Corrigendum an Addendum: "On the axiomatic theory of spectrum II"

J.J. Koliha, M. Mbekhta, V. Müller*, Pak Wai Poon

The main purpose of this paper is to correct the proof of Theorem 15 of [4], concerned with the stability of the class of quasi-Fredholm operators under finite rank perturbations, and to answer some open questions raised there.

Recall some notations and terminology from [4].

For closed subspaces M, L of a Banach space X we write $M \stackrel{e}{\subset} L$ (M is essentially contained in L) if there exists a finite-dimensional subspace $F \subset X$ such that $M \subset L+F$. Equivalently, dim $M/(M \cap L) = \dim(M+L)/L < \infty$. Similarly we write $M \stackrel{e}{=} L$ if $M \stackrel{e}{\subset} L$ and $L \stackrel{e}{\subset} M$.

For a (bounded linear) operator $T \in \mathcal{L}(X)$ write $R^{\infty}(T) = \bigcap_{n=0}^{\infty} R(T^n)$ and $N^{\infty}(T) = \bigcup_{n=0}^{\infty} N(T^n)$.

An operator $T \in \mathcal{L}(X)$ is called semi-regular (essentially semi-regular) if R(T) is closed and $N(T) \subset R^{\infty}(T)$ $(N(T) \subset R^{\infty}(T)$, respectively). Further, T is called quasi-Fredholm if there exists $d \geq 0$ such that $R(T^{d+1})$ is closed and $R(T) + N(T^d) = R(T) + N^{\infty}(T)$ (equivalently, $N(T) \cap R(T^d) = N(T) \cap R^{\infty}(T)$).

The proof of Theorem 15 of [4] relies on the following statement (where d is an integer whose existence is postulated in the definition of quasi-Fredholm operators):

if T is quasi-Fredholm and F of rank 1 then $N(T) \cap R(T^d) \subset R^{\infty}(T+F)$.

This, however, need not be satisfied.

Counterexample. Let *H* be the Hilbert space with an orthonormal basis $\{e_1, e_2, \ldots\}$. Define $T, F \in \mathcal{L}(H)$ by

$$Te_1 = 0, Te_n = e_{n-1} \ (n \ge 2), \qquad Fe_2 = -e_1, \ Fe_n = 0 \ (n \ne 2).$$

Then T is quasi-Fredholm (with d = 0) and is surjective, F has rank 1, and T + F is given by

$$(T+F)e_1 = (T+F)e_2 = 0, \quad (T+F)e_n = e_{n-1} \ (n \ge 3).$$

It follows that $R^{\infty}(T+F) = R(T+F)$ is equal to the linear span of $\{e_2, e_3, \ldots\}$, and N(T) to the one-dimensional space spanned by e_1 . Thus $N(T) \not\subset R^{\infty}(T+F)$.

We proceed now to give a correct proof of Theorem 15 of [4].

Theorem. Let $T \in \mathcal{L}(X)$ be a quasi-Fredholm operator and let $F \in \mathcal{L}(X)$ be a finite-rank operator. Then T + F is also quasi-Fredholm.

Proof. Clearly it is sufficient to consider only the case of dim R(F) = 1. Thus there exist $z \in X$ and $\varphi \in X^*$ such that $Fx = \varphi(x)z$ ($x \in X$).

Mathematics Subject Classification: 47A10, 47A53.

Keywords and phrases: quasi-Fredholm operators, ascent, descent.

^{*} Supported by the grant No. 201/96/0411 of GA ČR.

Since $R((T+F)^n) \stackrel{e}{=} R(T^n)$ for all *n* by Observation 8 following Table 1 in [4], $R((T+F)^n)$ is closed if and only if $R(T^n)$ is closed, and hence it is sufficient to show only the algebraic condition in the definition of quasi-Fredholm operators for T+F.

Since T is quasi-Fredholm, there exists $d \ge 0$ such that $N(T) \cap R(T^d) \subset R^{\infty}(T)$ and $R(T^d), R(T^{d+1})$ are closed. Set $M = R(T^d)$ and $T_1 = T|M$. Then $N(T_1) = N(T) \cap R(T^d) \subset R^{\infty}(T) = R^{\infty}(T_1)$ and the range $R(T_1) = R(T^{d+1})$ is closed. Thus T_1 is semi-regular.

It is sufficient to show that $N(T_1) \stackrel{e}{\subset} R^{\infty}(T+F)$. Indeed, then we have

$$N(T+F) \cap R((T+F)^d) \stackrel{e}{=} N(T) \cap R(T^d) = N(T_1) \stackrel{e}{\subset} R^{\infty}(T+F)$$

so that $N(T+F) \cap R((T+F)^d) \stackrel{e}{=} N(T+F) \cap R^{\infty}(T+F)$.

This means that $N(T+F) \cap R((T+F)^n) = N(T+F) \cap R^{\infty}(T+F)$ for some $n \ge d$ and T+F is quasi-Fredholm.

To prove $N(T_1) \subset R^{\infty}(T+F)$ we distinguish two cases:

A. $N^{\infty}(T_1) \subset \ker \varphi$.

Let $x_0 \in N(T_1)$. Since T_1 is semi-regular, there exist vectors $x_1, x_2, \ldots \in R^{\infty}(T_1)$ such that $Tx_i = x_{i-1}$ for all *i*. By the assumption $\varphi(x_i) = 0$, so that $Fx_i = 0$ for all *i*. For $n \in \mathbf{N}$ we have

$$(T+F)^n x_n = (T+F)^{n-1} x_{n-1} = \dots = (T+F)x_1 = x_0,$$

so that $x_0 \in R((T+F)^n)$. Since x_0 and n were arbitrary, we have $N(T_1) \subset R^{\infty}(T+F)$. B. $N^{\infty}(T_1) \not\subset \ker \varphi$.

There exists $k \ge 1$ such that $N(T_1^k) \not\subset \ker \varphi$. Choose the minimal k with this property so that $N(T_1^{k-1}) \subset \ker \varphi$ and there exists $u \in N(T_1^k)$ with $\varphi(u) = 1$. Set

 $Y = \{x \in N(T_1) : \text{ there is } y \in M \text{ with } T^{k-1}y = x \text{ and } T^iy \in \ker \varphi \ (i = 0, \dots, k-1)\}.$ We show that dim $N(T_1)/Y \leq k$. Indeed, let $x^{(1)}, \dots, x^{(k+1)} \in N(T_1)$. Since T_1 is semiregular, there are $y^{(1)}, \dots, y^{(k+1)} \in M$ such that $T^{k-1}y^{(j)} = x^{(j)}$ $(j = 1, \dots, k+1)$. Then there exists a nontrivial linear combination $y = \sum_{j=1}^{k+1} \alpha_j y_j$ such that $T^iy \in \ker \varphi$ for all $i = 0, \dots, k-1$. Consequently $\sum_{j=1}^{k+1} \alpha_j x^{(j)} \in Y$ and dim $N(T_1)/Y \leq k$. Hence $Y \stackrel{e}{=} N(T_1)$ and it is sufficient to show $Y \subset R^{\infty}(T+F)$.

Let $x \in Y$. We prove by induction on n the following statement:

There exists $x_n \in M$ such that $T^n x_n = x$ and $T^i x_n \in \ker \varphi$ (i = 0, ..., n). (1)

Clearly (1) for n = 0, ..., k - 1 follows from the definition of Y.

Suppose that (1) is true for some $n \ge k-1$, i.e., there is $x_n \in M$ such that $T^n x_n = x$ and $T^i x_n \in \ker \varphi$ (i = 0, ..., n). Since T_1 is semi-regular, we can find $x'_{n+1} \in M$ such that $Tx'_{n+1} = x_n$. Set $x_{n+1} = x'_{n+1} - \varphi(x'_{n+1})u$. Then

$$T^{n+1}x_{n+1} = T^n x_n - \varphi(x'_{n+1})T^{n+1}u = x.$$

Clearly $\varphi(x_{n+1}) = 0$. For $1 \leq i \leq k-1$ we have $\varphi(T^i x_{n+1}) = \varphi(T^{i-1} x_n) - \varphi(x'_{n+1})\varphi(T^i u) = 0$ since $T^i u \in N(T_1^{k-1}) \subset \ker \varphi$. For $k \leq i \leq n$ we have $T^i u = 0$ so that $\varphi(T^i x_{n+1}) = \varphi(T^{i-1} x_n) = 0$ by the induction assumption.

Thus (1) is true for all n and $(T+F)^n x_n = (T+F)^{n-1}Tx_n = \ldots = T^n x_n = x$. Thus $x \in R((T+F)^n)$ for all n and consequently $Y \subset R^{\infty}(T+F)$.

This finishes the proof of the theorem.

As a corollary we obtain the corresponding result for essentially semi-regular operators, see [2]. Recall the numbers $k_n(T)$ defined for an operator $T \in \mathcal{L}(X)$ and $n \ge 0$ by

$$k_n(T) = \dim[R(T) + N(T^{n+1})] / [R(T) + N(T^n)]$$

= dim[N(T) \cap R(T^n)] / [N(T) \cap R(T^{n+1})],

see [4] and [1].

Corollary. If $T, F \in \mathcal{L}(X)$, T is essentially semi-regular and F of finite rank then T + F is essentially semi-regular.

Proof. By the previous theorem T + F is quasi-Fredholm so that $k_i(T + F) = 0$ for all *i* sufficiently large. Also $k_i(T) < \infty$ implies $k_i(T + F) < \infty$ for all *i*. Thus T + F is essentially semi-regular.

This finishes the 'corrigendum' part of the paper. For the 'addendum' part, we give counterexamples that will complete Table 2 of [4] answering thus question posed in that paper.

Recall the classes defined in [4]:

 $R_{11} = \{T \in \mathcal{L}(X) : T \text{ is semi-regular}\},\$ $R_{12} = \{T \in \mathcal{L}(X) : T \text{ is essentially semi-regular}\},\$ $R_{13} = \{T \in \mathcal{L}(X) : R(T) \text{ is closed and } k_n(T) < \infty \text{ for all } n \in \mathbf{N}\},\$ $R_{14} = \{T \in \mathcal{L}(X) : T \text{ is quasi-Fredholm}\},\$ $R_{15} = \{T \in \mathcal{L}(X) : \text{ there is } d \in \mathbf{N} \text{ with } R(T^{d+1}) \text{ closed and } k_n(T) < \infty \ (n \ge d)\}.$

Further, for $i = 11, \ldots, 15$, set $\sigma_i(T) = \{\lambda \in \mathbf{C} : T - \lambda \notin R_i\}.$

Example 1. In general, σ_{13} and σ_{15} are not closed. Consequently, R_{13} is not stable under small commuting perturbations:

Consider the operator defined in Example 14 of [4],

$$S = \bigoplus_{n=1}^{\infty} S_n$$

where $S_n \in \mathcal{L}(H_n)$, H_n is an *n*-dimensional Hilbert space with an orthonormal basis e_{n1}, \ldots, e_{nn} and S_n is the shift operator, that is, $S_n e_{n1} = 0$, $S_n e_{ni} = e_{n,i-1}$ $(2 \le i \le n)$. Then $S \in R_{13} \subset R_{15}$, see Example 14 of [4].

Let $\varepsilon \neq 0, |\varepsilon| < 1$. Then $S_n - \varepsilon$ is invertible for all $n \in \mathbf{N}$ so that $S - \varepsilon$ is injective. For $n \in \mathbf{N}$ set $x_n = \sum_{i=1}^n \varepsilon^{i-1} e_{ni}$. Then $||x_n|| \ge 1$ and

$$||(S-\varepsilon)x_n|| = ||-\varepsilon^n e_{nn}|| = |\varepsilon^n|.$$

Thus $S - \varepsilon$ is not bounded below and $R(S - \varepsilon)$ is not closed. Hence $S - \varepsilon \notin R_{13}$ and $\sigma_{13}(S)$ is not closed.

Further, for each $k \in \mathbf{N}$, we have

$$\|(S-\varepsilon)^k x_n\| = |\varepsilon^n| \cdot \|(S-\varepsilon)^{k-1} e_{nn}\| \le |\varepsilon^n| \cdot \|(S-\varepsilon)^{k-1}\| \le |\varepsilon^n| \cdot (1+|\varepsilon|)^{k-1}$$

so that $\lim_{n\to\infty} ||(S-\varepsilon)^k x_n|| = 0$ for all $k \in \mathbb{N}$ and $R((S-\varepsilon)^k)$ is not closed. Consequently, $S-\varepsilon \notin R_{15}$ and $\sigma_{15}(S)$ is not closed.

Example 2. The class R_{13} is not stable under commuting compact perturbations:

Consider the operator S from the previous example and let $K = \bigoplus_{n=1}^{\infty} (1/n)I_n$ where I_n denotes the identity operator on H_n . Clearly K is compact, KS = SK, S + K is injective and, as above, S + K is not bounded below. Thus R(S + K) is not closed and $S + K \notin R_{13}$.

Example 3. R_{13} is not stable under commuting quasinilpotent perturbations:

For $k \in \mathbf{N}$ let $H^{(k)}$ be the Hilbert space with an orthonormal basis $e_{ni}^{(k)}$ $(n \in \mathbf{N}, i = 1, \dots, \max\{k, n\})$. Let $S^{(k)} \in \mathcal{L}(H^{(k)})$ be the shift to the left,

$$S^{(k)}e_{ni}^{(k)} = \begin{cases} e_{n,i-1}^{(k)} & (i \ge 2), \\ 0 & (i = 1). \end{cases}$$

Set $S = \bigoplus_{k=1}^{\infty} S^{(k)}$. Clearly S is a direct sum of finite-dimensional shifts where ndimensional shift appears (2n-1)-times (once in each $S^{(1)}, \ldots, S^{(n-1)}$ and n times in $S^{(n)}$). Thus $S \in R_{13}$.

Define $Q^{(k)} \in \mathcal{L}(H^{(k)})$ by $Q^{(k)}e_{ni}^{(k)} = (1/n)e_{n+1,i}^{(k)}$ for all n, i. Let $Q = \bigoplus_{k=1}^{\infty} Q^{(k)}$. Clearly SQ = QS and Q is a quasinilpotent since $\|Q^j\|^{1/j} = (1/j!)^{1/j} \to 0$.

We prove that $S - Q \notin R_{13}$. Set

$$x^{(k)} = \sum_{n=1}^{\infty} \frac{1}{(n-1)!} e_{nn}^{(k)} \in H^{(k)}.$$

Then

$$(S-Q)x^{(k)} = \sum_{n=2}^{\infty} \frac{1}{(n-1)!} e_{n,n-1}^{(k)} - \sum_{n=1}^{\infty} \frac{1}{n!} e_{n+1,n}^{(k)} = 0.$$

Further $x^{(k)} \notin R(S^{(k)}) + R(Q^{(k)})$ so that $x^{(k)} \notin R(S^{(k)} - Q^{(k)})$. It is easy to see that each linear combination of $x^{(k)}$'s has the same property with respect to S and Q so that these vectors are linearly independent modulo R(S - Q). Thus

$$k_0(S-Q) = \dim N(S-Q) / \left(N(S-Q) \cap R(S-Q) \right) = \infty$$

and $S - Q \notin R_{13}$.

Consequently, the complete version of Table 2 of [4] is:

	$(\mathbf{A})\\ \sigma_i \neq \emptyset$	(B) σ_i closed	(C) small commut. perturbations	(D) finite dim. perturbations	(E) commut.comp. perturbations	(F) commut. quasinilp. pert.
$\begin{array}{c} R_{11} \\ \text{semi-reg} \end{array}$	yes	yes	yes	no	no	yes
$\begin{array}{c} R_{12} \\ \text{ess.s-reg.} \end{array}$	yes	yes	yes	yes	yes	yes
R ₁₃	yes	no	no	yes	no	no
$\begin{bmatrix} R_{14} \\ q\varphi \end{bmatrix}$	no	yes	no	yes	no	no
R ₁₅	no	no	no	yes	no	no

References

- S. Grabiner, Uniform ascent and descent of bounded operators, J. Math. Soc. Japan 34 (1982), 317-337.
- [2] V. Kordula, The essential Apostol spectrum and finite dimensional perturbations, Proc. Roy. Irish Acad. 96A (1996), 105–110.
- [3] V. Kordula, V. Müller, On the axiomatic theory of spectrum, Studia Math. 119 (1996), 109–128.
- [4] M. Mbekhta and V. Müller, On the axiomatic theory of spectrum II, Studia Math. 119 (1996), 129–147.

Department of Mathematics The University of Melbourne Parkville VIC 3052 Australia email: j.koliha@ms.unimelb.edu.au

Institute of Mathematics AV ČR Žitna 25, 115 67 Prague 1 Czech Republic e-mail: muller@math.cas.cz Université de Lille U.F.R. de Mathématiques F-59655 - Villeneuve d'Ascq Cedex France

Department of Mathematics The University of Melbourne Parkville VIC 3052 Australia