i≤n

|αi|

for all α1, . . . , αn ∈ C.
Find a k-dimensional ε-Hilbert subspace Y ⊂ ∨{x1, . . . , xn}. Let y =

∑n
i=1 αixi ∈

Y . Then ‖y‖ ≥ 1
3 maxi |αi| so that

‖(T − λ)y‖ ≤
n∑

i=1

|αi| · ‖(T − λ)xi‖ ≤ n ·max
i
|αi| · ε

3n
≤ ε · ‖y‖.

Much more interesting problem is to find approximate eigenvectors x1, . . . , xk cor-
responding to distinct elements λ1, . . . , λk ∈ σπe(T ). In general we cannot expect to
find x1, . . . , xk such that the subspace generated by them is ε-Hilbert. Indeed, con-
sider the operator T = λ1I ⊕ λ2I on the space X ⊕ X (the `1 direct sum). If x1, x2

are approximate eigenvectors corresponding to λ1, λ2, respectively, then the norm on
∨{x1, x2} is ”almost `1” rather than ”almost Hilbert”.

A variation of this example shows that one cannot even expect to have an ”almost
`p-norm” (for some p) on the space ∨{x1, . . . , xk}.

On the other hand, it is always possible to find x1, . . . , xk such that the norm

on ∨{x1, . . . , xk} is ”almost symmetric”, i.e.,
∥∥∥∑

αixi

∥∥∥ .
=

∥∥∥∑
α′ixi

∥∥∥ whenever |αi| =

|α′i| (i = 1, . . . , k).
The proof will be based on a powerful combinatorial principle — the Ramsey the-

orem. The author wishes to thank to K. John for drawing his attention to applications
of the Ramsey theorem in the functional analysis (see [DJT], p. 298) and to J. Nešetřil
for detailed information about the Ramsey theory.

Let A be a set and n > 0. Denote by Pn(A) the family of all subsets of A of
cardinality n. The classical Ramsey theorem says that, given n > 0, r > 0 and m > 0,
there exists u > 0 with the property that if A is a set with card A ≥ u and Pn(A) is
r-coloured (i.e., there is a partition of Pn(A) into r disjoint parts) then there is a set
B ⊂ A with card B = m such that Pn(B) is monochromatic (i.e., it is contained in one
of the parts).

We need the following generalization of the Ramsey theorem, see [GRS], Theorem
5.1.5.
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Theorem 3. Let k > 0, n > 0, r > 0 and m > 0. Then there exists u > 0 with
the following property: if A1, . . . , Ak are sets with card Ai ≥ u (1 ≤ i ≤ k) and
Pn(A1) × · · · × Pn(Ak) is r-coloured, then there are sets Bi ⊂ Ai with card Bi =
m (1 ≤ i ≤ k) such that Pn(B1)× · · · × Pn(Bk) is monochromatic.

Remark 4. The classical Ramsey theorem has also an infinite version: if card A = ∞,
n, r ∈ N and Pn(A) is r-coloured, then there is an infinite subset B ⊂ A such that
Pn(B) is monochromatic.

Such an infinite version of Theorem 3 is not true. Let k = 2, n = 1 and A1 = A2 =
N so that P1(A1)× P1(A2) is the complete bipartite graph. Consider the 2-colouring

{(i, j) : i < j} ∪ {(i, j) : i ≥ j}.

It is easy to see that there is no infinite monochromatic complete bipartite subgraph
(on the other hand, there are monochromatic bipartite subgraphs of any finite size by
Theorem 3).

Lemma 5. Let k,m, n ∈ N, ε > 0. Then there exists u ∈ N with the following
property: if X is a Banach space and M1, . . . , Mk its subspaces with dim Mi ≥ u (1 ≤
i ≤ k), then there are vectors xi,t ∈ Mi (1 ≤ i ≤ k, 1 ≤ t ≤ m) of norm one such that

(1− ε)
m∑

t=1

|βt|2 ≤
∥∥∥

m∑
t=1

βtxit

∥∥∥
2
≤ (1 + ε)

m∑
t=1

|βt|2 (i = 1, . . . , k, βt ∈ C),

and ∥∥∥
k∑

i=1

n∑

l=1

βilxi,til

∥∥∥−
∥∥∥

k∑

i=1

n∑

l=1

βilxi,t′
il

∥∥∥ < ε

for all βil ∈ C, |βil| ≤ 1 and 1 ≤ ti,1 < · · · < ti,n ≤ m, 1 ≤ t′i,1 < · · · < t′i,n ≤ m.

Proof. Let u and v be positive integers large enough (the precise value of u and v will
be clear from the proof; in fact u >> v >> m).

Let M1, . . . , Mk ⊂ X and dim Mi ≥ u (1 ≤ i ≤ k). If u is large enough, then by
the Dvoretzky theorem there are ε-Hilbert subspaces M ′

i ⊂ Mi with dim M ′
i = v (1 ≤

i ≤ k). If we choose an ”orthonormal basis” yi1, . . . , yi,v in M ′
i , then ‖yij‖ = 1 for all

i, j and

(1− ε)
v∑

j=1

|βj |2 ≤
∥∥∥

v∑

j=1

βjyij

∥∥∥
2
≤ (1 + ε)

v∑

j=1

|βj |2 (βj ∈ C).

Let F be a finite ε
3nk -net in the unit ball of Cnk with the `∞-norm.

Let 〈0, kn〉 = G1∪· · ·∪Gs where the sets Gj are pairwise disjoint and diam Gj < ε
3

for all j. Consider the following colouring of
∏k

i=1 Pn({1, . . . , v}): if ji,l, j
′
i,l ∈ N (1 ≤

i ≤ k, 1 ≤ l ≤ n) and 1 ≤ ji,1 < ji,2 < · · · < ji,n ≤ v, 1 ≤ j′i,1 < j′i,2 < · · · < j′i,n ≤ v,

then
∏k

i=1{ji,1, . . . , ji,n} and
∏k

i=1{j′i,1, . . . , j′i,n} are of the same colour if and only if

∥∥∥
∑

1≤i≤k

∑

1≤l≤n

βilyi,ji,l

∥∥∥ ∈ Gr ⇐⇒
∥∥∥

∑

1≤i≤k

∑

1≤l≤n

βilyi,j′
i,l

∥∥∥ ∈ Gr
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for all (βil) ∈ F and 1 ≤ r ≤ s.
If v is large enough, then by Theorem 3 there are subsets Li ⊂ {1, . . . , v} such that

card Li = m (i = 1, . . . , k) and

∥∥∥
k∑

i=1

n∑

l=1

βilyi,jil

∥∥∥−
∥∥∥

k∑

i=1

n∑

l=1

βilyi,j′
il

∥∥∥ <
ε

3

for all (βil) ∈ F, ji,l, j
′
i,l ∈ Li, ji,1 < · · · < ji,n, j′i,1 < · · · < j′i,n. Since F is an ε

3nk -net in
the unit ball of Cnk and ‖yij‖ = 1, it is easy to show that

∥∥∥
k∑

i=1

n∑

l=1

βilyi,jil

∥∥∥−
∥∥∥

k∑

i=1

n∑

l=1

βilyi,j′
il

∥∥∥ < ε (1)

for all βil ∈ C, |βil| ≤ 1, ji,l, j
′
i,l ∈ Li, ji,1 < · · · < ji,n, j′i,1 < · · · < j′i,n. Let Li =

{ji1, . . . , jim} (1 ≤ i ≤ k, ji1 < . . . < jim). For xit = yi,jit , (1) gives the statement of
Lemma 5.

Theorem 6. Let k ∈ N, ε > 0. Then there exists u ∈ N with the following property:
if X is a Banach space and M1, . . . , Mk its subspaces with dim Mi ≥ u (1 ≤ i ≤ k),
then there are vectors xi ∈ Mi (1 ≤ i ≤ k) of norm one such that

∥∥∥
k∑

i=1

αixi

∥∥∥−
∥∥∥

k∑

i=1

α′ixi

∥∥∥ < ε (αi, α
′
i ∈ C, |α′i| = |αi| ≤ 1).

Proof. Choose n ≥ 2kπ
ε and m ≥ 256k2n

ε2 . Suppose that M1, . . . , Mk are sufficiently
large subspaces of X. By the previous lemma there are vectors yij ∈ Mi (1 ≤ i ≤
k, 1 ≤ j ≤ mn + n) of norm one such that

1
2

mn+n∑

j=1

|βj |2 ≤
∥∥∥

mn+n∑

j=1

βjyij

∥∥∥
2
≤ 2

mn+n∑

j=1

|βj |2 (βj ∈ C),

and ∥∥∥
k∑

i=1

mn∑

l=1

βilyi,jil

∥∥∥−
∥∥∥

k∑

i=1

mn∑

l=1

βilyi,j′
il

∥∥∥ <
ε

4

for all βil ∈ C, |βil| ≤ 1, 1 ≤ i ≤ k, 1 ≤ ji,1 < · · · < ji,mn ≤ mn + n, 1 ≤ j′i,1 < · · · <

j′i,mn ≤ mn+n. Let ϕ be the primitive n-th root of 1 so that the set {ϕ,ϕ2, . . . , ϕn−1, 1}
is an ε

2k -net in the unit circle.
Set xi = a−1

i · ∑mn
j=1 ϕjyij where ai = ‖∑mn

j=1 ϕjyij‖. Clearly ‖xi‖ = 1 and

ai ≥
√

mn
2 .

Let αi, α
′
i ∈ C, |α′i| = |αi| ≤ 1 (1 ≤ i ≤ k). There are exponents l1, . . . , lk ∈

{1, . . . , n} such that |α′i − ϕliαi| < ε
2k so that

∥∥∥
k∑

i=1

α′ixi

∥∥∥ ≥
∥∥∥

k∑

i=1

ϕliαixi

∥∥∥− ε/2.
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Thus it is sufficient to show that
∥∥∥
∑

ϕliαixi

∥∥∥ ≥
∥∥∥
∑

αixi

∥∥∥− ε/2.

We have

∥∥∥
k∑

i=1

ϕliαixi

∥∥∥ =
∥∥∥

k∑

i=1

αi

ai

mn∑

j=1

ϕj+liyi,j

∥∥∥

=
∥∥∥

k∑

i=1

αi

ai

(n−li∑

j=1

ϕj+liyi,j +
mn+n−li∑

j=n−li+1

ϕj+liyi,j −
mn+n−li∑

j=mn+1

ϕj+liyi,j

)∥∥∥

≥
∥∥∥

k∑

i=1

αi

ai

mn+n−li∑

j=n−li+1

ϕj+liyi,j

∥∥∥−
k∑

i=1

2n

ai

≥
∥∥∥

k∑

i=1

αi

ai

mn∑

j=1

ϕj+nyi,j

∥∥∥− ε

4
− 4kn√

mn
≥

∥∥∥
k∑

i=1

αixi

∥∥∥− ε

2
.

Corollary 7. Let T ∈ L(X), λ1, . . . , λk ∈ σπe(T ), ε > 0, and let M ⊂ X be a subspace
of a finite codimension. Then there exist vectors x1, . . . , xk ∈ M of norm one such that

‖(T − λi)xi‖ < ε (i = 1, . . . , k),
∥∥∥
∑

i

αixi

∥∥∥ ≥ 1
3

max
i
|αi| (αi ∈ C),

∥∥∥
k∑

i=1

α′ixi

∥∥∥−
∥∥∥

k∑

i=1

αixi

∥∥∥ < ε (αi, α
′
i ∈ C, |α′i| = |αi| ≤ 1).

Proof. Use Corollary 2 and Lemma 1 inductively to construct subspaces M1, . . . , Mk ⊂
M large enough with the properties

‖(T − λi)y‖ < ε‖y‖ (y ∈ Mi, y 6= 0)

and ∥∥∥
k∑

i=1

yi

∥∥∥ ≥ 1
3

max
i
‖yi‖ (yi ∈ Mi, i = 1, . . . , k).

Corollary 7 now follows immediately from Theorem 6.

Remark 8. By the same methods it is easy to prove also the following variant of the
previous result:

Let T ∈ L(X), λ1, . . . , λk ∈ σπe(T ), s ∈ N, ε > 0. Then there are vectors
xi,j ∈ X (1 ≤ i ≤ k, 1 ≤ j ≤ s) of norm one such that

‖(T − λi)xi,j‖ < ε (1 ≤ i ≤ k, 1 ≤ j ≤ s),
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(1− ε)
∑

|βr|2 ≤
∥∥∥
∑

r

βrxi,r

∥∥∥
2
≤ (1 + ε)

∑
|βr|2 (1 ≤ i ≤ k, βr ∈ C),

∥∥∥
∑

i,r

αi,rxi,r

∥∥∥ ≥ 1
3

max
i

∥∥∥
∑

r

αi,rxi,r

∥∥∥ (αi,r ∈ C)

and
∥∥∥

k∑

i=1

s∑
r=1

αi,rxi,r

∥∥∥−
∥∥∥

k∑

i=1

s∑
r=1

α′i,rxi,r

∥∥∥ < ε (|α′i,r| = |αi,r| ≤ 1).

Situations as in Corollary 7 appear naturally if the Scott Brown technique is applied
to Banach space operators.

Let T be a polynomially bounded operator on a Banach space X. Let D be the
open unit disc in the complex plane, and let P be the normed space of all polynomials
with the sup-norm on D. Denote by Q the space of all bounded functionals on P.

Important examples of elements of Q are the evaluations Eλ : p 7→ p(λ) where
λ ∈ D, and functionals x⊗ x∗ : p 7→ 〈p(T )x, x∗〉 where x ∈ X and x∗ ∈ X∗.

A typical problem in the Scott Brown technique is to approximate a finite linear
combination

∑
i αiEλi , where λi ∈ σπe(T ) and αi ∈ C,

∑
i |αi| = 1, by x⊗ x∗ for some

x ∈ X and x∗ ∈ X∗, see [E], Corollary 1.11 or [EP], Corollary 5.2. The problem is
relatively easy for Hilbert space operators. In the Banach space context this can be done
by using the Zenger theorem [BD], page 20. Since the Zenger theorem is formulated
only for positive coefficients αi, it is necessary to consider the decompositions of αi’s
into the real and imaginary, as well as into the positive and negative, parts. Corollary
7 enables to get the approximation in a more aesthetic way.

Theorem 9. Let T be a polynomially bounded operator on a Banach space X, let
λ1, . . . , λk ∈ σπe(T ), ε > 0, let M, F be subspaces of X with dim F < ∞ and codim M <
∞. Let α1, . . . , αk ∈ C satisfy

∑
i |αi| = 1. Then there exist x ∈ M and x∗ ∈ F⊥ such

that ‖x‖ = 1, ‖x∗‖ ≤ 2 and ‖x⊗ x∗ −∑
i αiEλi‖Q < ε.

Proof. Without loss of generality we can assume that all αi’s are nonzero. Let δ >
0, δ < 1/2. Let K = sup{‖p(T )‖ : ‖p‖ ≤ 1}.

By Lemma 1 there is a subspace M ′ ⊂ X of a finite codimension such that

‖f + m′‖ ≥ 1− δ

2
‖m′‖ (f ∈ F, m′ ∈ M ′).

By Corollary 7 there are vectors u1, . . . , uk ∈ M ∩M ′ of norm one such that

‖(T − λi)ui‖ < δ (i = 1, . . . , k),

∥∥∥
k∑

i=1

βiui

∥∥∥ ≥ 1
3

max
i
|βi| (βi ∈ C),

∥∥∥
k∑

i=1

β′iui

∥∥∥−
∥∥∥

k∑

i=1

βiui

∥∥∥ < δ (βi, β
′
i ∈ C, |β′i| = |βi| ≤ 1).
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By the Zenger theorem there are u∗ ∈ X∗ and a linear combination u =
∑

i µiui such
that ‖u‖ = 1 = ‖u∗‖ and 〈µiui, u

∗〉 = |αi| (i = 1, . . . , k). Clearly |µi| ≤ 3 for all i.
By the Hahn-Banach theorem there is a functional v∗ ∈ F⊥ such that 〈µiui, v

∗〉 =
|αi| = 〈µiui, u

∗〉 (i = 1, . . . , k) and

‖v∗‖ = sup
{|〈a + f, v∗〉| : a ∈ ∨iui, f ∈ F, ‖a + f‖ ≤ 1

}

= sup
{|〈a, u∗〉| : a ∈ ∨iui, dist {a, F} ≤ 1

}

≤ sup
{‖a‖ : a ∈ ∨iui, dist {a, F} ≤ 1

} ≤ 2
1− δ

≤ 4.

Set v =
∑k

i=1 µi
αi

|αi|ui. Then ‖v‖ − ‖u‖ < 3δ. Set further x = v
‖v‖ and x∗ =

v∗
max{1,‖v∗‖/2} . Thus ‖x‖ = 1 and ‖x∗‖ ≤ 2. Further ‖x − v‖ ≤ 3δ and ‖x∗ − v∗‖ ≤

2
1−δ − 2 = 2δ

1−δ ≤ 4δ. We have

∥∥∥x⊗ x∗ −
k∑

i=1

αiEλi

∥∥∥ ≤ ‖x⊗ (x∗ − v∗)‖+ ‖(x− v)⊗ v∗‖+
∥∥∥v ⊗ v∗ −

k∑

i=1

αiEλi

∥∥∥

≤ K‖x∗ − v∗‖+ K‖x− v‖ · ‖v∗‖+ sup
{∣∣∣〈p(T )v, v∗〉 −

k∑

i=1

αip(λi)
∣∣∣ : ‖p‖ ≤ 1

}

≤ 16Kδ + sup
{∣∣∣

k∑

i=1

〈µi
αi

|αi|
(
p(T )− p(λi)

)
ui, v

∗〉
∣∣∣ : ‖p‖ ≤ 1

}
.

For ‖p‖ ≤ 1 and 1 ≤ i ≤ k set qi(z) = p(z)−p(λi)
z−λi

. Then ‖qi‖ ≤ 2
1−|λi| and

∥∥∥x⊗ x∗ −
k∑

i=1

αiEλi

∥∥∥ ≤ 16Kδ + sup
{∣∣∣

k∑

i=1

〈µi
αi

|αi|qi(T )(T − λi)ui, v
∗〉

∣∣∣ : ‖p‖ ≤ 1
}

≤ 16Kδ +
k∑

i=1

3K · 8δ

1− |λi| .

For δ small enough we get
∥∥∥x⊗ x∗ −∑k

i=1 αiEλi

∥∥∥ < ε.

Another application of Corollary 7 concerns the local behaviour of operators, see
[M1], [M3]. We need the following lemma [F].

Lemma 10. Let K ⊂ C be a nonempty compact set and k ∈ N. Then there exist
elements λ0, . . . , λk ∈ K such that

max
z∈K

|p(z)| ≤
k∑

j=0

|p(λj)|

for all polynomials p of degree deg p ≤ k.

Proof. The statement is clear if card K ≤ k.
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Suppose that card K ≥ k + 1. For x0, . . . , xk ∈ K denote by V (x0, . . . , xk) =
det(xj

i )k
i,j=0 =

∏
i<j(xj−xi) the Wandermond determinant. Let λ0, . . . , λk ∈ K satisfy

|V (λ0, . . . , λk)| = max
x0,...,xk∈K

|V (x0, . . . , xk)|.

Then V (λ0, . . . , λk) 6= 0. For j = 0, 1, . . . , k set

Lj(z) = V (λ0, . . . , λj−1, z, λj+1, . . . , λk)/V (λ0, . . . , λk).

Then |Lj(z)| ≤ 1 (j = 0, 1, . . . , k, z ∈ K) and Lj(λi) = δij (the Kronecker symbol).
Thus the polynomials L0, . . . , Lk are linearly independent and form a basis in the space
of all polynomials of degree ≤ k.

Let p be a polynomial of degree ≤ k. Then p(z) =
∑k

j=0 p(λj)Lj(z) so that

maxz∈K |p(z)| ≤ ∑k
j=0 |p(λj)|.

The following theorem was proved for Hilbert space operators in [M1], Lemma 4;
for Banach spaces it improves [M1], Lemma 3.

Theorem 11. Let T ∈ L(X), k ∈ N, ε > 0, let M ⊂ X be a subspace of a finite
codimension. Suppose that card σπe(T ) ≥ k + 1. Then there exists x ∈ M of norm one
such that

‖p(T )x‖ ≥ 1− ε

k + 1
re(p(T ))

for all polynomials p of degree ≤ k; here re denotes the essential spectral radius.

Proof. Write K = σπe(T ). For a polynomial p(z) =
∑k

j=0 βjz
j write |p| =

∑k
j=0 |βj |.

Since card K ≥ k +1, p|K 6= 0 for all non-zero polynomials p of degree ≤ k. Thus there
exists a positive constant c such that ‖p‖K ≥ c · |p| for all polynomials of degree ≤ k.

By Lemma 10 there are elements λ0, . . . , λk ∈ K such that ‖p‖K ≤ ∑k
i=0 |p(λi)|

for all polymomials p of degree ≤ k.
By Corollary 7 we can find vectors x0, x1, . . . , xk ∈ M of norm one such that

‖(T − λi)xi‖ <
εc

2(k + 1)3 ·max{1, ‖T‖k} ,

‖
∑

i

αixi‖ ≥ 1
3

max
i
|αi| (αi ∈ C),

‖
∑

i

αixi‖ − ‖
∑

i

α′ixi‖ <
ε

6(k + 1)
(|α′i| = |αi| ≤ 1.)

Let p(z) =
∑k

j=0 βjz
j be a polynomial. We have

‖(p(T )− p(λi))xi‖ =
∥∥∥
∑

j

βj(T j − λj
i )xi

∥∥∥

≤
k∑

j=0

|βj | · ‖T j−1 + λiT
j−2 + · · ·+ λj−1

i ‖ · ‖(T − λi)xi‖

≤
k∑

j=0

|βj | · k‖T‖j−1 · ‖(T − λi)xi‖ ≤ εc

2(k + 1)2
· |p| ≤ ε‖p‖K

2(k + 1)2
.

8



By the Zenger theorem there are a linear combination x =
∑k

i=0 µixi and x∗ ∈ X∗

such that ‖x∗‖ = 1 = ‖x‖ and 〈µixi, x
∗〉 = 1

k+1 (i = 0, . . . , k). Clearly |µi| ≤ 3 (i =
0, . . . , k).

Let p be a polynomial of degree ≤ k, ‖p‖K = 1. Then

‖p(T )x‖ =
∥∥∥

k∑

i=0

p(T )µixi

∥∥∥ ≥
∥∥∥

k∑

i=0

p(λi)µixi

∥∥∥−
∥∥∥

k∑

i=0

(
p(T )− p(λi)

)
µixi

∥∥∥

≥
∥∥∥

k∑

i=0

|p(λi)|µixi

∥∥∥− ε

2(k + 1)
− ε

2(k + 1)
≥

∣∣∣
〈 k∑

i=0

|p(λi)| · µixi, x
∗
〉∣∣∣− ε

k + 1

≥ 1
k + 1

k∑

i=0

|p(λi)| − ε

k + 1
≥ 1− ε

k + 1
.

Thus ‖p(T )x‖ ≥ 1−ε
k+1‖p‖K for all polynomials p of degree ≤ k. By the spectral mapping

property for the essential spectrum we have

‖p‖K = sup{|p(z)| : z ∈ σπe(T )} = sup{|p(z)| : z ∈ σe(T )}
= sup{|w| : w ∈ σe(p(T ))} = re(p(T )).

Example 12. The previous result is the best possible.
Let X0, . . . , Xk be copies of `1, X = ⊕k

j=0Xj (the `1 direct sum), let ϕ = exp( 2πi
k+1 )

and T = ⊕jϕ
jIHj . Then K = σπe(T ) = {ϕ,ϕ2, . . . , ϕk−1, 1}. We show that for each

x ∈ X of norm one there is a polynomial p of degree ≤ k such that ‖p(T )x‖ ≤ 1
k+1 .

Let x = ⊕jxj ∈ X and ‖x‖ =
∑k

j=0 ‖xj‖ = 1. Then there is j such that
‖xj‖ ≤ 1

k+1 ; without loss of generality we can assume that ‖xk‖ ≤ 1
k+1 . Consider

the polynomial p(z) = 1
k+1 (zk + zk−1 + · · · + z + 1) = zk+1−1

z−1 · 1
k+1 (z 6= 1). Then

p(ϕj) = 0 (j = 1, . . . , k) and ‖p‖K = |p(1)| = 1. We have ‖p(T )x‖ = ‖xk‖ ≤ 1
k+1 .

Using standard techniques (see [M1], Theorem 5 and [M2], Theorem 8) it is possible
to obtain similar estimates for all polynomials.

Corollary 13. Let T ∈ L(X), let x ∈ X and ε > 0. Then there exist y ∈ X and a
positive constant c (depending only on ε) such that ‖y − x‖ < ε and

‖p(T )y‖ ≥ c · re(p(T ))
(1 + deg p)1+ε

for each polynomial p.
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Zitna 25, 115 67 Prague 1
Czech Republic
e-mail address: muller@math.cas.cz

10


