Criteria of regularity for norm-sequences. II

László Kérchy* and Vladimír Müller**

Abstract

The regularity property of a norm-sequence $\rho(n)=\left\|T^{n}\right\|(n \in \mathbf{N})$ ensures that the operator T can be intertwined with an isometry V, which relation can be exploited to obtain a lot of information for T itself, as it was shown in [1] and [2]. In [3] general sufficient conditions of regularity were provided. In the present note a necessary and sufficient condition of regularity is given. Applying this criterion a nonregular norm-sequence ρ of positive radius is exhibited, settling the question, posed in [1] and [3], in the negative.

1. Introduction

A mapping $\rho: \mathbf{N}_{0}=\mathbf{N} \cup\{0\} \rightarrow \mathbf{R}^{+}$is called a norm-sequence, if $\rho(0)=1$ and $\rho(m+n) \leq \rho(m) \rho(n)$ holds, for every $m, n \in \mathbf{N}_{0}$. These sequences are exactly those, which arise as $\rho(n)=\left\|T^{n}\right\|\left(n \in \mathbf{N}_{0}\right)$ with a non-nilpotent Hilbert or Banach space operator T.

We say that the norm-sequence ρ is regular, if there exists a gauge function p adjusted to ρ, more precisely, if there exist a mapping $p: \mathbf{N}_{0} \rightarrow \mathbf{R}^{+}$and a positive number c satisfying the conditions

$$
\begin{gather*}
\rho(n) \leq p(n) \quad \text { for every } \quad n \in \mathbf{N}_{0} \\
\lim _{N \rightarrow \infty} \sup _{m \in \mathbf{N}_{0}} \frac{1}{N} \sum_{n=m}^{m+N-1}\left|\frac{p(n+1)}{p(n)}-c\right|=0 \tag{1}
\end{gather*}
$$

and

$$
\begin{equation*}
\limsup _{N \rightarrow \infty} \sup _{m \in \mathbf{N}_{0}} \frac{1}{N} \sum_{n=m}^{m+N-1} \frac{\rho(n)}{p(n)}>0 \tag{2}
\end{equation*}
$$

AMS Subject Classification: 40A99, 47A99.

* Research partially supported by Hungarian NFS Research grant no. T 022920.
** Supported by the Alexander von Humboldt Foundation and partially by grant no. 201/96/0411 of GA ČR.

It is not difficult to verify that c coincides with the radius $r(\rho):=\lim _{n \rightarrow \infty} \rho(n)^{1 / n}=$ $\inf _{n \in \mathbf{N}} \rho(n)^{1 / n}$ of ρ. Thus the regularity of ρ implies the positivity of the radius $r(\rho)$. (See [1] for details.)

General sufficient conditions of regularity were provided in [3] in terms of the existence of arbitrarily long monotone sections in the derived sequence $\left\{\rho(n)^{1 / n}\right\}_{n \in \mathbf{N}}$. Our aim in this paper is to give a necessary and sufficient condition of regularity. This criterion enables us to exhibit a non-regular norm-sequence of positive radius, settling a question, posed in [1] and [3], in the negative.

2. Main results

Given a norm-sequence ρ of positive radius $r(\rho), m \in \mathbf{N}_{0}$ and $k \in \mathbf{N}$, let us introduce the notation

$$
M_{\rho}(m, k):=\max \left\{r(\rho)^{-n} \rho(n): m \leq n<m+k\right\}
$$

and

$$
c_{\rho}(m, k):=\sum_{n=m}^{m+k-1} \frac{r(\rho)^{-n} \rho(n)}{k \cdot M_{\rho}(m, k)} .
$$

If no confusion can arise then we omit the index ρ and write for short $M(m, k)$ and $c(m, k)$. Furthermore, let

$$
c(\rho):=\inf _{k \in \mathbf{N}} \sup _{m \in \mathbf{N}_{0}} c_{\rho}(m, k)
$$

Note that if ρ is a norm-sequence of positive radius, then the norm- sequence ρ^{\prime} defined by $\rho^{\prime}(n)=r(\rho)^{-n} \rho(n)$ satisfies $r\left(\rho^{\prime}\right)=1$ and $c_{\rho}(m, k)=c_{\rho^{\prime}}(m, k)$ for all m, k. Thus $c\left(\rho^{\prime}\right)=c(\rho)$.

In this way it is possible to reduce problems concerning norm-sequences of positive radius to the case of norm-sequences of radius equal to 1 . Formulas defining $M(m, k)$ and $c(m, k)$ become then particularly simple.

The following lemma summarizes basic properties of the numbers $c(m, k)$.

Lemma 1. Let ρ be a norm-sequence of positive radius. Then:
(i) $0<c(m, k) \leq 1$ for all m, k;
(ii) if $q \geq 2$ and $0 \leq m_{0}<m_{1}<\cdots<m_{q}$ then

$$
\left(m_{q}-m_{0}\right) \cdot c\left(m_{0}, m_{q}-m_{0}\right) \leq \sum_{j=0}^{q-1}\left(m_{j+1}-m_{j}\right) \cdot c\left(m_{j}, m_{j+1}-m_{j}\right)
$$

Proof. (i) is clear.
(ii) We may assume that $r(\rho)=1$. We have

$$
\begin{aligned}
& \left(m_{q}-m_{0}\right) \cdot c\left(m_{0}, m_{q}-m_{0}\right)=\sum_{n=m_{0}}^{m_{q}-1} \frac{\rho(n)}{M\left(m_{0}, m_{q}-m_{0}\right)} \\
& \leq \sum_{j=0}^{q-1} \sum_{n=m_{j}}^{m_{j+1}-1} \frac{\rho(n)}{M\left(m_{j}, m_{j+1}-m_{j}\right)}=\sum_{j=0}^{q-1}\left(m_{j+1}-m_{j}\right) \cdot c\left(m_{j}, m_{j+1}-m_{j}\right) .
\end{aligned}
$$

Q. E. D.

Our main result is the following

Theorem. The norm-sequence ρ is regular if and only if $r(\rho)>0$ and $c(\rho)>0$.

This statement is an immediate consequence of the subsequent Propositions 1, 2 and [1, Proposition 1].

Corollary. There exists a non-regular norm-sequence ρ of positive radius $r(\rho)$.
Proof. The sequence ρ is defined in the following way. Any $n \in \mathbf{N}_{0}$ can be uniquely expressed as $n=\sum_{i=0}^{\infty} a_{i} 2^{i}$, where $a_{i} \in\{0,1\}$ for every i, and $\sum_{i=0}^{\infty} a_{i}<\infty$. Then $\rho(n):=\prod_{i=0}^{\infty}(i+2)^{a_{i}}$.

We show that ρ is a norm-sequence. The inequality $\rho(m+n) \leq \rho(m) \rho(n)$ is clear if $0 \leq m, n<2$. Let $k \in \mathbf{N}$ and suppose that $\rho(m+n) \leq \rho(m) \rho(n)$ for all $m, n<2^{k}$. Let $m, n<2^{k+1}, m=a \cdot 2^{k}+m^{\prime}, n=b \cdot 2^{k}+n^{\prime}$, where $a, b \in\{0,1\}$ and $m^{\prime}, n^{\prime}<2^{k}$. Set $c:=0$ if $m^{\prime}+n^{\prime}<2^{k}$ and $c:=1$ if $m^{\prime}+n^{\prime} \geq 2^{k}$. It is easy to check the inequality $\rho(m+n) \leq \rho(m) \rho(n)$ for any possible choice of the triple $(a, b, c) \in\{0,1\}^{3}$.

By induction on k we get that ρ is a norm-sequence.
The radius of ρ is

$$
r(\rho)=\lim _{n \rightarrow \infty} \rho(n)^{1 / n}=\lim _{k \rightarrow \infty} \rho\left(2^{k}\right)^{1 / 2^{k}}=\lim _{k \rightarrow \infty}(k+2)^{1 / 2^{k}}=1 .
$$

Further, for any $k \in \mathbf{N}$, we have

$$
\sum_{n=0}^{2^{k}-1} \rho(n)=\prod_{j=2}^{k+1}\left(j^{0}+j^{1}\right)=\frac{(k+2)!}{2}
$$

and

$$
M\left(0,2^{k}\right)=\rho\left(2^{k}-1\right)=(k+1)!
$$

so that

$$
c\left(0,2^{k}\right)=\frac{k+2}{2^{k+1}} .
$$

Furthermore, for all $j \in \mathbf{N}$ and $0 \leq n<2^{k}$ we have $\rho\left(j \cdot 2^{k}+n\right)=\rho\left(j \cdot 2^{k}\right) \rho(n)$, so that $c\left(j \cdot 2^{k}, 2^{k}\right)=c\left(0,2^{k}\right)=(k+2) 2^{-(k+1)}$.

To show that $c(\rho)=0$, fix $k \geq 1$. Let $m \in \mathbf{N}_{0}$ and $d \in \mathbf{N}, d>2^{k+1}$. Find $s, t \in \mathbf{N}_{0}$ such that $s \cdot 2^{k} \leq m<(s+1) 2^{k}$ and $t \cdot 2^{k} \leq m+d<(t+1) 2^{k}$. By Lemma 1 we have $d \cdot c(m, d) \leq\left((s+1) \cdot 2^{k}-m\right)+\sum_{j=s+1}^{t-1} 2^{k} \cdot c\left(j 2^{k}, 2^{k}\right)+\left(m+d-t \cdot 2^{k}\right) \leq 2^{k+1}+(t-s-1) 2^{k} \frac{k+2}{2^{k+1}}$ so that

$$
\sup _{m \in \mathbf{N}_{0}} c(m, d) \leq \frac{2^{k+1}}{d}+\frac{k+2}{2^{k+1}}
$$

Hence $c(\rho) \leq \frac{k+2}{2^{k+1}}$ and since k was arbitrary, we conclude that $c(\rho)=0$.
In view of our Theorem the norm-sequence ρ can not be regular. Q. E. D.

3. Necessity

Proposition 1. Let ρ be a regular norm-sequence. Then $c(\rho)>0$.
Proof. Suppose on the contrary that ρ is regular and $c(r)=0$. We infer by [1, Proposition 1] that $r(\rho)$ is positive. Without loss of generality we can assume that $r(\rho)=1$.

The regularity of ρ means that there exists a gauge function p adjusted to ρ, that is

$$
\begin{gathered}
\rho(n) \leq p(n) \quad \text { for every } \quad n \in \mathbf{N}_{0}, \\
\lim _{N \rightarrow \infty} \sup _{m \in \mathbf{N}_{0}} \frac{\nu(m, N)}{N}=0
\end{gathered}
$$

and there is $\alpha>0$ such that

$$
\limsup _{N \rightarrow \infty} \sup _{m \in \mathbf{N}_{0}} \frac{\tau(m, N)}{N}>\alpha
$$

where we write for short

$$
\nu(m, N)=\sum_{n=m}^{m+N-1}\left|\frac{p(n+1)}{p(n)}-1\right| \quad \text { and } \quad \tau(m, N)=\sum_{n=m}^{m+N-1} \frac{\rho(n)}{p(n)}
$$

Thus $\nu(m, N)$ characterizes the smoothness of p and $\tau(m, N)$ the distance of ρ and p.
Since $c(\rho)=0$ there exists $k \in \mathbf{N}$ such that $c(m, k)<\alpha / 4$ for each $m \in \mathbf{N}_{0}$.
Find $\varepsilon>0$ such that $\varepsilon<\alpha / 4,(1-k \varepsilon)^{k}>1 / 2$ and $(1+k \varepsilon)^{k}<2$.
Finally find $d \geq 4 k(\varepsilon+1) \alpha^{-1}$ and $m \in \mathbf{N}_{0}$ such that

$$
\frac{\nu(m, d)}{d}<\varepsilon^{2} \quad \text { and } \quad \frac{\tau(m, d)}{d}>\alpha
$$

Let $t \in \mathbf{N}_{0}$ satisfy $t k \leq d<(t+1) k$.
Consider the partition

$$
\{m, \ldots, m+d-1\}=\bigcup_{j=0}^{t-1}\{m+j k, \ldots, m+j k+k-1\} \cup\{m+t k, \ldots, m+d-1\}
$$

Denote by H the set of all $j \in\{0,1, \ldots, t-1\}$ such that $\nu(m+j k, k) \geq k \varepsilon$. Clearly

$$
d \varepsilon^{2}>\nu(m, d) \geq \sum_{j \in H} \nu(m+j k, k) \geq k \varepsilon \cdot \operatorname{card} H
$$

so that $\operatorname{card} H \leq d \varepsilon / k \leq \varepsilon(t+1)$.
Suppose now that $j \in\{0, \ldots, t-1\} \backslash H$, that is, $\nu(m+j k, k)<k \varepsilon$. Then

$$
2^{-1 / k}<1-k \varepsilon<\frac{p(n+1)}{p(n)}<1+k \varepsilon<2^{1 / k} \quad(m+j k \leq n<m+j k+k)
$$

so that

$$
\frac{p(n)}{p(i)}>\frac{1}{2} \quad(m+j k \leq n, i<m+j k+k) .
$$

Thus

$$
\begin{aligned}
& \tau(m+j k, k) \leq 2 \cdot \sum_{n=m+j k}^{m+j k+k-1} \frac{\rho(n)}{\max \{p(m+j k), \ldots, p(m+j k+k-1)\}} \\
& \leq 2 \cdot \sum_{n=m+j k}^{m+j k+k-1} \frac{\rho(n)}{M(m+j k, k)}=2 k \cdot c(m+j k, k)<\frac{k \alpha}{2} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& d \alpha<\tau(m, d)=\sum_{j \in H} \tau(m+j k, k)+\sum_{j \notin H} \tau(m+j k, k)+\tau(m+t k, d-t k) \\
& \leq k \cdot \operatorname{card} H+\frac{t k \alpha}{2}+k \leq k \varepsilon(t+1)+k+\frac{d \alpha}{2} \\
& \leq d \varepsilon+k(\varepsilon+1)+\frac{d \alpha}{2} \leq \frac{d \alpha}{4}+\frac{d \alpha}{4}+\frac{d \alpha}{2}=d \alpha
\end{aligned}
$$

a contradiction. Q. E. D.

4. Sufficiency

We need the following lemma:

Lemma 2. Let ρ be a norm-sequence satisfying $r(\rho)=1$ and $c(\rho)>0$. Then for all $m_{0} \in \mathbf{N}_{0}$ and $k \in \mathbf{N}$ there exists $m \geq m_{0}$ such that $c(m, k) \geq c(\rho) / 2$.

Proof. Suppose on the contrary that $c(m, k)<c(\rho) / 2$ for all $m \geq m_{0}$.
Choose $t \geq 4 m_{0} / c(\rho)$ and set $k_{1}=k t$. By the assumption there is $m_{1} \in \mathbf{N}_{0}$ such that $c\left(m_{1}, k_{1}\right)>\frac{3}{4} c(\rho)$. By Lemma 1 we have

$$
k_{1} c\left(m_{1}, k_{1}\right) \leq \sum_{j=0}^{t-1} k \cdot c\left(m_{1}+j k, k\right) .
$$

Clearly $c\left(m_{1}+j k, k\right)<c(\rho) / 2$ for all $j \geq m_{0}$. Thus

$$
\frac{3}{4} c(\rho)<c\left(m_{1}, k_{1}\right) \leq \frac{1}{k_{1}}\left(m_{0} k+\left(t-m_{0}\right) k \frac{c(\rho)}{2}\right) \leq \frac{m_{0}}{t}+\frac{c(\rho)}{2} \leq \frac{3}{4} c(\rho),
$$

a contradiction. Q. E. D.

Proposition 2. Let ρ be a norm-sequence satisfying $r(\rho)>0$ and $c(\rho)>0$. Then ρ is regular.

Proof. Without loss of generality we can assume that $r(\rho)=1$.
Find numbers $k_{j} \geq j \quad(j=1,2, \ldots)$ such that $\rho(n) \leq(1+1 / j)^{n}$ for all $n \geq k_{j}$.
We construct inductively numbers $d_{1}, a_{1}, d_{2}, a_{2}, \ldots$ in the following way: set formally $d_{0}=a_{0}=0$. Suppose that $j \geq 1$ and that the numbers $d_{1}, a_{1}, \ldots, d_{j-1}, a_{j-1}$ are already constructed. Choose $d_{j} \geq 4 k_{j} / c(\rho)$. By the previous lemma we can find $a_{j} \geq \max \left\{4\left(a_{j-1}+d_{j-1}\right), 3 d_{j}\right\}$ such that $c\left(a_{j}, d_{j}\right) \geq c(\rho) / 2$.

Clearly the numbers $d_{j}, a_{j} \quad(j=1,2, \ldots)$ constructed in this way satisfy $a_{1}<$ $a_{1}+d_{1}<a_{2}<a_{2}+d_{2}<\cdots$.

Write for short $M_{j}=M\left(a_{j}, d_{j}\right)$. Define function p by

$$
p(n)= \begin{cases}\max \left\{\rho(0), \ldots, \rho\left(a_{1}+d_{1}-1\right)\right\} & \left(n<a_{1}\right) \\ M_{j} & \left(j \geq 1, a_{j} \leq n \leq a_{j}+d_{j}-k_{j}\right) \\ M_{j} \cdot(1+3 / j)^{n-\left(a_{j}+d_{j}-k_{j}\right)} & \left(j \geq 1, a_{j}+d_{j}-k_{j}<n<a_{j+1}\right) .\end{cases}
$$

We prove that p is the required gauge function adjusted to ρ.
Clearly $\rho(n) \leq p(n)$ if $a_{j} \leq n \leq a_{j}+d_{j}-1$ for some $j \geq 1$.
If $a_{j}+d_{j} \leq n<a_{j+1}$ then

$$
\rho(n) \leq \rho\left(a_{j}+d_{j}-k_{j}\right) \cdot \rho\left(n-\left(a_{j}+d_{j}-k_{j}\right)\right) \leq M_{j} \cdot(1+1 / j)^{n-\left(a_{j}+d_{j}-k_{j}\right)} \leq p(n) .
$$

Thus $\rho(n) \leq p(n)$ for all $n \in \mathbf{N}_{0}$.
Further

$$
\begin{aligned}
& \sum_{n=a_{j}}^{a_{j}+d_{j}-k_{j}-1} \frac{\rho(n)}{p(n)}=\sum_{n=a_{j}}^{a_{j}+d_{j}-k_{j}-1} \frac{\rho(n)}{M_{j}} \geq \sum_{n=a_{j}}^{a_{j}+d_{j}-1} \frac{\rho(n)}{M_{j}}-k_{j} \\
& =d_{j} \cdot c\left(a_{j}, d_{j}\right)-k_{j} \geq \frac{d_{j} c(\rho)}{2}-k_{j} \geq \frac{d_{j} c(\rho)}{4}
\end{aligned}
$$

so that

$$
\frac{1}{d_{j}-k_{j}} \sum_{n=a_{j}}^{a_{j}+d_{j}-k_{j}-1} \frac{\rho(n)}{p(n)} \geq \frac{c(\rho)}{4}
$$

Since $d_{j}-k_{j} \rightarrow \infty$, the sequence p satisfies (2).
It remains to prove (1). Let $j \geq 2$ and $a_{j} \leq n<a_{j}+d_{j}$. Then $n<a_{j}+d_{j} \leq$ $\frac{4}{3} a_{j} \leq 2\left(a_{j}-\left(a_{j-1}+d_{j-1}\right)\right)$ so that

$$
\rho(n) \leq(1+1 / j)^{n} \leq(1+1 / j)^{2\left(a_{j}-\left(a_{j-1}+d_{j-1}\right)\right)} \leq(1+3 / j)^{a_{j}-\left(a_{j-1}+d_{j-1}\right)}
$$

Thus

$$
p\left(a_{j}\right)=M_{j} \leq(1+3 / j)^{a_{j}-\left(a_{j-1}+d_{j-1}\right)} \leq p\left(a_{j}-1\right)
$$

and

$$
\left|\frac{p\left(a_{j}\right)}{p\left(a_{j}-1\right)}-1\right| \leq 1 \quad(j \geq 2)
$$

Obviously

$$
\left|\frac{p(n+1)}{p(n)}-1\right| \leq \frac{3}{j} \quad\left(j \geq 1, a_{j} \leq n<a_{j+1}-1\right) .
$$

Since the sequence (a_{j}) is "lacunary" $\left(a_{j+1} \geq 4 a_{j}\right)$, it is easy to prove (1). Indeed, let $q \geq 1, N \geq 1$ and $m \geq 0$. Then the cardinality of the set of all n such that $m \leq n<m+N$ and $\left|\frac{p(n+1)}{p(n)}-1\right|>\frac{3}{q}$ is at most $a_{q}+\log _{4} N$ so that

$$
\lim _{N \rightarrow \infty} \sup _{m \in \mathbf{N}_{0}} \frac{1}{N} \sum_{n=m}^{m+N-1}\left|\frac{p(n+1)}{p(n)}-1\right| \leq \lim _{N \rightarrow \infty} \frac{3\left(a_{q}+\log _{4} N\right)+3 N / q}{N}=\frac{3}{q}
$$

Since q was arbitrary, we conclude that the above limit is equal to 0 .
Thus ρ is regular. Q. E. D.

References

[1] L. Kérchy, Operators with regular norm-sequences, Acta Sci. Math. (Szeged), 63 (1997), 571-605.
[2] L. Kérchy, Hyperinvariant subspaces of operators with non-vanishing orbits, to appear in Proc. Amer. Math. Soc..
[3] L. Kérchy, Criteria of regularity for norm-sequences, submitted.
L. Kérchy, Bolyai Institute, University of Szeged, Aradi vértanúk tere 1, H-6720 Szeged, Hungary; e-mail: kerchy@math.u-szeged.hu
V. Müller, Institute of Mathematics AV CR, Zitná 25, 11567 Praha 1, Czech Republic; e-mail: muller@math.cas.cz

