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Abstract
We exhibit an example of a non-commutative B0-algebra without generalized topo-

logical divisors of zero. This gives an answer to Problems 1 and 2 of Żelazko, [5].

One of basic concepts of the theory of Banach algebras is the concept of topological
divisors of zero. A topological divisor of zero in a Banach algebra A is a non-zero
element x ∈ A such that there exists a sequence of elements xn ∈ A, ‖xn‖ = 1 with
limn→∞ xnx = 0. By a well-known result of Shilov a complex Banach algebra either
possesses a topological divisor of zero or is isomorphic to the field of complex numbers.
An analogous result fails for general locally convex algebras and therefore Żelazko [3]
introduced the concept of generalized topological divisors of zero.

A topological algebra A is said to possess generalized topological divisors of zero
if there are sets S1, S2 ⊂ A such that 0 /∈ S1, 0 /∈ S2 but 0 ∈ S1S2. This is equivalent
to the condition that there exists a neighbourhood U of zero such that 0 ∈ (A\U)2.

In [4] it was proved that a complex m-convex algebra either possesses generalized
topological divisors of zero or is isomorphic to the field of complex numbers and con-
jectured that this is also true for an arbitrary topological algebra. This conjecture was
disproved in [1] where a commutative B0-algebra possessing no generalized topological
divisors of zero was constructed.

A B0-algebra is a completely metrizable locally convex algebra. The topology of
a B0-algebra can be given by means of a sequence of seminorms ‖ · ‖n, n = 1, 2, . . .
satisfying

‖x‖1 ≤ ‖x‖2 ≤ · · · (x ∈ A) (1)

and
‖xy‖n ≤ ‖x‖n+1 · ‖y‖n+1 (2)

for all x, y ∈ A and n = 1, 2, . . ..
It is easy to see (cf. [5]) that a B0-algebra A does not possess generalized topological

divisors of zero if and only if its topology can be given by a sequence of seminorms
‖ · ‖n, n = 1, 2, . . . satisfying (1), (2) and, for some positive constants cn,

‖x‖n · ‖y‖n ≤ cn‖xy‖n+1 (x, y ∈ A,n = 1, 2, . . .). (3)

In this paper we construct a complex non-commutative B0-algebra without gener-
alized topological divisors of zero. This gives a positive answer to Problem 1 of [5].

The constructed algebra A has also the property that, for all nets (xα), (yα) of
elements of A,

xαyα → 0 ⇐⇒ yαxα → 0. (4)

* The paper was written during the second author’s stay at the Instituto de Matemá-
ticas, Universidad Nacional Autonoma de México.
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For Banach algebras this is equivalent to the condition

‖xy‖ ≥ k‖yx‖ (x, y ∈ A)

for some positive constant k. By a result of Le Page [2] such an algebra is necessarily
commutative. By using a similar argument it is possible to show that an m-convex
algebra satisfies (4) if and only if it is commutative, cf. [5].

The present example shows that for B0-algebras condition (4) does not imply
commutativity. This gives a negative answer to Problem 2 of [5].

Let A be the algebra of all polynomials in two non-commuting variables x1, x2.
If p ∈ A then p can be written as p =

∑n
k=0 pk, where n = deg p and the pk’s are

homogeneous polynomials of degree k.
For a homogeneous polynomial

pk =
2∑

i1,...,ik=1

ci1,...,ik
xi1 · · ·xik

with complex coefficients ci1,...,ik
we denote by

‖pk‖ =
2∑

i1,...,ik=1

|ci1,...,ik
|.

Lemma 1. Let {αk}∞k=0 be a sequence of positive numbers, 1 ≤ α0 ≤ α1 ≤ α2 ≤ · · ·.
Then there exists a sequence {βk}∞k=0, 1 ≤ β0 ≤ β1 ≤ · · · such that βk ≥ α2k (k =
1, 2, . . .) and

∞∑

k=0

βk‖(pq)k‖ ≥
( ∞∑

i=0

αi‖pi‖
)
·
( ∞∑

j=0

αj‖qj‖
)

(5)

for all polynomials p, q ∈ A.

Proof. Set β0 = 2α2
0 and define inductively

βk = max
{

α2k, 22k+3α2
k

(
2α2

k + kβ2
k−1

)2
}

(k = 1, 2, . . .).

We prove by induction on n that

n∑

k=0

βk‖(pq)k‖ ≥
(

1 +
1
2n

)(deg p∑

i=0

αi‖pi‖
)
·
(deg q∑

j=0

αj‖qj‖
)

(6)

for all polynomials p, q ∈ A with deg p + deg q = n and
∑deg p

i=0 ‖pi‖ = 1 =
∑deg q

j=0 ‖qj‖.
This will clearly imply (5).

Suppose (6) is true for all polynomials p, q ∈ A with deg p + deg q ≤ n and

deg p∑

i=0

‖pi‖ = 1 =
deg q∑

j=0

‖qj‖.
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This implies that (6) is true for all polynomials p, q ∈ A with deg p + deg q ≤ n and
either

∑deg p
i=0 ‖pi‖ = 1 or

∑deg q
j=0 ‖qj‖ = 1.

Let p =
∑l

i=0 pi, q =
∑m

j=0 qj be polynomials where l = deg p, m = deg q, l + m =

n + 1 and
∑l

i=0 ‖pi‖ = 1 =
∑m

j=0 ‖qj‖. Set

ε =
1

2n+1
(
2α2

n+1 + (n + 1)βn

) .

We distinguish three cases:

1) Let ‖pl‖ < ε. Denote by p̃ =
∑l−1

i=0 pi. Then

(pq)k = (p̃q)k (k ≤ l − 1)

and
(pq)k = (p̃q)k + plqk−l (k ≥ l),

so that

‖(p̃q)k‖ ≤ (pq)k + ‖pl‖ · ‖qk−l‖ ≤ ‖(pq)k‖+ ε (k = 0, 1, . . . , n).

Further
n∑

k=0

βk‖(p̃q)k‖ ≥
(

1 +
1
2n

)( l−1∑

i=0

αi‖pi‖
)
·
( m∑

j=0

αj‖qj‖
)

by the induction assumption. Thus we have

n+1∑

k=0

βk‖(pq)k‖ ≥
n∑

k=0

βk(‖(p̃q)k‖ − ε)

≥
(

1 +
1
2n

)( l−1∑

i=0

αi‖pi‖
)
·
( m∑

j=0

αj‖qj‖
)
− ε

n∑

k=0

βk

≥
(

1 +
1
2n

)( l∑

i=0

αi‖pi‖
)( m∑

j=0

αj‖qj‖
)
−

(
1 +

1
2n

)
αl‖pl‖

( m∑

j=0

αj‖qj‖
)
− ε(n + 1)βn

≥
(

1 +
1

2n+1

)( l∑

i=0

αi‖pi‖
)
·
( m∑

j=0

αj‖qj‖
)

+
1

2n+1
− 2α2

n+1ε− ε(n + 1)βn

≥
(

1 +
1

2n+1

)( l∑

i=0

αi‖pi‖
)
·
( m∑

j=0

αj‖qj‖
)

.

2) If ‖qm‖ < ε then we can get (6) analogously.

3) Suppose ‖pl‖ ≥ ε, ‖qm‖ ≥ ε. Then

n+1∑

k=0

βk‖(pq)k‖ ≥ βn+1‖(pq)n+1‖ ≥ βn+1ε
2

≥2α2
n+1 ≥

(
1 +

1
2n+1

)( l∑

i=0

αi‖pi‖
)
·
( m∑

j=0

αj‖qj‖
)

.
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Thus we have proved (6) for all polynomials p, q ∈ A with
∑∞

i=0 ‖pi‖ =
∑∞

j=0 ‖qj‖ = 1
and hence (5).

Theorem 2. There exists a non-commutative B0-algebra without generalized topolog-
ical divisors of zero.

Proof. Consider the algebra A from the previous lemma. Set α1,k = 1 (k = 0, 1, . . .)
and find positive numbers αn,k (n = 2, 3, . . . , k = 0, 1, . . .) inductively on n such that
1 ≤ αn,0 ≤ αn,1 ≤ · · ·, αn+1,k ≥ αn,2k and

∞∑

k=0

αn+1,k‖(pq)k‖ ≥
( ∞∑

i=0

αn,i‖pi‖
)
·
( ∞∑

j=0

αn,j‖qj‖
)

for all polynomials p, q ∈ A and for n = 1, 2, . . .. Define seminorms ‖ · ‖n on A (n =
1, 2, . . .) by

‖p‖n =
∞∑

i=0

αn,i‖pi‖ (p ∈ A).

Then we have

‖pq‖n+1 ≥ ‖p‖n · ‖q‖n (p, q ∈ A).

Further, for i ≤ j, we have

αn+1,i · αn+1,j ≥ αn+1,j ≥ αn,2j ≥ αn,i+j

and thus

‖pq‖n ≤ ‖p‖n+1 · ‖q‖n+1 (p, q ∈ A).

Thus the completion of A with the topology given by the seminorms ‖·‖n is a B0-algebra
without generalized topological divisors of zero.

Theorem 3. There exists a non-commutative B0-algebra C such that xαyα → 0 if and
only if yαxα → 0 for all pairs of nets (xα), (yα) of elements of C.

Proof. Let C be the algebra from the previous example. Suppose (xα), (yα) are nets
of elements of C and xαyα → 0. Then, for n = 1, 2, . . ., we have

‖yαxα‖n ≤ ‖yα‖n+1 · ‖xα‖n+1 ≤ ‖xαyα‖n+2 → 0,

hence yαxα → 0.
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