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Abstract. If T is an s-regular operator in a Banach space (i.e. T has closed range
and N(T ) ⊂ R∞(T )) and γ(T ) is the Kato reduced minimum modulus, then

lim
n→∞

γ(Tn)1/n = sup{r : T − λ is s− regular for |λ| < r}.

Let x be an element of a Banach algebra A. The spectral radius of x is given by
the well-known spectral radius formula: r(x) = limn→∞ ‖xn‖1/n.

There are a number generalizations of this formula. If we denote d(x) = inf{‖xy‖ :
y ∈ A, ‖y‖ = 1} and by τl(x) = {λ ∈ C : d(x − λ) = 0} the left approximate point
spectrum of x then dist {0, τl(x)} = limn→∞ d(xn)1/n, see [13], [9]. In particular in the
algebra B(X) of all bounded linear operators in a Banach space X this gives formulas
for radii of boundedness below or surjectivity:

sup{r : T − λ is bounded below for |λ| < r} = lim
n→∞

j(Tn)1/n

and
sup{r : T − λ is onto for |λ| < r} = lim

n→∞
k(Tn)1/n,

where j(T ) and k(T ) are the moduli of injectivity and surjectivity of T :

j(T ) = inf{‖Tx‖ : x ∈ X, ‖x‖ = 1}

and
k(T ) = sup{r : TUX ⊃ rUX},

where UX is the closed unit ball in X.
For a bounded linear operator T in a Banach space X denote by N(T ) and R(T )

its kernel and range, respectively. Denote further R∞(T ) =
⋂∞

n=1 R(Tn) and N∞(T ) =⋃∞
n=1 N(Tn).

The injectivity and surjectivity moduli of an operator which is bounded below
(onto) are special cases of the Kato reduced minimum modulus [7]

γ(T ) = inf
{ ‖Tx‖

dist {x,N(T )} : x ∈ X\N(T )
}

(for T = 0 we define formally γ(T ) = ∞).
The existence and the meaning of the limit limn→∞ γ(Tn)1/n in a more general

setting was studied by Apostol [1] and Mbekhta [10].
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Definition. Let T ∈ B(X). We say that T is s-regular (= semi-regular) if R(T ) is
closed and N(T ) ⊂ R∞(T ).

The s-regular operators and closely related classes of operators were studied (under
various names) by many authors, see [3], [4], [5], [6], [8], [16]. We list some of the most
important equivalent conditions for s-regular operators, see [11], [12].

Theorem. Let T ∈ B(X) be an operator with a close range. The following conditions
are equivalent:
(1) T is s-regular,
(2) the function λ 7→ R(T − λ) is continuous at 0 in the gap topology,
(3) the function λ 7→ N(T − λ) is continuous at 0 in the gap topology,
(4) the function λ 7→ γ(T − λ) is continuous at 0,
(5) lim infλ→0 γ(T − λ) > 0,
(6) N∞(T ) ⊂ R(T ),
(7) N∞(T ) ⊂ R∞(T ).

Denote further σγ(T ) = {λ ∈ C : T − λ is not s− regular}. The set σγ(T ) was
studied by Apostol [1], Rakočevič [15], Mbekhta and Ouahab [11], [12] and Mbekhta
[10]. The terminology is not unified; we suggest to call σγ(T ) the Apostol spectrum of
T .

The Apostol spectrum σγ(T ) is always a non-empty compact subset of the complex
plane, ∂σ(T ) ⊂ σγ(T ) ⊂ σ(T ) and σγf(T ) = fσγ(T ) for any function f analytic in a
neighbourhood of σ(T ).

If T is an s-regular operator in a Hilbert space then the limit limn→∞ γ(Tn)1/n

exists and

lim
n→∞

γ(Tn)1/n = dist {0, σγ(T )} = sup{r : T − λ is s− regular for |λ| < r}, (1)

see [1], Theorem 3.2 or [10], Theorem 3.1.
The aim of this paper is to prove equality (1) for operators in Banach spaces. This

gives a positive answer to the conjecture of Rakočevič [15] and Mbekhta and generalizes
the above mentioned results for radii of injectivity and surjectivity.

Further we study the essential version of this result.
If T is a semi-Fredholm operator then the limit limn→∞ γ(Tn)1/n exists by [2] and

it is equal to the semi-Fredholm radius of T :

lim
n→∞

γ(Tn)1/n = sup{r : T − λ is semi− Fredholm for |λ| < r},

see [17] and [2].
We prove a similar formula for essentially s-regular operators which generalizes the

semi-Fredholm case.

The authors wish to thank to M. Mbekhta for drawing their attention towards the
problem and for fruitful discussions concerning it.

Lemma 1. T ∈ B(X) is s-regular if and only if there exists a closed subspace M ⊂ X
such that TM = M and the operator T̃ : X/M → X/M induced by T is bounded
below.
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Proof. If T is s-regular then set M = R∞(T ). It is well-known that M is closed and
(see e.g. [4],Theorem 3.4) that TM = M and T̃ : X/M → X/M is bounded from
bellow.

Conversely, let M be the subspace of X with the required properties. Then TM =
M implies M ⊂ R∞(T ). If Tx = 0 then T̃ (x + M) = 0 and the injectivity of T̃ implies
x ∈ M . Thus N(T ) ⊂ M ⊂ R∞(T ).

It remains to prove that T has closed range. Let π : X → X/M be the canonical
projection. We show R(T ) = π−1R(T̃ ). If y ∈ R(T ), y = Tx for some x ∈ X then
πy = Tx + M = T̃ (x + M) ∈ R(T̃ ) so that R(T ) ⊂ π−1R(T̃ ). If y ∈ X and πy ∈ R(T̃ ),
i.e. y + M = Tx + M for some x ∈ X then y ∈ R(T ) since M ⊂ R(T ). Thus
R(T ) = π−1R(T̃ ) which is closed since R(T̃ ) is closed and π continuous.

Lemma 2. Let T ∈ B(X) and let M be a closed subspace of X such that TM = M
and the operator T̃ : X/M → X/M induced by T is bounded below. Denote by
T1 : M → M the restriction of T to M . Then

lim
n→∞

γ(Tn)1/n = min
{

lim
n→∞

γ(Tn
1 )1/n, lim

n→∞
γ(T̃n)1/n

}
.

Proof. The limits on the right hand side exist by [17]. If Tnx = 0 then T̃n(x+M) = 0,
i.e. x ∈ M . Thus N(Tn) ⊂ M and N(Tn

1 ) = N(Tn). We have

γ(Tn
1 ) = inf

{ ‖Tn
1 x‖

dist {x,N(Tn
1 )} : x ∈ M\N(Tn

1 )
}

= inf
{ ‖Tnx‖

dist {x,N(Tn)} : x ∈ M\N(Tn)
}
≥ γ(Tn).

Further, since TM = M ,

γ(T̃n) = inf
{‖T̃n(x + M)‖

‖x + M‖ : x 6∈ M
}

= inf
{‖Tnx + M‖

dist {x,M} : x 6∈ M
}

≥ inf
{ ‖Tnx‖

dist {x,M} : x 6∈ M
}
≥ inf

{ ‖Tnx‖
dist {x,N(Tn)} : x 6∈ M

}
≥ γ(Tn).

Thus γ(Tn) ≤ min{γ(Tn
1 ), γ(T̃n)} and

lim sup
n→∞

γ(Tn)1/n ≤ min
{

lim
n→∞

γ(Tn
1 )1/n, lim

n→∞
γ(T̃n)1/n

}
.

Denote by
s = min

{
lim

n→∞
γ(Tn

1 )1/n, lim
n→∞

γ(T̃n)1/n
}
.

We prove lim infn→∞ γ(Tn)1/n ≥ s.
Let n ≥ 1, x = x0 ∈ R(Tn), ‖x‖ = 1 and let s > ε > 0. Then x + M ∈ R(T̃n) and

‖T̃−i(x + M)‖ ≤ γ(T̃ i)−1‖x + M‖ ≤ γ(T̃ i)−1 (i = 1, . . . , n).
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Thus there exist vectors xi ∈ T̃−i(x + M) such that

‖xi‖ ≤ γ(T̃ i)−1(1 + ε) (i = 1, . . . , n).

Denote by mi = Txi+1 − xi (i = 0, . . . , n− 1). Then

‖mi‖ ≤ ‖T‖‖xi+1‖+ ‖xi‖ ≤ (1 + ε)
[‖T‖γ(T̃ i+1)−1 + γ(T̃ i)−1

]
(i = 0, . . . , n− 1).

Further T̃ i(mi + M) = T i+1xi+1−T ixi + M = M so that mi ∈ M for each i. We have

n−1∑

i=0

T imi = (Tnxn−Tn−1xn−1)+(Tn−1xn−1−Tn−2xn−2)+· · ·+(Tx1−x0) = Tnxn−x.

Since T1M → M is onto, there exist vectors m′
i ∈ M such that Tn−im′

i = mi and
‖m′

i‖ ≤ (1 + ε)γ(Tn−i
1 )−1‖mi‖. Thus

Tn
(
xn −

n−1∑

i=0

m′
i

)
= Tnxn −

n−1∑

i=0

T imi = x

and

∥∥∥xn −
n−1∑

i=0

m′
i

∥∥∥ ≤ (1 + ε)γ(T̃n)−1 +
n−1∑

i=0

(1 + ε)2γ(Tn−i
1 )−1

[
‖T‖γ(T̃ i+1)−1 + γ(T̃ i)−1

]
.

Thus

γ(Tn)−1 ≤ (1 + ε)γ(T̃n)−1 +
n−1∑

i=0

(1 + ε)2γ(Tn−i
1 )−1

[
‖T‖γ(T̃ i+1)−1 + γ(T̃ i)−1

]
.

Find n0 such that

γ(T i
1) ≥ (s− ε)i, γ(T̃ i) ≥ (s− ε)i (i ≥ n0).

Denote by
K = max

1≤i≤n0+1
max

{
γ(T i

1)−1, γ(T̃ i)−1, (s− ε)−i
}
.

For n large enough we have

γ(Tn)−1 ≤ (1 + ε)2
[
(s− ε)−n +

n−n0−1∑

i=n0

(s− ε)i−n
(‖T‖(s− ε)−i−1 + (s− ε)−i

)

+
n0−1∑

i=0

(s− ε)i−n
(‖T‖ ·K + K

)
+

n−1∑

i=n−n0

K
(‖T‖(s− ε)−i−1 + (s− ε)−i

)]

≤ (1 + ε)2(s− ε)n0−n
[
K + (n− 2n0)(K · ‖T‖+ K) + 2n0K(‖T‖ ·K + K)+

]

≤ (1 + ε)2(s− ε)n0−nn ·K ′,
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where K ′ is a constant independent of n. Hence

lim inf
n→∞

γ(Tn)1/n ≥ lim inf
n→∞

(s− ε)
n−n0

n = s− ε.

Since ε > 0 was arbitrary, we conclude that lim infn→∞ γ(Tn)1/n ≥ s, so that

lim
n→∞

γ(Tn)1/n = s.

Theorem 3. Let T ∈ B(X) be s-regular. Then

dist {0, σγ(T )} = lim
n→∞

γ(Tn)1/n.

Proof. Denote r = dist {0, σγ(T )}. Let M = R∞(T ), T1 = T |M and let T̃ : X/M →
X/M be the operator induced by T . If λ is a complex number satisfying

|λ| < lim
n→∞

γ(Tn)1/n = min{ lim
n→∞

γ(Tn
1 )1/n, lim

n→∞
γ(T̃n)1/n},

then T1 − λ is onto and T̃ − λ is bounded below. Thus T − λ is s-regular by Lemma 1
and limn→∞ γ(Tn)1/n ≤ r.

Conversely, it is well-known (see e.g. [15], Theorem 5.2) that R∞(T−λ) is constant
on the component of C\σγ(T ) containing 0, in particular R∞(T − λ) = M for |λ| < r.

If |λ| < r then (T − λ)M = M and T̃ − λ = ˜T − λ : X/M → X/M is bounded below.
Thus limn→∞ γ(Tn

1 )1/n ≥ r and limn→∞ γ(T̃n)1/n ≥ r. Hence limn→∞ γ(Tn)1/n ≥ r
by Lemma 2.

Remark. It is possible to deduce the inequality dist {0, σγ(T )} ≥ limn→∞ γ(Tn)1/n

from [11], Theorem 2.10. We have obtained a new direct proof of this result.

Definition. T ∈ B(X) is called essentially s-regular if R(T ) is closed and there exists
a finite dimensional subspace F ⊂ X such that N(T ) ⊂ R∞(T ) + F .

Define further σeγ(T ) = {λ ∈ C : T − λ is not essentially s-regular }.

For properties of essentially s-regular operators and the set σeγ(T ) see [14],[15].

Theorem 4. Let T ∈ B(X) be essentially s-regular . Then the limit limn→∞ γ(Tn)1/n

exists and

lim
n→∞

γ(Tn)1/n = max
{
r : T − λ is s− regular for 0 < |λ| < r

}
= dist

{
0, σγ(T )\{0}}.

Proof. By [14],Theorem 3.1 or [15], Theorem 2.1 there exist subspaces X1, X2 ⊂ X
such that X = X1 ⊕ X2, dim X1 < ∞, TX1 ⊂ X1, TX2 ⊂ X2, T1 = T |X1 si nilpo-
tent and T2 = T |X2 is s-regular (the Kato decomposition). By the previous theo-
rem dist {0, σγ(T2)} = limn→∞ γ(Tn

2 )1/n. For n ≥ dim X1 we have Tn
1 = 0 so that
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N(Tn) = X1 ⊕N(Tn
2 ). Let P be the projection with R(P ) = X2 and N(P ) = X1. Let

x2 ∈ X2. We have

dist {x2, N(Tn
2 )} = inf{‖x2 − y2‖ : y2 ∈ X2, T

n
2 y2 = 0}

≤‖P‖ inf{‖y1 ⊕ (x2 − y2)‖ : y1 ∈ X1, y2 ∈ X2, T
n
2 y2 = 0}

=‖P‖dist {x2, N(Tn)} ≤ ‖P‖dist {x2, N(Tn
2 )}.

Then

γ(Tn
2 ) = inf

{ ‖Tn
2 x2‖

dist {x2, N(Tn
2 )} : x2 ∈ X2\N(Tn

2 )
}

≤ inf
{ ‖Tnx2‖

dist {x2, N(Tn)} : x2 ∈ X2\N(Tn)
}

= inf
{ ‖Tn(x1 ⊕ x2)‖

dist {x1 ⊕ x2, N(Tn)} : x1 ⊕ x2 ∈ X\N(Tn)
}

= γ(Tn)

and

γ(Tn) ≤ inf
{ ‖Tn

2 x2‖
dist {x2, N(Tn)} : x2 ∈ X2\N(Tn

2 )
}

≤‖P‖ inf
{ ‖Tn

2 x2‖
dist {x2, N(Tn

2 )} : x2 ∈ X2\N(Tn
2 )

}
= ‖P‖γ(Tn

2 ).

Hence limn→∞ γ(Tn)1/n = limn→∞ γ(Tn
2 )1/n.

If λ 6= 0 then T − λ is s-regular if and only if T2 − λ is s-regular. Then

max{r : T − λ is s− regular for 0 < |λ| < r} = dist {0, σγ(T2)} = lim
n→∞

γ(Tn)1/n.

The following lemma is an analog of Lemma 1 for essentially s-regular operators:

Lemma 5. T ∈ B(X) is essentially s-regular if and only if there exists a closed subspace
M ⊂ X such that TM = M and the operator T̃ : X/M → X/M induced by T is upper
semi-Fredholm.

Proof. If T is essentially s-regular then set M = R∞(T ). If X = X1 ⊕X2 is the Kato
decomposition (dim X1 < ∞, TX1 ⊂ X1, TX2 ⊂ X2, T1 = T |X nilpotent and T2 =
T |X2 s-regular) then M = R∞(T2) ⊂ X2 and TM = T2M = M . If x = x1⊕x2 satisfies
Tx ∈ M then T2x2 ∈ M so that x2 ∈ M . Thus x ∈ X1 + M and N(T̃ ) ⊂ X1 + M .
Hence dim N(T̃ ) < ∞.

Let π : X → X/M be the canonical projection. Since M ⊂ R(T ) and R(T̃ ) =
{Tx + M : x ∈ X} = πR(T ) the range of T̃ is closed. Thus T̃ is upper semi-Fredholm.

Conversely, let M be a subspace of X with the required properties. We can prove
that R(T ) is closed in exactly the same way as in Lemma 1.

Further M ⊂ R∞(T ). If Tx = 0 then T̃ (x + M) = 0, i.e. πx ∈ N(T̃ ). Thus
N(T ) ⊂ π−1N(T̃ ) ⊂ M + F ⊂ R∞(T ) + F for a finite dimensional subspace F ⊂ X.
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Theorem 6. Let T,A ∈ B(X), TA = AT , let A be a quasinilpotent. Then
(1) σγ(T + A) = σγ(T ),
(2) σγe(T + A) = σγe(T ).

Proof. Let T be an essentially s-regular operator and let A be a quasinilpotent
commuting with T . Denote M = R∞(T ), T1 = T |M and let T̃ : X/M → X/M
be the operator induced by T . Clearly AM ⊂ M so that we can define operators
A1 = A|M and Ã : X/M → X/M induced by A. Clearly r(A1) = limn→∞ ‖An

1‖1/n ≤
limn→∞ ‖An‖1/n = 0 and r(Ã) = limn→∞ ‖Ãn‖1/n ≤ limn→∞ ‖An‖1/n = 0 so that
σ(A1) = {0} and σ(Ã) = {0}. Denote by

σδ(T ) = {λ ∈ C : T − λ is not onto},
σπ(T ) = {λ ∈ C : T − λ is not bounded below} and

σπe(T ) = {λ ∈ C : T − λ is not upper semi− Fredholm}
the defect spectrum, the approximate point spectrum and the essential approximate
point spectrum, respectively.

By the spectral mapping property for these spectra we have

σδ(T + A) = σδ(T ),

σπ(T̃ + Ã) = σπ(T̃ ),

σπe(T̃ + Ã) = σπe(T̃ ).

Thus 0 6∈ σδ(T +A), i.e. (T +A)M = M . Similarly 0 6∈ σπe(T̃ + Ã), i.e. T̃ + Ã is upper
semi-Fredholm. By the previous lemma T + A is essentially s-regular. This proves (2).

If T is s-regular and A an quasinilpotent commuting with T then in the same way
(T + A)M = M and T̃ + Ã is bounded below. Hence T + A is s-regular by Lemma 1.

Remark. Statement (1) for Hilbert space operators was proved in [10], Theorem 4.8.
The second statement gives a positive answer to question 3 of [15].
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semi-Fredholm, Rend. Circ. Math. Palermo 29 (1989), 69–105.
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