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ABSTRACT. We prove that, in the class of commutative topological algebras with
separately continuous multiplication, an element is permanently singular if and only if
it is a topological divisor of zero. This extends the result given by R. Arens [1] for the
Banach algebra case. We also give sufficient conditions for non-removability of ideals in
commutative topological algebras with jointly continuous multiplication.
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Introduction. By a topological algebra we mean a topological vector space with a
jointly continuous multiplication making of it a complex algebra. The topology of a
topological algebra A can be given by a system U of zero-neighbourhoods satisfying the
following properties:

(i) For every V ∈ U , there exists W ∈ U such that W + W ⊂ V.

(ii) For every V ∈ U and α ∈ C with |α| ≤ 1, αV ⊂ V.

(iii) Every V ∈ U is absorbent.

(iv) For every V ∈ U , there exists W ∈ U such that W ·W ⊂ V.

Every algebra in this paper will be a commutative complex algebra with unit element
denoted usually by e.

A locally convex algebra is a topological algebra with a system of convex zero-
neighbourhoods. The topology of a locally convex algebra A can be given by a directed
system of seminorms {| · |α : α ∈ D} (in this case, (iv) above can be written as follows:
for every α ∈ D there exists β ∈ D such that |xy|α ≤ |x|β |y|β for all x, y ∈ A).

Let A and B be topological algebras with units eA and eB , respectively. We say that
B is an extension of A if there exists a unit preserving, injective algebra homomorphism
f : A → B such that A is topologically isomorphic to its image f(A). In this case, we
identify A with f(A) and simply write A ⊂ B.

Let A be a topological algebra and I ⊂ A an ideal. We say that I is removable if
there exists an extension B ⊃ A such that I is not contained in any proper ideal of B.
It is easy to see that this condition is equivalent to the existence of a finite number of
elements x1, . . . , xk ∈ I and y1, . . . , yk ∈ B such that x1y1 + · · · + xkyk = e. An ideal
which is not removable will be called non-removable. The notion of non-removable ideal
was introduced by R. Arens [2]. Non-removable ideals in commutative Banach algebras
have been studied, e.g., in [2], [6], [4] and [5], and in topological algebras in [8], [9] and
[10].

*The second and fourth named authors have been partially supported by a research project from
La Consejeŕıa de Educación y Ciencia de La Junta de Andalućıa. The third named author has been
supported by a research grant from El Ministerio de Educación y Ciencia.

1



2

§1. The aim of this section is to give a sufficient condition for an ideal in a topological
algebra to be non-removable. This condition will be shown to be more general than
the one given in [10]. However, it seems that there is no simple necessary and suffi-
cient condition characterizing non-removability. Our result will be reformulated also for
permanently singular elements.

Theorem 1. Let A be a commutative topological algebra with unit e, and U(A) a
system of zero-neighbourhoods defining the topology of A and satisfying (i)–(iv). Let
I ⊂ A be an ideal such that

For every finite subset {x1, · · · , xk} ⊂ I(1)

∃ V ∈ U(A), ∀ W ∈ U(A), ∃ n ≥ 1, ∀r > 0, ∃ u ∈ A \ V

such that uxn
i ∈ rW (i = 1, . . . , k)

then I is non-removable.

Proof. Suppose, on the contrary, that there exists an extension B ⊃ A, and elements
x1, . . . , xk ∈ I; y1, . . . , yk ∈ B such that x1y1 + · · ·+ xkyk = e. Let U(B) be a system of
zero-neighbourhoods for the topology of B. Let V ∈ U(A) be the neighbourhood given
by condition (1). Take V ′,W ′ ∈ U(B) such that V ′∩A ⊂ V and W ′W ′ + · · ·+ W ′W ′

︸ ︷︷ ︸
k times

⊂

V ′, and W ∈ U(A) satisfying W ⊂ W ′ ∩A. Let n be the integer from condition (1) (for
V and W ) and m = k(n− 1) + 1. Then we have

e = em =

(
k∑

i=1

xiyi

)m

=
∑

i1+···+ik=m

m!
i1! · · · ik!

(x1y1)i1 · · · (xkyk)ik .

In every term of this sum at least one exponent ij ≥ n, so that, for some vi ∈ B, we
may write

e =
k∑

i=1

xn
i vi.

Take s > 0 such that vi ∈ sW ′ for i = 1, . . . , k, let r = s−1 and take u ∈ A \ V given by
condition (1). Then

u ∈ A \ V ⊂ B \ V ′

but, on the other hand

uxn
i vi = (uxn

i )vi ∈ rW · sW ′ ⊂ W ′ ·W ′ (i = 1, . . . , k)

and therefore

u = ue =
k∑

i=1

uxn
i vi ∈ W ′W + · · ·+ W ′W ′

︸ ︷︷ ︸
k times

⊂ V ′,

a contradiction.
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Remark 1. For a locally convex algebra A, with the topology given by a system of
seminorms {| · |α : α ∈ D} condition (1) can be reformulated as follows:

For every finite subset {x1, . . . , xk} ⊂ I(1’)

∃ α ∈ D, ∀ β ∈ D, ∃ n ≥ 1 such that inf

{
k∑

i=1

|uxn
i |β : u ∈ A, |u|α = 1

}
= 0.

Therefore, if I is an ideal in A satisfying (1’) then it is non-removable.

Remark 2. In [10, Prop.2.18] was given the following sufficient condition for the non-
removability of an ideal I in a topological algebra A with a system of zero-neighbour-
hoods U :

I is contained in an ideal J = I1 + Is(A) where:(2)

I1 consists locally of joint topological divisors of zero, i.e.,

for every finite {y1, . . . , yr} ⊂ I1 there exists a net {uγ}γ ⊂ A

such that uγ 6→ 0 but uγyi → 0, for i = 1, . . . , r.

Is(A) is the set of all elements of A with small powers:

z ∈ A is said to have small powers if for every zero-neighbourhood V

there exists an integer n ≥ 1 such that λzn ∈ V for all λ ∈ C.

Proposition. Let A be a topological algebra and I ⊂ A an ideal satisfying (2), then I
satisfies (1).

Proof. Let U be a system of zero-neighbourhoods in A satisfying (i)–(iv). To see that I
satisfies condition (1), take x1, . . . , xk ∈ I. Then, since I satisfies condition (2), we can
find y1, . . . , yk ∈ I1 and z1, . . . , zk ∈ Is(A) such that xi = yi + zi for i = 1, . . . , k. It is
easy to see that the yi’s and the zi’s satisfy the following conditions:

(a) ∃ V ∈ U , ∀ W ∈ U , ∃ u ∈ A \ V such that uyi ∈ W for i = 1, . . . , k.

(b) ∀ U ∈ U , ∃ n ≥ 1 such that zn
i ∈

⋂
r>0

rU for i = 1, . . . , k.

Let V ∈ U be given by (a), and for W ∈ U arbitrary take U ∈ U such that UU+UU ⊂ W.
Let n ≥ 1 be the integer from (b), then we can write:

xn
i = (yi + zi)

n = zn
i + yi




n∑

j=1

(
n

j

)
yj−1

i zn−j
i


 = zn

i + yivi (i = 1, . . . , k)

for some v1, . . . , vk ∈ A. Fix r > 0 and let s > 0 be such that vi ∈ sU for i = 1, . . . , k,
then by using (a) we can find u ∈ A \ V such that

uyi ∈ rs−1U (i = 1, . . . , k).
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Therefore, we can write uxn
i = uzn

i + (uyi)vi where, for some t > 0,

uzn
i ∈ (tU)

( ⋂

r′>0

r′U

)
⊂

⋂

r′>0

r′UU ⊂ rUU

and, on the other hand,
(uyi)vi ∈ rs−1U · sU ⊂ rUU.

Hence uxn
i ∈ rUU + rUU ⊂ rW , for i = 1, . . . , k, which proves that I satisfies (1).

An element x of a topological algebra A is called permanently singular if x is singular
in every extension B ⊃ A. Clearly, x ∈ A is permanently singular if and only if the
ideal xA generated by x is non-removable. Therefore Theorem 1 yields the following

Corollary. Let A be a commutative topological algebra with unit e, and a system
of zero-neighbourhoods U satisfying (i)–(iv). Suppose x ∈ A satisfies the following
condition

(3) ∃ V ∈ U , ∀ W ∈ U , ∃ n ≥ 1, such that (A \ V )xn ∩ rW 6= ∅ for every r > 0,

then x is permanently singular.

Remark 3. The previous corollary for locally convex algebras has been proved in [8,
Prop. 2]. If A is a locally convex algebra, and {| · |α : α ∈ D} is the corresponding
system of seminorms, condition (3) may be written as follows:

(3′) ∃ α ∈ D, ∀β ∈ D, ∃ n ≥ 1, such that inf{|zxn|β : z ∈ A |z|α = 1} = 0.

We construct now an example showing that condition (1) is more general than (2)
even in the case of simply generated ideals in locally convex algebras.

Example. Let A be the algebra of all polynomials with complex coefficients in the
variable x, endowed with the topology given by the system of seminorms |·|k, k = 1, 2, . . .
defined by: ∣∣∣∣∣

∞∑

i=0

αix
i

∣∣∣∣∣
k

=
∞∑

i=0

cki|αi| (k = 1, 2, . . . )

(actually, all sums are finite) where cki, (k = 1, 2, . . . ; i = 0, 1, 2, . . . ) are positive
numbers satisfying:

(α) ck,0 = 1

(β) ck,i+j ≤ ck+1,ick+1,j

(γ) ck+1,i ≥ ck,i

(δ) ck+1,i+1 ≥ ck,i

(ε) inf

{
ck,k+j

c1,j
: j = 0, 1, . . .

}
= 0.
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Conditions (β) and (γ) imply that A is a locally convex algebra. It is clear, since all
cik > 0, that |∑ αix

i|k > 0 for every non-zero polynomial
∑

αix
i and every index

k = 1, 2, . . . , this means that there are no elements with small powers in A. Condition
(δ) imply |ax|k+1 ≥ |a|k for all a ∈ A and k = 1, 2, . . . , i.e. x is not a topological divisor
of zero in A. Therefore, the ideal xA does not satisfy (2).

On the other hand, x satisfies (3’): take α = 1, and for arbitrary seminorm | · |k put
n = k, then, by condition (ε):

inf{|uxk|k : u ∈ A, |u|1 = 1} ≤ inf
j≥0

{ |xk+j |k
|xj |1

}
= inf

j≥0

{
ck,k+j

c1,j

}
= 0.

It remains to show that it is possible to find numbers cki satisfying (α) − (ε). To see
this, assume we can construct sets Mk ⊂ {0, 1, 2, . . . }, k = 1, 2, . . . , satisfying 0 ∈ Mk

and

Mk+1 + Mk+1 ⊂ Mk,

Mk+1 − 1 ⊂ Mk,

Mk+1 ⊂ Mk and

∀ k ≥ 1, ∀ n ≥ k, ∃ m such that m, m + 1, . . . ,m + n 6∈ M1, and m + n + k ∈ Mk.

Now take
ck,i = 2i−max{j≤i, j∈Mk} (i = 0, 1, . . . , k = 1, 2, . . . ).

It is a matter of routine to check that the above properties of the sets Mk imply (α)−(δ)
for cki. To prove (ε) consider the infimum over those j = n + m, where m is the index
existing for given k and n ≥ k, i.e.,

inf

{
ck,k+j

c1,j
, j ≥ 0

}
≤ inf

{
ck,n+m+k

c1,n+m
, n ≥ k

}
≤ inf

{
1
2n

, n ≥ k

}
= 0.

The sets Mk can be constructed as follows: put

N
(0)
k =

{
22i

, i ≥ k
}

(k = 1, 2, . . . ),

N
(r)
k = N

(r−1)
k+1 ∪

(
N

(r−1)
k+1 − 1

)
∪

r−1⋃
s=0

(
N

(r−1)
k+1 + N

(s)
k+1

)
(k = 1, 2, . . . , r = 1, 2, . . . )

and now take

Mk =
∞⋃

r=0

N
(r)
k ∪ {0} (k = 1, 2, . . . ).

Clearly Mk+1 ⊂ Mk since N
(r−1)
k+1 ⊂ N

(r)
k for r = 0, 1, . . . . The properties Mk+1 − 1 ⊂

Mk and Mk+1 + Mk+1 ⊂ Mk can be checked analogously.
Finally, fix k and n ≥ k, n ≥ 2 and put m = 22n − 2n. Then 22n ∈ Mn, 22n − 1 ∈

Mn−1 and by induction m + n + k = 22n − (n − k) ∈ Mk. It remains to prove that
m, m + 1, . . . ,m + n 6∈ M1. First note that for j = 1, 2, . . . , r = 0, 1, 2, . . . we have:

min N
(r)
j = min N

(r−1)
j+1 − 1 = · · · = min N

(0)
j+r − r = 22j+r − r.
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Further, the open interval
(

22n−1
, 22n

)
and N

(0)
j are disjoint: N

(0)
j ∩

(
22n−1

, 22n
)

= ∅,
and it is easy to prove, by induction on r, that, as a matter of fact, we have:

N
(r)
j ∩

(
2r22n−1

, 22n − r
)

= ∅

for every r and j as before. Therefore,

M1 ∩
[
22n − 2n, 22n − n

]
=

n−1⋃
r=0

{
N

(r)
1 ∩

[
22n − 2n, 22n − n

]}
⊂

⊂
n−1⋃
r=0

{
N

(r)
1 ∩

(
2r22n−1

, 22n − r
)}

= ∅.

Hence m = 22n − 2n, m + 1, . . . , m + n = 22n − n 6∈ M1.

§2. In this section we deal with algebras having multiplication only separately continu-
ous. These algebras have been also called topological algebras by some authors (see e.g.
[7]). To avoid misunderstanding, these algebras will be called s-algebras in this paper.

In terms of zero-neighbourhoods, the difference is that for an s-algebra A we assume
(i)–(iii) plus the following (iv’) which is weaker than (iv):

(iv’) For every V ∈ U and x ∈ A, there exists W ∈ U such that xW ⊂ V .

An element x of an s-algebra A is said to be a topological divisor of zero if there exists a
net {uα}α ∈ A such that uα 6→ 0 but uαx → 0. Clearly, x is not a topological divisor of
zero if and only if the mapping fx(a) = xa is a homeomorphism from A onto xA. The
notion of s-extension is defined analogously to the notion of extension for topological
algebras. Let A be an s-algebra and x ∈ A be a topological divisor of zero, then x is
singular in any s-extension B ⊃ A. If this were not the case, we could find an s-extension
B ⊃ A and y ∈ B such that xy = e. But for (uα)α, the net in A such that uα 6→ 0
and uαx → 0 we would have uα = uαe = (uαx)y → 0 (by the separate continuity of
multiplication in B), a contradiction.

The purpose of this section is to prove the converse of the statement above. This will
mean that in the class of s-algebras there exists a simple characterization of permanently
singular elements, similar to the one that holds for Banach algebras (recall that if A is
a Banach s-algebra, then A is a Banach algebra by the Banach–Steinhaus theorem).

Let A be an s-algebra with unit e and U a system of zero-neighbourhoods in A
satisfying (i)–(iii) and (iv’). Let A[x] be the algebra of all polynomials with coefficients
from A in one variable x. We define a topology in A[x] in the following way: Let
Ṽ = (Vi)∞i=0 be a sequence from U and define

NṼ =

{
n∑

i=0

aix
i ∈ A[x] : ai ∈ Vi, i = 0, 1, . . .

}
.
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Let V be the set of all NṼ obtained from all sequences V . It is easy to see that V
satisfies (i), (ii), (iii) and (iv’), therefore A[x] is an s-algebra (if we identify A[x] with
the countable direct sum of copies of A by means of

n∑

i=0

aix
i ∈ A[x] → (a0, a1, . . . , an, 0, . . . ) ∈

∞⊕
m=0

A

the topology defined above is precisely the direct sum topology). By identifying elements
of A with constant polynomials we see that A[x] is an s-extension of A. Moreover, if A
is a locally convex s-algebra, then A[x] is also locally convex.

Let A be an s-algebra and I ⊂ A a closed ideal. Then A/I is again an s-algebra. To
see this we only need to prove (iv’): let a+I ∈ A/I and let V +I be a zero-neighbourhood
in A/I. Take W such that aW ⊂ V, then

(a + I)(W + I) ⊂ aW + aI + IW + I2 ⊂ V + I.

Theorem 2. Let A be an s-algebra with unit e and u ∈ A. Then u is invertible in
some s-extension B ⊃ A if and only if u is not a topological divisor of zero in A.

Proof. One implication was proved above. Conversely, assume that u is not a topological
divisor of zero in A, i.e. that a 7→ au is a homeomorphism from A onto uA. This implies
that for every V ∈ U there exists V ′ ∈ U such that V ′ ∩ uA = uV . Consider the s-
algebra A[x] and let I be the ideal generated by e − ux, I = (e − ux)A[x]. We prove
firstly that I is closed in A[x]: Let (pα)α be a net of elements from I,

pα = (e− ux)
∞∑

i=0

b
(α)
i xi = b

(α)
0 +

∞∑

i=0

(b(α)
i − ub

(α)
i−1)xi

(where only a finite number of coefficients b
(α)
i are non-zero for every α) and suppose

that pα → p =
∑n

i=0 aix
i in the topology of A[x]. Then, coordinate-wise, we have:

b
(α)
0 → a0,

b
(α)
i − ub

(α)
i−1 → ai for i = 1, . . . , n,

b
(α)
i − ub

(α)
i−1 → 0 for i > n.

Since b
(α)
0 u → a0u, we have b

(α)
1 → a1 + a0u, and inductively:

b
(α)
i → ci := ai + ai−1u + · · ·+ a0u

i for i = 0, . . . , n,

b
(α)
i → anui−n + an−1u

i−n+1 + · · ·+ a0u
i = cnui−n for i > n

where cn = an + an−1u + · · ·+ a0u
n. Suppose cn 6= 0 and let V0 ∈ U such that cn 6∈ V0.

Let W0 ∈ U such that W0 + W0 ⊂ V0. Construct Vi,Wi ∈ U such that:

Vi+1 ∩ uA ⊂ uWi and Wi+1 + Wi+1 ⊂ Vi+1 for i = 0, 1, 2, . . .
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and consider the zero-neighbourhood NW in A[x] given by the sequence

(W0, . . . ,W0︸ ︷︷ ︸
n times

,W0,W1, W2, . . . ).

Since pα → p and b
(α)
n → cn, there exists an index α such that

b
(α)
n+i − ub

(α)
n+i−1 ∈ Wi (i = 1, 2, . . . )

and also
b(α)
n − cn ∈ W0.

This implies b
(α)
n 6∈ W0 since cn 6∈ V0. We prove now, by induction, that b

(α)
n+i 6∈ Wi

for i = 0, 1, . . . : suppose b
(α)
n+i 6∈ Wi, then ub

(α)
n+i 6∈ uWi, and so ub

(α)
n+i 6∈ Vi+1,. Write

ub
(α)
n+i =

(
−b

(α)
n+i+1 + ub

(α)
n+i

)
+ b

(α)
n+i+1 to deduce that b

(α)
n+i+1 6∈ Wi+1. Therefore, we

have that b
(α)
n+i 6∈ Wi for i = 0, 1, . . . which implies b

(α)
n+i 6= 0 for all i ≥ 0 and this

contradicts the fact that
∑

b
(α)
i xi is a polynomial and, consequently, has only a finite

number of non-zero coefficients. We have proved that cn = 0 and therefore p, the limit
of pα, can be written as:

p =
n∑

i=0

aix
i = (e− ux)

n−1∑

i=0

cix
i ∈ I = (e− ux)A.

Now, let q : A[x] → A[x]/I be the canonical homomorphism and let g : A → A[x] be
the natural embedding. Denote by f = q ◦ g. Since e−ux ∈ I, we have (u + I)(x + I) =
e + I, hence f(u) is invertible in A[x]/I. Finally, we must check that A[x]/I is an
s-extension of A. Clearly f is a continuous algebra homomorphism. To prove that f is
1-1 and f(A) is topologically isomorphic to A, it suffices to prove that for all V ∈ U
there exists a sequence W̃ = {Wi}∞i=0, Wi ∈ U (i = 0, 1, . . . ) such that f(a) ∈ NW̃

implies a ∈ V .
Let V ∈ U . We can find W0 ∈ U such that W0 + W0 ⊂ V (hence W0 ⊂ V ). Choose

V1 ∈ U such that ua ∈ V implies a ∈ W0, and take W1 ∈ U such that W1 + W1 ⊂ V1.
Define inductively neighbourhoods Vi,Wi ∈ U such that

ua ∈ Vi+1 implies a ∈ Wi,

Wi+1 + Wi+1 ⊂ Vi+1, (hence Wi+1 ⊂ Vi+1).

Let NW̃ ∈ V be the zero-neighbourhood in A[x] corresponding to the sequence W̃ =
(Wi)∞i=0.

Let a ∈ A satisfy f(a) ∈ NW̃ + I. This means that a − p ∈ NW̃ for some p =

(e − xu)
n∑

i=0
bix

i ∈ I (we identify A with the constant polynomials g(A) ⊂ A[x]). We

have
a− p = (a− b0) + x(ub0 − b1) + x2(ub1 − b2) + · · ·+ xn+1(ubn).

Since ubn ∈ Wn+1 ⊂ Vn+1 we have bn ∈ Wn. Furthemore ubn−1 = (ubn−1 − bn) + bn ∈
Wn +Wn ⊂ Vn, so that bn−1 ∈ Wn−1. We continue in the same way and obtain bi ∈ Wi

for i = n− 1, . . . , 1, 0. Finally, since b0 ∈ W0, a = (a− b0) + b0 ∈ W0 + W0 ⊂ V .
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