EXTENSIONS OF TOPOLOGICAL ALGEBRAS.

Antonio Fernández, Miguel Florencio, Vladimír Müller, Pedro J. Paúl*

ABSTRACT. We prove that, in the class of commutative topological algebras with separately continuous multiplication, an element is permanently singular if and only if it is a topological divisor of zero. This extends the result given by R. Arens [1] for the Banach algebra case. We also give sufficient conditions for non-removability of ideals in commutative topological algebras with jointly continuous multiplication.

AMS Subject Classification (1980): 46J10
Introduction. By a topological algebra we mean a topological vector space with a jointly continuous multiplication making of it a complex algebra. The topology of a topological algebra A can be given by a system \mathcal{U} of zero-neighbourhoods satisfying the following properties:
(i) For every $V \in \mathcal{U}$, there exists $W \in \mathcal{U}$ such that $W+W \subset V$.
(ii) For every $V \in \mathcal{U}$ and $\alpha \in \mathbb{C}$ with $|\alpha| \leq 1, \alpha V \subset V$.
(iii) Every $V \in \mathcal{U}$ is absorbent.
(iv) For every $V \in \mathcal{U}$, there exists $W \in \mathcal{U}$ such that $W \cdot W \subset V$.

Every algebra in this paper will be a commutative complex algebra with unit element denoted usually by e.

A locally convex algebra is a topological algebra with a system of convex zeroneighbourhoods. The topology of a locally convex algebra A can be given by a directed system of seminorms $\left\{|\cdot|_{\alpha}: \alpha \in \mathcal{D}\right\}$ (in this case, (iv) above can be written as follows: for every $\alpha \in \mathcal{D}$ there exists $\beta \in \mathcal{D}$ such that $|x y|_{\alpha} \leq|x|_{\beta}|y|_{\beta}$ for all $x, y \in A$).

Let A and B be topological algebras with units e_{A} and e_{B}, respectively. We say that B is an extension of A if there exists a unit preserving, injective algebra homomorphism $f: A \rightarrow B$ such that A is topologically isomorphic to its image $f(A)$. In this case, we identify A with $f(A)$ and simply write $A \subset B$.

Let A be a topological algebra and $I \subset A$ an ideal. We say that I is removable if there exists an extension $B \supset A$ such that I is not contained in any proper ideal of B. It is easy to see that this condition is equivalent to the existence of a finite number of elements $x_{1}, \ldots, x_{k} \in I$ and $y_{1}, \ldots, y_{k} \in B$ such that $x_{1} y_{1}+\cdots+x_{k} y_{k}=e$. An ideal which is not removable will be called non-removable. The notion of non-removable ideal was introduced by R. Arens [2]. Non-removable ideals in commutative Banach algebras have been studied, e.g., in [2], [6], [4] and [5], and in topological algebras in $[\mathbf{8}],[\mathbf{9}]$ and [10].

[^0]§1. The aim of this section is to give a sufficient condition for an ideal in a topological algebra to be non-removable. This condition will be shown to be more general than the one given in $[\mathbf{1 0}]$. However, it seems that there is no simple necessary and sufficient condition characterizing non-removability. Our result will be reformulated also for permanently singular elements.

Theorem 1. Let A be a commutative topological algebra with unit e, and $\mathcal{U}(A)$ a system of zero-neighbourhoods defining the topology of A and satisfying (i)-(iv). Let $I \subset A$ be an ideal such that

$$
\begin{align*}
& \text { For every finite subset }\left\{x_{1}, \cdots, x_{k}\right\} \subset I \tag{1}\\
& \exists V \in \mathcal{U}(A), \forall W \in \mathcal{U}(A), \exists n \geq 1, \forall r>0, \exists u \in A \backslash V \\
& \text { such that } u x_{i}^{n} \in r W \quad(i=1, \ldots, k)
\end{align*}
$$

then I is non-removable.
Proof. Suppose, on the contrary, that there exists an extension $B \supset A$, and elements $x_{1}, \ldots, x_{k} \in I ; y_{1}, \ldots, y_{k} \in B$ such that $x_{1} y_{1}+\cdots+x_{k} y_{k}=e$. Let $\mathcal{U}(B)$ be a system of zero-neighbourhoods for the topology of B. Let $V \in \mathcal{U}(A)$ be the neighbourhood given by condition (1). Take $V^{\prime}, W^{\prime} \in \mathcal{U}(B)$ such that $V^{\prime} \cap A \subset V$ and $\underbrace{W^{\prime} W^{\prime}+\cdots+W^{\prime} W^{\prime}}_{k \text { times }} \subset$ V^{\prime}, and $W \in \mathcal{U}(A)$ satisfying $W \subset W^{\prime} \cap A$. Let n be the integer from condition (1) (for V and $W)$ and $m=k(n-1)+1$. Then we have

$$
e=e^{m}=\left(\sum_{i=1}^{k} x_{i} y_{i}\right)^{m}=\sum_{i_{1}+\cdots+i_{k}=m} \frac{m!}{i_{1}!\cdots i_{k}!}\left(x_{1} y_{1}\right)^{i_{1}} \cdots\left(x_{k} y_{k}\right)^{i_{k}}
$$

In every term of this sum at least one exponent $i_{j} \geq n$, so that, for some $v_{i} \in B$, we may write

$$
e=\sum_{i=1}^{k} x_{i}^{n} v_{i}
$$

Take $s>0$ such that $v_{i} \in s W^{\prime}$ for $i=1, \ldots, k$, let $r=s^{-1}$ and take $u \in A \backslash V$ given by condition (1). Then

$$
u \in A \backslash V \subset B \backslash V^{\prime}
$$

but, on the other hand

$$
u x_{i}^{n} v_{i}=\left(u x_{i}^{n}\right) v_{i} \in r W \cdot s W^{\prime} \subset W^{\prime} \cdot W^{\prime} \quad(i=1, \ldots, k)
$$

and therefore

$$
u=u e=\sum_{i=1}^{k} u x_{i}^{n} v_{i} \in \underbrace{W^{\prime} W+\cdots+W^{\prime} W^{\prime}}_{k \text { times }} \subset V^{\prime}
$$

a contradiction.

Remark 1. For a locally convex algebra A, with the topology given by a system of seminorms $\left\{|\cdot|_{\alpha}: \alpha \in \mathcal{D}\right\}$ condition (1) can be reformulated as follows:

$$
\begin{equation*}
\text { For every finite subset }\left\{x_{1}, \ldots, x_{k}\right\} \subset I \tag{1'}
\end{equation*}
$$

$\exists \alpha \in \mathcal{D}, \forall \beta \in \mathcal{D}, \exists n \geq 1$ such that $\quad \inf \left\{\sum_{i=1}^{k}\left|u x_{i}^{n}\right|_{\beta}: u \in A,|u|_{\alpha}=1\right\}=0$.
Therefore, if I is an ideal in A satisfying (1^{\prime}) then it is non-removable.
Remark 2. In [10, Prop.2.18] was given the following sufficient condition for the nonremovability of an ideal I in a topological algebra A with a system of zero-neighbourhoods \mathcal{U} :
(2) $\quad I$ is contained in an ideal $J=I_{1}+I_{s}(A)$ where:
I_{1} consists locally of joint topological divisors of zero, i.e.,
for every finite $\left\{y_{1}, \ldots, y_{r}\right\} \subset I_{1}$ there exists a net $\left\{u_{\gamma}\right\}_{\gamma} \subset A$
such that $u_{\gamma} \nrightarrow 0$ but $u_{\gamma} y_{i} \rightarrow 0$, for $i=1, \ldots, r$.
$I_{s}(A)$ is the set of all elements of A with small powers:
$z \in A$ is said to have small powers if for every zero-neighbourhood V there exists an integer $n \geq 1$ such that $\lambda z^{n} \in V$ for all $\lambda \in \mathbb{C}$.

Proposition. Let A be a topological algebra and $I \subset A$ an ideal satisfying (2), then I satisfies (1).
Proof. Let \mathcal{U} be a system of zero-neighbourhoods in A satisfying (i)-(iv). To see that I satisfies condition (1), take $x_{1}, \ldots, x_{k} \in I$. Then, since I satisfies condition (2), we can find $y_{1}, \ldots, y_{k} \in I_{1}$ and $z_{1}, \ldots, z_{k} \in I_{s}(A)$ such that $x_{i}=y_{i}+z_{i}$ for $i=1, \ldots, k$. It is easy to see that the y_{i} 's and the z_{i} 's satisfy the following conditions:
(a) $\exists V \in \mathcal{U}, \forall W \in \mathcal{U}, \exists u \in A \backslash V$ such that $u y_{i} \in W$ for $i=1, \ldots, k$.
(b) $\forall U \in \mathcal{U}, \exists n \geq 1$ such that $z_{i}^{n} \in \bigcap_{r>0} r U$ for $i=1, \ldots, k$.

Let $V \in \mathcal{U}$ be given by (a), and for $W \in \mathcal{U}$ arbitrary take $U \in \mathcal{U}$ such that $U U+U U \subset W$. Let $n \geq 1$ be the integer from (b), then we can write:

$$
x_{i}^{n}=\left(y_{i}+z_{i}\right)^{n}=z_{i}^{n}+y_{i}\left[\sum_{j=1}^{n}\binom{n}{j} y_{i}^{j-1} z_{i}^{n-j}\right]=z_{i}^{n}+y_{i} v_{i} \quad(i=1, \ldots, k)
$$

for some $v_{1}, \ldots, v_{k} \in A$. Fix $r>0$ and let $s>0$ be such that $v_{i} \in s U$ for $i=1, \ldots, k$, then by using (a) we can find $u \in A \backslash V$ such that

$$
u y_{i} \in r s^{-1} U \quad(i=1, \ldots, k)
$$

Therefore, we can write $u x_{i}^{n}=u z_{i}^{n}+\left(u y_{i}\right) v_{i}$ where, for some $t>0$,

$$
u z_{i}^{n} \in(t U)\left(\bigcap_{r^{\prime}>0} r^{\prime} U\right) \subset \bigcap_{r^{\prime}>0} r^{\prime} U U \subset r U U
$$

and, on the other hand,

$$
\left(u y_{i}\right) v_{i} \in r s^{-1} U \cdot s U \subset r U U
$$

Hence $u x_{i}^{n} \in r U U+r U U \subset r W$, for $i=1, \ldots, k$, which proves that I satisfies (1).
An element x of a topological algebra A is called permanently singular if x is singular in every extension $B \supset A$. Clearly, $x \in A$ is permanently singular if and only if the ideal $x A$ generated by x is non-removable. Therefore Theorem 1 yields the following

Corollary. Let A be a commutative topological algebra with unit e, and a system of zero-neighbourhoods \mathcal{U} satisfying (i)-(iv). Suppose $x \in A$ satisfies the following condition
(3) $\exists V \in \mathcal{U}, \forall W \in \mathcal{U}, \exists n \geq 1$, such that $(A \backslash V) x^{n} \cap r W \neq \emptyset$ for every $r>0$,
then x is permanently singular.
Remark 3. The previous corollary for locally convex algebras has been proved in [8, Prop. 2]. If A is a locally convex algebra, and $\left\{|\cdot|_{\alpha}: \alpha \in \mathcal{D}\right\}$ is the corresponding system of seminorms, condition (3) may be written as follows:

$$
\text { (3') } \exists \alpha \in \mathcal{D}, \forall \beta \in \mathcal{D}, \exists n \geq 1 \text {, such that } \inf \left\{\left|z x^{n}\right|_{\beta}: z \in A|z|_{\alpha}=1\right\}=0
$$

We construct now an example showing that condition (1) is more general than (2) even in the case of simply generated ideals in locally convex algebras.

Example. Let A be the algebra of all polynomials with complex coefficients in the variable x, endowed with the topology given by the system of seminorms $|\cdot|_{k}, k=1,2, \ldots$ defined by:

$$
\left|\sum_{i=0}^{\infty} \alpha_{i} x^{i}\right|_{k}=\sum_{i=0}^{\infty} c_{k i}\left|\alpha_{i}\right| \quad(k=1,2, \ldots)
$$

(actually, all sums are finite) where $c_{k i},(k=1,2, \ldots ; i=0,1,2, \ldots)$ are positive numbers satisfying:
(α) $c_{k, 0}=1$
(β) $c_{k, i+j} \leq c_{k+1, i} c_{k+1, j}$
(γ) $\quad c_{k+1, i} \geq c_{k, i}$
(δ) $c_{k+1, i+1} \geq c_{k, i}$
(ε) $\quad \inf \left\{\frac{c_{k, k+j}}{c_{1, j}}: j=0,1, \ldots\right\}=0$.

Conditions (β) and (γ) imply that A is a locally convex algebra. It is clear, since all $c_{i k}>0$, that $\left|\sum \alpha_{i} x^{i}\right|_{k}>0$ for every non-zero polynomial $\sum \alpha_{i} x^{i}$ and every index $k=1,2, \ldots$, this means that there are no elements with small powers in A. Condition (δ) imply $|a x|_{k+1} \geq|a|_{k}$ for all $a \in A$ and $k=1,2, \ldots$, i.e. x is not a topological divisor of zero in A. Therefore, the ideal $x A$ does not satisfy (2).

On the other hand, x satisfies (3^{\prime}): take $\alpha=1$, and for arbitrary seminorm $|\cdot|_{k}$ put $n=k$, then, by condition (ε) :

$$
\inf \left\{\left|u x^{k}\right|_{k}: u \in A,|u|_{1}=1\right\} \leq \inf _{j \geq 0}\left\{\frac{\left|x^{k+j}\right|_{k}}{\left|x^{j}\right|_{1}}\right\}=\inf _{j \geq 0}\left\{\frac{c_{k, k+j}}{c_{1, j}}\right\}=0 .
$$

It remains to show that it is possible to find numbers $c_{k i}$ satisfying $(\alpha)-(\varepsilon)$. To see this, assume we can construct sets $M_{k} \subset\{0,1,2, \ldots\}, k=1,2, \ldots$, satisfying $0 \in M_{k}$ and

$$
\begin{aligned}
& M_{k+1}+M_{k+1} \subset M_{k}, \\
& M_{k+1}-1 \subset M_{k}, \\
& M_{k+1} \subset M_{k} \text { and } \\
& \forall k \geq 1, \forall n \geq k, \exists m \text { such that } m, m+1, \ldots, m+n \notin M_{1}, \text { and } m+n+k \in M_{k} .
\end{aligned}
$$

Now take

$$
c_{k, i}=2^{i-\max \left\{j \leq i, j \in M_{k}\right\}} \quad(i=0,1, \ldots, \quad k=1,2, \ldots) .
$$

It is a matter of routine to check that the above properties of the sets M_{k} imply $(\alpha)-(\delta)$ for $c_{k i}$. To prove (ε) consider the infimum over those $j=n+m$, where m is the index existing for given k and $n \geq k$, i.e.,

$$
\inf \left\{\frac{c_{k, k+j}}{c_{1, j}}, j \geq 0\right\} \leq \inf \left\{\frac{c_{k, n+m+k}}{c_{1, n+m}}, n \geq k\right\} \leq \inf \left\{\frac{1}{2^{n}}, n \geq k\right\}=0
$$

The sets M_{k} can be constructed as follows: put

$$
\begin{gathered}
N_{k}^{(0)}=\left\{2^{2^{i}}, i \geq k\right\} \quad(k=1,2, \ldots) \\
N_{k}^{(r)}=N_{k+1}^{(r-1)} \cup\left(N_{k+1}^{(r-1)}-1\right) \cup \bigcup_{s=0}^{r-1}\left(N_{k+1}^{(r-1)}+N_{k+1}^{(s)}\right) \quad(k=1,2, \ldots, \quad r=1,2, \ldots)
\end{gathered}
$$

and now take

$$
M_{k}=\bigcup_{r=0}^{\infty} N_{k}^{(r)} \cup\{0\} \quad(k=1,2, \ldots)
$$

Clearly $M_{k+1} \subset M_{k}$ since $N_{k+1}^{(r-1)} \subset N_{k}^{(r)}$ for $r=0,1, \ldots$. The properties $M_{k+1}-1 \subset$ M_{k} and $M_{k+1}+M_{k+1} \subset M_{k}$ can be checked analogously.

Finally, fix k and $n \geq k, n \geq 2$ and put $m=2^{2^{n}}-2 n$. Then $2^{2^{n}} \in M_{n}, 2^{2^{n}}-1 \in$ M_{n-1} and by induction $m+n+k=2^{2^{n}}-(n-k) \in M_{k}$. It remains to prove that $m, m+1, \ldots, m+n \notin M_{1}$. First note that for $j=1,2, \ldots, r=0,1,2, \ldots$ we have:

$$
\min N_{j}^{(r)}=\min N_{j+1}^{(r-1)}-1=\cdots=\min N_{j+r}^{(0)}-r=2^{2^{j+r}}-r .
$$

Further, the open interval $\left(2^{2^{n-1}}, 2^{2^{n}}\right)$ and $N_{j}^{(0)}$ are disjoint: $N_{j}^{(0)} \cap\left(2^{2^{n-1}}, 2^{2^{n}}\right)=\emptyset$, and it is easy to prove, by induction on r, that, as a matter of fact, we have:

$$
N_{j}^{(r)} \cap\left(2^{r} 2^{2^{n-1}}, 2^{2^{n}}-r\right)=\emptyset
$$

for every r and j as before. Therefore,

$$
\begin{aligned}
M_{1} \cap\left[2^{2^{n}}-2 n, 2^{2^{n}}-n\right] & =\bigcup_{r=0}^{n-1}\left\{N_{1}^{(r)} \cap\left[2^{2^{n}}-2 n, 2^{2^{n}}-n\right]\right\} \subset \\
& \subset \bigcup_{r=0}^{n-1}\left\{N_{1}^{(r)} \cap\left(2^{r} 2^{2^{n-1}}, 2^{2^{n}}-r\right)\right\}=\emptyset
\end{aligned}
$$

Hence $m=2^{2^{n}}-2 n, m+1, \ldots, m+n=2^{2^{n}}-n \notin M_{1}$.
§2. In this section we deal with algebras having multiplication only separately continuous. These algebras have been also called topological algebras by some authors (see e.g. $[7]$). To avoid misunderstanding, these algebras will be called s-algebras in this paper.

In terms of zero-neighbourhoods, the difference is that for an s-algebra A we assume (i)-(iii) plus the following (iv') which is weaker than (iv):

$$
\text { (iv') For every } V \in \mathcal{U} \text { and } x \in A \text {, there exists } W \in \mathcal{U} \text { such that } x W \subset V \text {. }
$$

An element x of an s-algebra A is said to be a topological divisor of zero if there exists a net $\left\{u_{\alpha}\right\}_{\alpha} \in A$ such that $u_{\alpha} \nrightarrow 0$ but $u_{\alpha} x \rightarrow 0$. Clearly, x is not a topological divisor of zero if and only if the mapping $f_{x}(a)=x a$ is a homeomorphism from A onto $x A$. The notion of s-extension is defined analogously to the notion of extension for topological algebras. Let A be an s-algebra and $x \in A$ be a topological divisor of zero, then x is singular in any s-extension $B \supset A$. If this were not the case, we could find an s-extension $B \supset A$ and $y \in B$ such that $x y=e$. But for $\left(u_{\alpha}\right)_{\alpha}$, the net in A such that $u_{\alpha} \nrightarrow 0$ and $u_{\alpha} x \rightarrow 0$ we would have $u_{\alpha}=u_{\alpha} e=\left(u_{\alpha} x\right) y \rightarrow 0$ (by the separate continuity of multiplication in B), a contradiction.

The purpose of this section is to prove the converse of the statement above. This will mean that in the class of s-algebras there exists a simple characterization of permanently singular elements, similar to the one that holds for Banach algebras (recall that if A is a Banach s-algebra, then A is a Banach algebra by the Banach-Steinhaus theorem).

Let A be an s-algebra with unit e and \mathcal{U} a system of zero-neighbourhoods in A satisfying (i)-(iii) and (iv'). Let $A[x]$ be the algebra of all polynomials with coefficients from A in one variable x. We define a topology in $A[x]$ in the following way: Let $\tilde{V}=\left(V_{i}\right)_{i=0}^{\infty}$ be a sequence from \mathcal{U} and define

$$
N_{\tilde{V}}=\left\{\sum_{i=0}^{n} a_{i} x^{i} \in A[x]: a_{i} \in V_{i}, i=0,1, \ldots\right\}
$$

Let \mathcal{V} be the set of all $N_{\tilde{V}}$ obtained from all sequences V. It is easy to see that \mathcal{V} satisfies (i), (ii), (iii) and (iv'), therefore $A[x]$ is an s-algebra (if we identify $A[x]$ with the countable direct sum of copies of A by means of

$$
\sum_{i=0}^{n} a_{i} x^{i} \in A[x] \rightarrow\left(a_{0}, a_{1}, \ldots, a_{n}, 0, \ldots\right) \in \bigoplus_{m=0}^{\infty} A
$$

the topology defined above is precisely the direct sum topology). By identifying elements of A with constant polynomials we see that $A[x]$ is an s-extension of A. Moreover, if A is a locally convex s-algebra, then $A[x]$ is also locally convex.

Let A be an s-algebra and $I \subset A$ a closed ideal. Then A / I is again an s-algebra. To see this we only need to prove (iv'): let $a+I \in A / I$ and let $V+I$ be a zero-neighbourhood in A / I. Take W such that $a W \subset V$, then

$$
(a+I)(W+I) \subset a W+a I+I W+I^{2} \subset V+I
$$

Theorem 2. Let A be an s-algebra with unit e and $u \in A$. Then u is invertible in some s-extension $B \supset A$ if and only if u is not a topological divisor of zero in A.

Proof. One implication was proved above. Conversely, assume that u is not a topological divisor of zero in A, i.e. that $a \mapsto a u$ is a homeomorphism from A onto $u A$. This implies that for every $V \in \mathcal{U}$ there exists $V^{\prime} \in \mathcal{U}$ such that $V^{\prime} \cap u A=u V$. Consider the salgebra $A[x]$ and let I be the ideal generated by $e-u x, I=(e-u x) A[x]$. We prove firstly that I is closed in $A[x]$: Let $\left(p_{\alpha}\right)_{\alpha}$ be a net of elements from I,

$$
p_{\alpha}=(e-u x) \sum_{i=0}^{\infty} b_{i}^{(\alpha)} x^{i}=b_{0}^{(\alpha)}+\sum_{i=0}^{\infty}\left(b_{i}^{(\alpha)}-u b_{i-1}^{(\alpha)}\right) x^{i}
$$

(where only a finite number of coefficients $b_{i}^{(\alpha)}$ are non-zero for every α) and suppose that $p_{\alpha} \rightarrow p=\sum_{i=0}^{n} a_{i} x^{i}$ in the topology of $A[x]$. Then, coordinate-wise, we have:

$$
\begin{aligned}
& b_{0}^{(\alpha)} \rightarrow a_{0}, \\
& b_{i}^{(\alpha)}-u b_{i-1}^{(\alpha)} \rightarrow a_{i} \quad \text { for } i=1, \ldots, n, \\
& b_{i}^{(\alpha)}-u b_{i-1}^{(\alpha)} \rightarrow 0 \quad \text { for } i>n .
\end{aligned}
$$

Since $b_{0}^{(\alpha)} u \rightarrow a_{0} u$, we have $b_{1}^{(\alpha)} \rightarrow a_{1}+a_{0} u$, and inductively:

$$
\begin{aligned}
& b_{i}^{(\alpha)} \rightarrow c_{i}:=a_{i}+a_{i-1} u+\cdots+a_{0} u^{i} \quad \text { for } i=0, \ldots, n, \\
& b_{i}^{(\alpha)} \rightarrow a_{n} u^{i-n}+a_{n-1} u^{i-n+1}+\cdots+a_{0} u^{i}=c_{n} u^{i-n} \quad \text { for } i>n
\end{aligned}
$$

where $c_{n}=a_{n}+a_{n-1} u+\cdots+a_{0} u^{n}$. Suppose $c_{n} \neq 0$ and let $V_{0} \in \mathcal{U}$ such that $c_{n} \notin V_{0}$. Let $W_{0} \in \mathcal{U}$ such that $W_{0}+W_{0} \subset V_{0}$. Construct $V_{i}, W_{i} \in \mathcal{U}$ such that:

$$
V_{i+1} \cap u A \subset u W_{i} \quad \text { and } \quad W_{i+1}+W_{i+1} \subset V_{i+1} \quad \text { for } i=0,1,2, \ldots
$$

and consider the zero-neighbourhood N_{W} in $A[x]$ given by the sequence

$$
(\underbrace{W_{0}, \ldots, W_{0}}_{n \text { times }}, W_{0}, W_{1}, W_{2}, \ldots) .
$$

Since $p_{\alpha} \rightarrow p$ and $b_{n}^{(\alpha)} \rightarrow c_{n}$, there exists an index α such that

$$
b_{n+i}^{(\alpha)}-u b_{n+i-1}^{(\alpha)} \in W_{i} \quad(i=1,2, \ldots)
$$

and also

$$
b_{n}^{(\alpha)}-c_{n} \in W_{0} .
$$

This implies $b_{n}^{(\alpha)} \notin W_{0}$ since $c_{n} \notin V_{0}$. We prove now, by induction, that $b_{n+i}^{(\alpha)} \notin W_{i}$ for $i=0,1, \ldots$: suppose $b_{n+i}^{(\alpha)} \notin W_{i}$, then $u b_{n+i}^{(\alpha)} \notin u W_{i}$, and so $u b_{n+i}^{(\alpha)} \notin V_{i+1}$,. Write $u b_{n+i}^{(\alpha)}=\left(-b_{n+i+1}^{(\alpha)}+u b_{n+i}^{(\alpha)}\right)+b_{n+i+1}^{(\alpha)}$ to deduce that $b_{n+i+1}^{(\alpha)} \notin W_{i+1}$. Therefore, we have that $b_{n+i}^{(\alpha)} \notin W_{i}$ for $i=0,1, \ldots$ which implies $b_{n+i}^{(\alpha)} \neq 0$ for all $i \geq 0$ and this contradicts the fact that $\sum b_{i}^{(\alpha)} x^{i}$ is a polynomial and, consequently, has only a finite number of non-zero coefficients. We have proved that $c_{n}=0$ and therefore p, the limit of p_{α}, can be written as:

$$
p=\sum_{i=0}^{n} a_{i} x^{i}=(e-u x) \sum_{i=0}^{n-1} c_{i} x^{i} \in I=(e-u x) A .
$$

Now, let $q: A[x] \rightarrow A[x] / I$ be the canonical homomorphism and let $g: A \rightarrow A[x]$ be the natural embedding. Denote by $f=q \circ g$. Since $e-u x \in I$, we have $(u+I)(x+I)=$ $e+I$, hence $f(u)$ is invertible in $A[x] / I$. Finally, we must check that $A[x] / I$ is an s-extension of A. Clearly f is a continuous algebra homomorphism. To prove that f is 1-1 and $f(A)$ is topologically isomorphic to A, it suffices to prove that for all $V \in \mathcal{U}$ there exists a sequence $\tilde{W}=\left\{W_{i}\right\}_{i=0}^{\infty}, W_{i} \in \mathcal{U}(i=0,1, \ldots)$ such that $f(a) \in N_{\tilde{W}}$ implies $a \in V$.

Let $V \in \mathcal{U}$. We can find $W_{0} \in \mathcal{U}$ such that $W_{0}+W_{0} \subset V$ (hence $W_{0} \subset V$). Choose $V_{1} \in \mathcal{U}$ such that $u a \in V$ implies $a \in W_{0}$, and take $W_{1} \in \mathcal{U}$ such that $W_{1}+W_{1} \subset V_{1}$. Define inductively neighbourhoods $V_{i}, W_{i} \in \mathcal{U}$ such that

$$
\begin{gathered}
u a \in V_{i+1} \text { implies } a \in W_{i} \\
W_{i+1}+W_{i+1} \subset V_{i+1},\left(\text { hence } W_{i+1} \subset V_{i+1}\right) .
\end{gathered}
$$

Let $N_{\tilde{W}} \in \mathcal{V}$ be the zero-neighbourhood in $A[x]$ corresponding to the sequence $\tilde{W}=$ $\left(W_{i}\right)_{i=0}^{\infty}$.

Let $a \in A$ satisfy $f(a) \in N_{\tilde{W}}+I$. This means that $a-p \in N_{\tilde{W}}$ for some $p=$ $(e-x u) \sum_{i=0}^{n} b_{i} x^{i} \in I$ (we identify A with the constant polynomials $g(A) \subset A[x]$). We have

$$
a-p=\left(a-b_{0}\right)+x\left(u b_{0}-b_{1}\right)+x^{2}\left(u b_{1}-b_{2}\right)+\cdots+x^{n+1}\left(u b_{n}\right) .
$$

Since $u b_{n} \in W_{n+1} \subset V_{n+1}$ we have $b_{n} \in W_{n}$. Furthemore $u b_{n-1}=\left(u b_{n-1}-b_{n}\right)+b_{n} \in$ $W_{n}+W_{n} \subset V_{n}$, so that $b_{n-1} \in W_{n-1}$. We continue in the same way and obtain $b_{i} \in W_{i}$ for $i=n-1, \ldots, 1,0$. Finally, since $b_{0} \in W_{0}, a=\left(a-b_{0}\right)+b_{0} \in W_{0}+W_{0} \subset V$.

References

[1] R. Arens, Extensions of Banach algebras, Pacific J. Math. 10 (1960), 1-16.
[2] R. Arens, Ideals in Banach algebras extensions, Studia Math. 31 (1968), 29-34.
[3] B. BollobÁs, Adjointly inverses to commutative Banach algebras, Trans. Amer. Math. Soc. 181 (1973), 165-179.
[4] V. MÜLler, Non-removable ideals in commutative Banach algebras, Studia Math. 74 (1982), 97-104.
[5] V. MüLler, Removability of ideals in commmutative Banach algebras Studia Math. 78 (1984), 297-307.
[6] W. Żelazko, Concerning a problem of Arens on removable ideals in Banach algebras, Collect. Math. 30 (1974), 127-131.
[7] W. Żelazko, Metric Generalizations of Banach Algebras, Rozprawy Math. 47 (1965).
[8] W. Żelazko, On permanently singular elements in commutative m-convex algebras,Studia Math. 37 (1971), 181-190.
[9] W. Żelazko, Concerning non-removable ideals in commutative m-convex algebras,Demonstratio Math. 11 (1978), 239-245.
[10] W. Żelazko, On non-removable ideals in commmutative locally convex algebras, Studia Math. 77 (1984), 133-154.

Antonio Fernández, Miguel Florencio, Pedro J. Paúl
Dpto. Matemática Aplicada
E.S. Ingenieros Industriales

Av. Reina Mercedes s/n
41012-Sevilla. SPAIN
Vladimír Müller
MÚ ČSAV
Žitná, 25
11567 Praha 1.
CZECHOSLOVAKIA

[^0]: *The second and fourth named authors have been partially supported by a research project from La Consejería de Educación y Ciencia de La Junta de Andalucía. The third named author has been supported by a research grant from El Ministerio de Educación y Ciencia.

