EXTENSIONS OF TOPOLOGICAL ALGEBRAS.

Antonio Fernández, Miguel Florencio, Vladimír Müller, Pedro J. Paúl*

ABSTRACT. We prove that, in the class of commutative topological algebras with separately continuous multiplication, an element is permanently singular if and only if it is a topological divisor of zero. This extends the result given by R. Arens [1] for the Banach algebra case. We also give sufficient conditions for non-removability of ideals in commutative topological algebras with jointly continuous multiplication.

AMS Subject Classification (1980): 46J10

Introduction. By a topological algebra we mean a topological vector space with a jointly continuous multiplication making of it a complex algebra. The topology of a topological algebra A can be given by a system \mathcal{U} of zero-neighbourhoods satisfying the following properties:

- (i) For every $V \in \mathcal{U}$, there exists $W \in \mathcal{U}$ such that $W + W \subset V$.
- (ii) For every $V \in \mathcal{U}$ and $\alpha \in \mathbb{C}$ with $|\alpha| \leq 1$, $\alpha V \subset V$.
- (iii) Every $V \in \mathcal{U}$ is absorbent.
- (iv) For every $V \in \mathcal{U}$, there exists $W \in \mathcal{U}$ such that $W \cdot W \subset V$.

Every algebra in this paper will be a commutative complex algebra with unit element denoted usually by e.

A locally convex algebra is a topological algebra with a system of convex zeroneighbourhoods. The topology of a locally convex algebra A can be given by a directed system of seminorms $\{|\cdot|_{\alpha} : \alpha \in \mathcal{D}\}$ (in this case, (iv) above can be written as follows: for every $\alpha \in \mathcal{D}$ there exists $\beta \in \mathcal{D}$ such that $|xy|_{\alpha} \leq |x|_{\beta}|y|_{\beta}$ for all $x, y \in A$).

Let A and B be topological algebras with units e_A and e_B , respectively. We say that B is an extension of A if there exists a unit preserving, injective algebra homomorphism $f: A \to B$ such that A is topologically isomorphic to its image f(A). In this case, we identify A with f(A) and simply write $A \subset B$.

Let A be a topological algebra and $I \subset A$ an ideal. We say that I is removable if there exists an extension $B \supset A$ such that I is not contained in any proper ideal of B. It is easy to see that this condition is equivalent to the existence of a finite number of elements $x_1, \ldots, x_k \in I$ and $y_1, \ldots, y_k \in B$ such that $x_1y_1 + \cdots + x_ky_k = e$. An ideal which is not removable will be called non-removable. The notion of non-removable ideal was introduced by R. Arens [2]. Non-removable ideals in commutative Banach algebras have been studied, e.g., in [2], [6], [4] and [5], and in topological algebras in [8], [9] and [10].

^{*}The second and fourth named authors have been partially supported by a research project from La Consejería de Educación y Ciencia de La Junta de Andalucía. The third named author has been supported by a research grant from El Ministerio de Educación y Ciencia.

 $\S1$. The aim of this section is to give a sufficient condition for an ideal in a topological algebra to be non-removable. This condition will be shown to be more general than the one given in [10]. However, it seems that there is no simple necessary and sufficient condition characterizing non-removability. Our result will be reformulated also for permanently singular elements.

Theorem 1. Let A be a commutative topological algebra with unit e, and $\mathcal{U}(A)$ a system of zero-neighbourhoods defining the topology of A and satisfying (i)–(iv). Let $I \subset A$ be an ideal such that

(1) For every finite subset $\{x_1, \dots, x_k\} \subset I$ $\exists V \in \mathcal{U}(A), \ \forall W \in \mathcal{U}(A), \ \exists n \ge 1, \ \forall r > 0, \ \exists u \in A \setminus V$ such that $ux_i^n \in rW$ $(i = 1, \dots, k)$

then I is non-removable.

Proof. Suppose, on the contrary, that there exists an extension $B \supset A$, and elements $x_1, \ldots, x_k \in I$; $y_1, \ldots, y_k \in B$ such that $x_1y_1 + \cdots + x_ky_k = e$. Let $\mathcal{U}(B)$ be a system of zero-neighbourhoods for the topology of B. Let $V \in \mathcal{U}(A)$ be the neighbourhood given by condition (1). Take $V', W' \in \mathcal{U}(B)$ such that $V' \cap A \subset V$ and $\underbrace{W'W' + \cdots + W'W'}_{k \text{ times}} \subset K$

V', and $W \in \mathcal{U}(A)$ satisfying $W \subset W' \cap A$. Let n be the integer from condition (1) (for V and W) and m = k(n-1) + 1. Then we have

$$e = e^{m} = \left(\sum_{i=1}^{k} x_{i} y_{i}\right)^{m} = \sum_{i_{1} + \dots + i_{k} = m} \frac{m!}{i_{1}! \cdots i_{k}!} (x_{1} y_{1})^{i_{1}} \cdots (x_{k} y_{k})^{i_{k}}.$$

In every term of this sum at least one exponent $i_j \ge n$, so that, for some $v_i \in B$, we may write

$$e = \sum_{i=1}^{k} x_i^n v_i.$$

Take s > 0 such that $v_i \in sW'$ for i = 1, ..., k, let $r = s^{-1}$ and take $u \in A \setminus V$ given by condition (1). Then

$$u \in A \setminus V \subset B \setminus V'$$

but, on the other hand

$$ux_i^n v_i = (ux_i^n)v_i \in rW \cdot sW' \subset W' \cdot W' \qquad (i = 1, \dots, k)$$

and therefore

$$u = ue = \sum_{i=1}^{k} ux_i^n v_i \in \underbrace{W'W + \dots + W'W'}_{k \text{ times}} \subset V',$$

a contradiction.

Remark 1. For a locally convex algebra A, with the topology given by a system of seminorms $\{| \cdot |_{\alpha} : \alpha \in \mathcal{D}\}$ condition (1) can be reformulated as follows:

(1') For every finite subset
$$\{x_1, \ldots, x_k\} \subset I$$

 $\exists \ \alpha \in \mathcal{D}, \ \forall \ \beta \in \mathcal{D}, \ \exists \ n \ge 1 \text{ such that} \quad \inf \left\{ \sum_{i=1}^k |ux_i^n|_\beta : u \in A, \ |u|_\alpha = 1 \right\} = 0.$

Therefore, if I is an ideal in A satisfying (1') then it is non-removable.

Remark 2. In [10, Prop.2.18] was given the following sufficient condition for the nonremovability of an ideal I in a topological algebra A with a system of zero-neighbourhoods \mathcal{U} :

(2) I is contained in an ideal $J = I_1 + I_s(A)$ where: I_1 consists locally of joint topological divisors of zero, *i.e.*, for every finite $\{y_1, \ldots, y_r\} \subset I_1$ there exists a net $\{u_{\gamma}\}_{\gamma} \subset A$ such that $u_{\gamma} \not\rightarrow 0$ but $u_{\gamma}y_i \rightarrow 0$, for $i = 1, \ldots, r$. $I_s(A)$ is the set of all elements of A with small powers: $z \in A$ is said to have small powers if for every zero-neighbourhood Vthere exists an integer $n \ge 1$ such that $\lambda z^n \in V$ for all $\lambda \in \mathbb{C}$.

Proposition. Let A be a topological algebra and $I \subset A$ an ideal satisfying (2), then I satisfies (1).

Proof. Let \mathcal{U} be a system of zero-neighbourhoods in A satisfying (i)–(iv). To see that I satisfies condition (1), take $x_1, \ldots, x_k \in I$. Then, since I satisfies condition (2), we can find $y_1, \ldots, y_k \in I_1$ and $z_1, \ldots, z_k \in I_s(A)$ such that $x_i = y_i + z_i$ for $i = 1, \ldots, k$. It is easy to see that the y_i 's and the z_i 's satisfy the following conditions:

(a) $\exists V \in \mathcal{U}, \forall W \in \mathcal{U}, \exists u \in A \setminus V \text{ such that } uy_i \in W \text{ for } i = 1, \dots, k.$

(b) $\forall U \in \mathcal{U}, \exists n \ge 1 \text{ such that } z_i^n \in \bigcap_{r>0} rU \text{ for } i = 1, \dots, k.$

Let $V \in \mathcal{U}$ be given by (a), and for $W \in \mathcal{U}$ arbitrary take $U \in \mathcal{U}$ such that $UU+UU \subset W$. Let $n \geq 1$ be the integer from (b), then we can write:

$$x_i^n = (y_i + z_i)^n = z_i^n + y_i \left[\sum_{j=1}^n \binom{n}{j} y_i^{j-1} z_i^{n-j} \right] = z_i^n + y_i v_i \qquad (i = 1, \dots, k)$$

for some $v_1, \ldots, v_k \in A$. Fix r > 0 and let s > 0 be such that $v_i \in sU$ for $i = 1, \ldots, k$, then by using (a) we can find $u \in A \setminus V$ such that

$$uy_i \in rs^{-1}U \qquad (i = 1, \dots, k).$$

Therefore, we can write $ux_i^n = uz_i^n + (uy_i)v_i$ where, for some t > 0,

$$uz_i^n \in (tU) \left(\bigcap_{r' > 0} r'U \right) \subset \bigcap_{r' > 0} r'UU \subset rUU$$

and, on the other hand,

$$(uy_i)v_i \in rs^{-1}U \cdot sU \subset rUU.$$

Hence $ux_i^n \in rUU + rUU \subset rW$, for i = 1, ..., k, which proves that I satisfies (1).

An element x of a topological algebra A is called permanently singular if x is singular in every extension $B \supset A$. Clearly, $x \in A$ is permanently singular if and only if the ideal xA generated by x is non-removable. Therefore Theorem 1 yields the following

Corollary. Let A be a commutative topological algebra with unit e, and a system of zero-neighbourhoods \mathcal{U} satisfying (i)–(iv). Suppose $x \in A$ satisfies the following condition

(3)
$$\exists V \in \mathcal{U}, \forall W \in \mathcal{U}, \exists n \ge 1$$
, such that $(A \setminus V)x^n \cap rW \neq \emptyset$ for every $r > 0$,

then x is permanently singular.

Remark 3. The previous corollary for locally convex algebras has been proved in [8, Prop. 2]. If A is a locally convex algebra, and $\{| \cdot |_{\alpha} : \alpha \in \mathcal{D}\}$ is the corresponding system of seminorms, condition (3) may be written as follows:

(3') $\exists \alpha \in \mathcal{D}, \forall \beta \in \mathcal{D}, \exists n \ge 1$, such that $\inf\{|zx^n|_{\beta} : z \in A |z|_{\alpha} = 1\} = 0$.

We construct now an example showing that condition (1) is more general than (2) even in the case of simply generated ideals in locally convex algebras.

Example. Let A be the algebra of all polynomials with complex coefficients in the variable x, endowed with the topology given by the system of seminorms $|\cdot|_k$, k = 1, 2, ... defined by:

$$\left|\sum_{i=0}^{\infty} \alpha_i x^i\right|_k = \sum_{i=0}^{\infty} c_{ki} |\alpha_i| \qquad (k = 1, 2, \dots)$$

(actually, all sums are finite) where c_{ki} , (k = 1, 2, ...; i = 0, 1, 2, ...) are positive numbers satisfying:

$$\begin{aligned} & (\alpha) \quad c_{k,0} = 1 \\ & (\beta) \quad c_{k,i+j} \le c_{k+1,i} c_{k+1,j} \\ & (\gamma) \quad c_{k+1,i} \ge c_{k,i} \\ & (\delta) \quad c_{k+1,i+1} \ge c_{k,i} \\ & (\varepsilon) \quad \inf \left\{ \frac{c_{k,k+j}}{c_{1,j}} \, : \, j = 0, 1, \dots \right\} = 0. \end{aligned}$$

Conditions (β) and (γ) imply that A is a locally convex algebra. It is clear, since all $c_{ik} > 0$, that $|\sum \alpha_i x^i|_k > 0$ for every non-zero polynomial $\sum \alpha_i x^i$ and every index $k = 1, 2, \ldots$, this means that there are no elements with small powers in A. Condition (δ) imply $|ax|_{k+1} \ge |a|_k$ for all $a \in A$ and $k = 1, 2, \ldots, i.e.$ x is not a topological divisor of zero in A. Therefore, the ideal xA does not satisfy (2).

On the other hand, x satisfies (3'): take $\alpha = 1$, and for arbitrary seminorm $|\cdot|_k$ put n = k, then, by condition (ε):

$$\inf\{|ux^k|_k : u \in A, \ |u|_1 = 1\} \le \inf_{j \ge 0} \left\{ \frac{|x^{k+j}|_k}{|x^j|_1} \right\} = \inf_{j \ge 0} \left\{ \frac{c_{k,k+j}}{c_{1,j}} \right\} = 0.$$

It remains to show that it is possible to find numbers c_{ki} satisfying $(\alpha) - (\varepsilon)$. To see this, assume we can construct sets $M_k \subset \{0, 1, 2, ...\}, k = 1, 2, ...,$ satisfying $0 \in M_k$ and

$$\begin{split} &M_{k+1} + M_{k+1} \subset M_k, \\ &M_{k+1} - 1 \subset M_k, \\ &M_{k+1} \subset M_k \text{ and} \\ &\forall \ k \geq 1, \ \forall \ n \geq k, \ \exists \ m \text{ such that } m, m+1, \dots, m+n \not\in M_1, \text{ and } m+n+k \in M_k. \end{split}$$

Now take

$$c_{k,i} = 2^{i - \max\{j \le i, j \in M_k\}}$$
 $(i = 0, 1, \dots, k = 1, 2, \dots).$

It is a matter of routine to check that the above properties of the sets M_k imply $(\alpha) - (\delta)$ for c_{ki} . To prove (ε) consider the infimum over those j = n + m, where m is the index existing for given k and $n \ge k$, *i.e.*,

$$\inf\left\{\frac{c_{k,k+j}}{c_{1,j}}, \ j \ge 0\right\} \le \inf\left\{\frac{c_{k,n+m+k}}{c_{1,n+m}}, \ n \ge k\right\} \le \inf\left\{\frac{1}{2^n}, \ n \ge k\right\} = 0.$$

The sets M_k can be constructed as follows: put

$$N_k^{(0)} = \left\{ 2^{2^i}, \ i \ge k \right\} \qquad (k = 1, 2, \dots),$$
$$N_k^{(r)} = N_{k+1}^{(r-1)} \cup \left(N_{k+1}^{(r-1)} - 1 \right) \cup \bigcup_{s=0}^{r-1} \left(N_{k+1}^{(r-1)} + N_{k+1}^{(s)} \right) \qquad (k = 1, 2, \dots, r = 1, 2, \dots)$$

and now take

$$M_k = \bigcup_{r=0}^{\infty} N_k^{(r)} \cup \{0\}$$
 $(k = 1, 2, ...).$

Clearly $M_{k+1} \subset M_k$ since $N_{k+1}^{(r-1)} \subset N_k^{(r)}$ for $r = 0, 1, \ldots$ The properties $M_{k+1} - 1 \subset M_k$ and $M_{k+1} + M_{k+1} \subset M_k$ can be checked analogously. Finally, fix k and $n \geq k, n \geq 2$ and put $m = 2^{2^n} - 2n$. Then $2^{2^n} \in M_n, 2^{2^n} - 1 \in M_n$

Finally, fix k and $n \ge k$, $n \ge 2$ and put $m = 2^{2^n} - 2n$. Then $2^{2^n} \in M_n$, $2^{2^n} - 1 \in M_{n-1}$ and by induction $m + n + k = 2^{2^n} - (n-k) \in M_k$. It remains to prove that $m, m + 1, \ldots, m + n \notin M_1$. First note that for $j = 1, 2, \ldots, r = 0, 1, 2, \ldots$ we have:

$$\min N_j^{(r)} = \min N_{j+1}^{(r-1)} - 1 = \dots = \min N_{j+r}^{(0)} - r = 2^{2^{j+r}} - r.$$

Further, the open interval $(2^{2^{n-1}}, 2^{2^n})$ and $N_j^{(0)}$ are disjoint: $N_j^{(0)} \cap (2^{2^{n-1}}, 2^{2^n}) = \emptyset$, and it is easy to prove, by induction on r, that, as a matter of fact, we have:

$$N_j^{(r)} \cap \left(2^r 2^{2^{n-1}}, 2^{2^n} - r\right) = \emptyset$$

for every r and j as before. Therefore,

$$M_{1} \cap \left[2^{2^{n}} - 2n, 2^{2^{n}} - n\right] = \bigcup_{r=0}^{n-1} \left\{ N_{1}^{(r)} \cap \left[2^{2^{n}} - 2n, 2^{2^{n}} - n\right] \right\} \subset \bigcup_{r=0}^{n-1} \left\{ N_{1}^{(r)} \cap \left(2^{r} 2^{2^{n-1}}, 2^{2^{n}} - r\right) \right\} = \emptyset.$$

Hence $m = 2^{2^n} - 2n, m + 1, ..., m + n = 2^{2^n} - n \notin M_1$.

§2. In this section we deal with algebras having multiplication only separately continuous. These algebras have been also called topological algebras by some authors (see e.g. [7]). To avoid misunderstanding, these algebras will be called s-algebras in this paper.

In terms of zero-neighbourhoods, the difference is that for an s-algebra A we assume (i)–(iii) plus the following (iv') which is weaker than (iv):

(iv) For every $V \in \mathcal{U}$ and $x \in A$, there exists $W \in \mathcal{U}$ such that $xW \subset V$.

An element x of an s-algebra A is said to be a topological divisor of zero if there exists a net $\{u_{\alpha}\}_{\alpha} \in A$ such that $u_{\alpha} \neq 0$ but $u_{\alpha}x \to 0$. Clearly, x is not a topological divisor of zero if and only if the mapping $f_x(a) = xa$ is a homeomorphism from A onto xA. The notion of s-extension is defined analogously to the notion of extension for topological algebras. Let A be an s-algebra and $x \in A$ be a topological divisor of zero, then x is singular in any s-extension $B \supset A$. If this were not the case, we could find an s-extension $B \supset A$ and $y \in B$ such that xy = e. But for $(u_{\alpha})_{\alpha}$, the net in A such that $u_{\alpha} \neq 0$ and $u_{\alpha}x \to 0$ we would have $u_{\alpha} = u_{\alpha}e = (u_{\alpha}x)y \to 0$ (by the separate continuity of multiplication in B), a contradiction.

The purpose of this section is to prove the converse of the statement above. This will mean that in the class of s-algebras there exists a simple characterization of permanently singular elements, similar to the one that holds for Banach algebras (recall that if A is a Banach s-algebra, then A is a Banach algebra by the Banach–Steinhaus theorem).

Let A be an s-algebra with unit e and \mathcal{U} a system of zero-neighbourhoods in A satisfying (i)–(iii) and (iv'). Let A[x] be the algebra of all polynomials with coefficients from A in one variable x. We define a topology in A[x] in the following way: Let $\tilde{V} = (V_i)_{i=0}^{\infty}$ be a sequence from \mathcal{U} and define

$$N_{\tilde{V}} = \left\{ \sum_{i=0}^{n} a_i x^i \in A[x] : a_i \in V_i, \ i = 0, 1, \dots \right\}.$$

Let \mathcal{V} be the set of all $N_{\tilde{V}}$ obtained from all sequences V. It is easy to see that \mathcal{V} satisfies (i), (ii), (iii) and (iv'), therefore A[x] is an s-algebra (if we identify A[x] with the countable direct sum of copies of A by means of

$$\sum_{i=0}^{n} a_i x^i \in A[x] \to (a_0, a_1, \dots, a_n, 0, \dots) \in \bigoplus_{m=0}^{\infty} A$$

the topology defined above is precisely the direct sum topology). By identifying elements of A with constant polynomials we see that A[x] is an s-extension of A. Moreover, if A is a locally convex s-algebra, then A[x] is also locally convex.

Let A be an s-algebra and $I \subset A$ a closed ideal. Then A/I is again an s-algebra. To see this we only need to prove (iv'): let $a+I \in A/I$ and let V+I be a zero-neighbourhood in A/I. Take W such that $aW \subset V$, then

$$(a+I)(W+I) \subset aW + aI + IW + I^2 \subset V + I.$$

Theorem 2. Let A be an s-algebra with unit e and $u \in A$. Then u is invertible in some s-extension $B \supset A$ if and only if u is not a topological divisor of zero in A.

Proof. One implication was proved above. Conversely, assume that u is not a topological divisor of zero in A, *i.e.* that $a \mapsto au$ is a homeomorphism from A onto uA. This implies that for every $V \in \mathcal{U}$ there exists $V' \in \mathcal{U}$ such that $V' \cap uA = uV$. Consider the salgebra A[x] and let I be the ideal generated by e - ux, I = (e - ux)A[x]. We prove firstly that I is closed in A[x]: Let $(p_{\alpha})_{\alpha}$ be a net of elements from I,

$$p_{\alpha} = (e - ux) \sum_{i=0}^{\infty} b_i^{(\alpha)} x^i = b_0^{(\alpha)} + \sum_{i=0}^{\infty} (b_i^{(\alpha)} - ub_{i-1}^{(\alpha)}) x^i$$

(where only a finite number of coefficients $b_i^{(\alpha)}$ are non-zero for every α) and suppose that $p_{\alpha} \to p = \sum_{i=0}^{n} a_i x^i$ in the topology of A[x]. Then, coordinate-wise, we have:

$$b_0^{(\alpha)} \to a_0,$$

$$b_i^{(\alpha)} - ub_{i-1}^{(\alpha)} \to a_i \quad \text{for } i = 1, \dots, n_i$$

$$b_i^{(\alpha)} - ub_{i-1}^{(\alpha)} \to 0 \quad \text{for } i > n.$$

Since $b_0^{(\alpha)} u \to a_0 u$, we have $b_1^{(\alpha)} \to a_1 + a_0 u$, and inductively:

$$b_i^{(\alpha)} \to c_i := a_i + a_{i-1}u + \dots + a_0u^i \quad \text{for } i = 0, \dots, n,$$

$$b_i^{(\alpha)} \to a_n u^{i-n} + a_{n-1}u^{i-n+1} + \dots + a_0u^i = c_n u^{i-n} \quad \text{for } i > n$$

where $c_n = a_n + a_{n-1}u + \dots + a_0u^n$. Suppose $c_n \neq 0$ and let $V_0 \in \mathcal{U}$ such that $c_n \notin V_0$. Let $W_0 \in \mathcal{U}$ such that $W_0 + W_0 \subset V_0$. Construct $V_i, W_i \in \mathcal{U}$ such that:

$$V_{i+1} \cap uA \subset uW_i$$
 and $W_{i+1} + W_{i+1} \subset V_{i+1}$ for $i = 0, 1, 2, ...$

and consider the zero-neighbourhood N_W in A[x] given by the sequence

$$(\underbrace{W_0,\ldots,W_0}_{n \text{ times}},W_0,W_1,W_2,\ldots).$$

Since $p_{\alpha} \to p$ and $b_n^{(\alpha)} \to c_n$, there exists an index α such that $b_{n+i}^{(\alpha)} - ub_{n+i-1}^{(\alpha)} \in W_i$ (i = 1, 2, ...)

and also

$$b_n^{(\alpha)} - c_n \in W_0.$$

This implies $b_n^{(\alpha)} \notin W_0$ since $c_n \notin V_0$. We prove now, by induction, that $b_{n+i}^{(\alpha)} \notin W_i$ for $i = 0, 1, \ldots$: suppose $b_{n+i}^{(\alpha)} \notin W_i$, then $ub_{n+i}^{(\alpha)} \notin uW_i$, and so $ub_{n+i}^{(\alpha)} \notin V_{i+1}$. Write $ub_{n+i}^{(\alpha)} = \left(-b_{n+i+1}^{(\alpha)} + ub_{n+i}^{(\alpha)}\right) + b_{n+i+1}^{(\alpha)}$ to deduce that $b_{n+i+1}^{(\alpha)} \notin W_{i+1}$. Therefore, we have that $b_{n+i}^{(\alpha)} \notin W_i$ for $i = 0, 1, \ldots$ which implies $b_{n+i}^{(\alpha)} \neq 0$ for all $i \ge 0$ and this contradicts the fact that $\sum b_i^{(\alpha)} x^i$ is a polynomial and, consequently, has only a finite number of non-zero coefficients. We have proved that $c_n = 0$ and therefore p, the limit of p_{α} , can be written as:

$$p = \sum_{i=0}^{n} a_i x^i = (e - ux) \sum_{i=0}^{n-1} c_i x^i \in I = (e - ux)A.$$

Now, let $q: A[x] \to A[x]/I$ be the canonical homomorphism and let $g: A \to A[x]$ be the natural embedding. Denote by $f = q \circ g$. Since $e - ux \in I$, we have (u+I)(x+I) = e + I, hence f(u) is invertible in A[x]/I. Finally, we must check that A[x]/I is an s-extension of A. Clearly f is a continuous algebra homomorphism. To prove that f is 1-1 and f(A) is topologically isomorphic to A, it suffices to prove that for all $V \in \mathcal{U}$ there exists a sequence $\tilde{W} = \{W_i\}_{i=0}^{\infty}, W_i \in \mathcal{U} \ (i = 0, 1, ...)$ such that $f(a) \in N_{\tilde{W}}$ implies $a \in V$.

Let $V \in \mathcal{U}$. We can find $W_0 \in \mathcal{U}$ such that $W_0 + W_0 \subset V$ (hence $W_0 \subset V$). Choose $V_1 \in \mathcal{U}$ such that $ua \in V$ implies $a \in W_0$, and take $W_1 \in \mathcal{U}$ such that $W_1 + W_1 \subset V_1$. Define inductively neighbourhoods $V_i, W_i \in \mathcal{U}$ such that

$$ua \in V_{i+1}$$
 implies $a \in W_i$,
 $W_{i+1} + W_{i+1} \subset V_{i+1}$, (hence $W_{i+1} \subset V_{i+1}$).

Let $N_{\tilde{W}} \in \mathcal{V}$ be the zero-neighbourhood in A[x] corresponding to the sequence $\tilde{W} = (W_i)_{i=0}^{\infty}$.

Let $a \in A$ satisfy $f(a) \in N_{\tilde{W}} + I$. This means that $a - p \in N_{\tilde{W}}$ for some $p = (e - xu) \sum_{i=0}^{n} b_i x^i \in I$ (we identify A with the constant polynomials $g(A) \subset A[x]$). We have

$$a - p = (a - b_0) + x(ub_0 - b_1) + x^2(ub_1 - b_2) + \dots + x^{n+1}(ub_n).$$

Since $ub_n \in W_{n+1} \subset V_{n+1}$ we have $b_n \in W_n$. Furthemore $ub_{n-1} = (ub_{n-1} - b_n) + b_n \in W_n + W_n \subset V_n$, so that $b_{n-1} \in W_{n-1}$. We continue in the same way and obtain $b_i \in W_i$ for $i = n - 1, \ldots, 1, 0$. Finally, since $b_0 \in W_0, a = (a - b_0) + b_0 \in W_0 + W_0 \subset V$.

References

- [1] R. ARENS, Extensions of Banach algebras, *Pacific J. Math.* 10 (1960), 1–16.
- [2] R. ARENS, Ideals in Banach algebras extensions, Studia Math. **31** (1968), 29–34.
- [3] B. BOLLOBÁS, Adjointly inverses to commutative Banach algebras, Trans. Amer. Math. Soc. 181 (1973), 165–179.
- [4] V. MÜLLER, Non-removable ideals in commutative Banach algebras, Studia Math. 74 (1982), 97–104.
- [5] V. MÜLLER, Removability of ideals in commutative Banach algebras Studia Math. 78 (1984), 297–307.
- [6] W. ZELAZKO, Concerning a problem of Arens on removable ideals in Banach algebras, Collect. Math. 30 (1974), 127–131.
- [7] W. ŻELAZKO, Metric Generalizations of Banach Algebras, Rozprawy Math. 47 (1965).
- [8] W. ŻELAZKO, On permanently singular elements in commutative m-convex algebras, Studia Math. 37 (1971), 181-190.
- [9] W. ŻELAZKO, Concerning non-removable ideals in commutative m-convex algebras, Demonstratio Math. 11 (1978), 239-245.
- [10] W. ZELAZKO, On non-removable ideals in commutative locally convex algebras, Studia Math. 77 (1984), 133–154.

Antonio Fernández, Miguel Florencio, Pedro J. Paúl Dpto. Matemática Aplicada E.S. Ingenieros Industriales Av. Reina Mercedes s/n 41012–Sevilla. SPAIN

Vladimír Müller MÚ ČSAV Žitná, 25 11567 Praha 1. CZECHOSLOVAKIA