# Corrigendum an Addendum: "On the axiomatic theory of spectrum II" 

J.J. Koliha, M. Mbekhta, V. Müller*, Pak Wai Poon

The main purpose of this paper is to correct the proof of Theorem 15 of [4], concerned with the stability of the class of quasi-Fredholm operators under finite rank perturbations, and to answer some open questions raised there.

Recall some notations and terminology from [4].
For closed subspaces $M, L$ of a Banach space $X$ we write $M \stackrel{e}{\subset} L \quad(M$ is essentially contained in $L$ ) if there exists a finite-dimensional subspace $F \subset X$ such that $M \subset$ $L+F_{e}$. Equivalently, $\operatorname{dim} M /(M \cap L)=\operatorname{dim}(M+L) / L<\infty$. Similarly we write $M \stackrel{e}{=} L$ if $M \stackrel{e}{\subset} L$ and $L \stackrel{e}{\subset} M$.

For a (bounded linear) operator $T \in \mathcal{L}(X)$ write $R^{\infty}(T)=\bigcap_{n=0}^{\infty} R\left(T^{n}\right)$ and $N^{\infty}(T)=\bigcup_{n=0}^{\infty} N\left(T^{n}\right)$.

An operator $T \in \mathcal{L}(X)$ is called semi-regular (essentially semi-regular) if $R(T)$ is closed and $N(T) \subset R^{\infty}(T) \quad\left(N(T) \stackrel{e}{\subset} R^{\infty}(T)\right.$, respectively). Further, $T$ is called quasi-Fredholm if there exists $d \geq 0$ such that $R\left(T^{d+1}\right)$ is closed and $R(T)+N\left(T^{d}\right)=$ $R(T)+N^{\infty}(T)$ (equivalently, $N(T) \cap R\left(T^{d}\right)=N(T) \cap R^{\infty}(T)$ ).

The proof of Theorem 15 of [4] relies on the following statement (where $d$ is an integer whose existence is postulated in the definition of quasi-Fredholm operators):
if $T$ is quasi-Fredholm and $F$ of rank 1 then $N(T) \cap R\left(T^{d}\right) \subset R^{\infty}(T+F)$.
This, however, need not be satisfied.
Counterexample. Let $H$ be the Hilbert space with an orthonormal basis $\left\{e_{1}, e_{2}, \ldots\right\}$. Define $T, F \in \mathcal{L}(H)$ by

$$
T e_{1}=0, T e_{n}=e_{n-1} \quad(n \geq 2), \quad F e_{2}=-e_{1}, F e_{n}=0 \quad(n \neq 2)
$$

Then $T$ is quasi-Fredholm (with $d=0$ ) and is surjective, $F$ has rank 1 , and $T+F$ is given by

$$
(T+F) e_{1}=(T+F) e_{2}=0, \quad(T+F) e_{n}=e_{n-1} \quad(n \geq 3) .
$$

It follows that $R^{\infty}(T+F)=R(T+F)$ is equal to the linear span of $\left\{e_{2}, e_{3}, \ldots\right\}$, and $N(T)$ to the one-dimensional space spanned by $e_{1}$. Thus $N(T) \not \subset R^{\infty}(T+F)$.

We proceed now to give a correct proof of Theorem 15 of [4].
Theorem. Let $T \in \mathcal{L}(X)$ be a quasi-Fredholm operator and let $F \in \mathcal{L}(X)$ be a finite-rank operator. Then $T+F$ is also quasi-Fredholm.

Proof. Clearly it is sufficient to consider only the case of $\operatorname{dim} R(F)=1$. Thus there exist $z \in X$ and $\varphi \in X^{*}$ such that $F x=\varphi(x) z(x \in X)$.

Mathematics Subject Classification: 47A10, 47A53.
Keywords and phrases: quasi-Fredholm operators, ascent, descent.

* Supported by the grant No. 201/96/0411 of GA ČR.

Since $R\left((T+F)^{n}\right) \stackrel{e}{=} R\left(T^{n}\right)$ for all $n$ by Observation 8 following Table 1 in [4], $R\left((T+F)^{n}\right)$ is closed if and only if $R\left(T^{n}\right)$ is closed, and hence it is sufficient to show only the algebraic condition in the definition of quasi-Fredholm operators for $T+F$.

Since $T$ is quasi-Fredholm, there exists $d \geq 0$ such that $N(T) \cap R\left(T^{d}\right) \subset R^{\infty}(T)$ and $R\left(T^{d}\right), R\left(T^{d+1}\right)$ are closed. Set $M=R\left(T^{d}\right)$ and $T_{1}=T \mid M$. Then $N\left(T_{1}\right)=$ $N(T) \cap R\left(T^{d}\right) \subset R^{\infty}(T)=R^{\infty}\left(T_{1}\right)$ and the range $R\left(T_{1}\right)=R\left(T^{d+1}\right)$ is closed. Thus $T_{1}$ is semi-regular.

It is sufficient to show that $N\left(T_{1}\right) \stackrel{e}{\subset} R^{\infty}(T+F)$. Indeed, then we have

$$
N(T+F) \cap R\left((T+F)^{d}\right) \stackrel{e}{=} N(T) \cap R\left(T^{d}\right)=N\left(T_{1}\right) \stackrel{e}{\subset} R^{\infty}(T+F)
$$

so that $N(T+F) \cap R\left((T+F)^{d}\right) \stackrel{e}{=} N(T+F) \cap R^{\infty}(T+F)$.
This means that $N(T+F) \cap R\left((T+F)^{n}\right)=N(T+F) \cap R^{\infty}(T+F)$ for some $n \geq d$ and $T+F$ is quasi-Fredholm.

To prove $N\left(T_{1}\right) \subset R^{\infty}(T+F)$ we distinguish two cases:
A. $\quad N^{\infty}\left(T_{1}\right) \subset \operatorname{ker} \varphi$.

Let $x_{0} \in N\left(T_{1}\right)$. Since $T_{1}$ is semi-regular, there exist vectors $x_{1}, x_{2}, \ldots \in R^{\infty}\left(T_{1}\right)$ such that $T x_{i}=x_{i-1}$ for all $i$. By the assumption $\varphi\left(x_{i}\right)=0$, so that $F x_{i}=0$ for all $i$. For $n \in \mathbf{N}$ we have

$$
(T+F)^{n} x_{n}=(T+F)^{n-1} x_{n-1}=\ldots=(T+F) x_{1}=x_{0}
$$

so that $x_{0} \in R\left((T+F)^{n}\right)$. Since $x_{0}$ and $n$ were arbitrary, we have $N\left(T_{1}\right) \subset R^{\infty}(T+F)$. B. $N^{\infty}\left(T_{1}\right) \not \subset \operatorname{ker} \varphi$.

There exists $k \geq 1$ such that $N\left(T_{1}^{k}\right) \not \subset \operatorname{ker} \varphi$. Choose the minimal $k$ with this property so that $N\left(\bar{T}_{1}^{k-1}\right) \subset \operatorname{ker} \varphi$ and there exists $u \in N\left(T_{1}^{k}\right)$ with $\varphi(u)=1$.

Set
$Y=\left\{x \in N\left(T_{1}\right):\right.$ there is $y \in M$ with $T^{k-1} y=x$ and $\left.T^{i} y \in \operatorname{ker} \varphi(i=0, \ldots, k-1)\right\}$. We show that $\operatorname{dim} N\left(T_{1}\right) / Y \leq k$. Indeed, let $x^{(1)}, \ldots, x^{(k+1)} \in N\left(T_{1}\right)$. Since $T_{1}$ is semiregular, there are $y^{(1)}, \ldots, y^{(k+1)} \in M$ such that $T^{k-1} y^{(j)}=x^{(j)} \quad(j=1, \ldots, k+1)$. Then there exists a nontrivial linear combination $y=\sum_{j=1}^{k+1} \alpha_{j} y_{j}$ such that $T^{i} y \in \operatorname{ker} \varphi$ for all $i=0, \ldots, k-1$. Consequently $\sum_{j=1}^{k+1} \alpha_{j} x^{(j)} \in Y$ and $\operatorname{dim} N\left(T_{1}\right) / Y \leq k$. Hence $Y \stackrel{e}{=} N\left(T_{1}\right)$ and it is sufficient to show $Y \subset R^{\infty}(T+F)$.

Let $x \in Y$. We prove by induction on $n$ the following statement:
There exists $x_{n} \in M$ such that $T^{n} x_{n}=x$ and $T^{i} x_{n} \in \operatorname{ker} \varphi(i=0, \ldots, n)$.
Clearly (1) for $n=0, \ldots, k-1$ follows from the definition of $Y$.
Suppose that (1) is true for some $n \geq k-1$, i.e., there is $x_{n} \in M$ such that $T^{n} x_{n}=x$ and $T^{i} x_{n} \in \operatorname{ker} \varphi \quad(i=0, \ldots, n)$. Since $T_{1}$ is semi-regular, we can find $x_{n+1}^{\prime} \in M$ such that $T x_{n+1}^{\prime}=x_{n}$. Set $x_{n+1}=x_{n+1}^{\prime}-\varphi\left(x_{n+1}^{\prime}\right) u$. Then

$$
T^{n+1} x_{n+1}=T^{n} x_{n}-\varphi\left(x_{n+1}^{\prime}\right) T^{n+1} u=x
$$

Clearly $\varphi\left(x_{n+1}\right)=0$. For $1 \leq i \leq k-1$ we have $\varphi\left(T^{i} x_{n+1}\right)=\varphi\left(T^{i-1} x_{n}\right)-$ $\varphi\left(x_{n+1}^{\prime}\right) \varphi\left(T^{i} u\right)=0$ since $T^{i} u \in N\left(T_{1}^{k-1}\right) \subset \operatorname{ker} \varphi$. For $k \leq i \leq n$ we have $T^{i} u=0$ so that $\varphi\left(T^{i} x_{n+1}\right)=\varphi\left(T^{i-1} x_{n}\right)=0$ by the induction assumption.

Thus (1) is true for all $n$ and $(T+F)^{n} x_{n}=(T+F)^{n-1} T x_{n}=\ldots=T^{n} x_{n}=x$. Thus $x \in R\left((T+F)^{n}\right)$ for all $n$ and consequently $Y \subset R^{\infty}(T+F)$.

This finishes the proof of the theorem.

As a corollary we obtain the corresponding result for essentially semi-regular operators, see [2]. Recall the numbers $k_{n}(T)$ defined for an operator $T \in \mathcal{L}(X)$ and $n \geq 0$ by

$$
\begin{aligned}
k_{n}(T) & =\operatorname{dim}\left[R(T)+N\left(T^{n+1}\right)\right] /\left[R(T)+N\left(T^{n}\right)\right] \\
& =\operatorname{dim}\left[N(T) \cap R\left(T^{n}\right)\right] /\left[N(T) \cap R\left(T^{n+1}\right)\right],
\end{aligned}
$$

see [4] and [1].
Corollary. If $T, F \in \mathcal{L}(X), T$ is essentially semi-regular and $F$ of finite rank then $T+F$ is essentially semi-regular.

Proof. By the previous theorem $T+F$ is quasi-Fredholm so that $k_{i}(T+F)=0$ for all $i$ sufficiently large. Also $k_{i}(T)<\infty$ implies $k_{i}(T+F)<\infty$ for all $i$. Thus $T+F$ is essentially semi-regular.

This finishes the 'corrigendum' part of the paper. For the 'addendum' part, we give counterexamples that will complete Table 2 of [4] answering thus question posed in that paper.

Recall the classes defined in [4]:

```
\(R_{11}=\{T \in \mathcal{L}(X): T\) is semi-regular \(\}\),
\(R_{12}=\{T \in \mathcal{L}(X): T\) is essentially semi-regular \(\}\),
\(R_{13}=\left\{T \in \mathcal{L}(X): R(T)\right.\) is closed and \(k_{n}(T)<\infty\) for all \(\left.n \in \mathbf{N}\right\}\),
\(R_{14}=\{T \in \mathcal{L}(X): T\) is quasi-Fredholm \(\}\),
\(R_{15}=\left\{T \in \mathcal{L}(X):\right.\) there is \(d \in \mathbf{N}\) with \(R\left(T^{d+1}\right)\) closed and \(\left.k_{n}(T)<\infty(n \geq d)\right\}\).
```

Further, for $i=11, \ldots, 15$, set $\sigma_{i}(T)=\left\{\lambda \in \mathbf{C}: T-\lambda \notin R_{i}\right\}$.

Example 1. In general, $\sigma_{13}$ and $\sigma_{15}$ are not closed. Consequently, $R_{13}$ is not stable under small commuting perturbations:

Consider the operator defined in Example 14 of [4],

$$
S=\bigoplus_{n=1}^{\infty} S_{n}
$$

where $S_{n} \in \mathcal{L}\left(H_{n}\right), H_{n}$ is an $n$-dimensional Hilbert space with an orthonormal basis $e_{n 1}, \ldots, e_{n n}$ and $S_{n}$ is the shift operator, that is, $S_{n} e_{n 1}=0, S_{n} e_{n i}=e_{n, i-1}(2 \leq i \leq n)$. Then $S \in R_{13} \subset R_{15}$, see Example 14 of [4].

Let $\varepsilon \neq 0,|\varepsilon|<1$. Then $S_{n}-\varepsilon$ is invertible for all $n \in \mathbf{N}$ so that $S-\varepsilon$ is injective. For $n \in \mathbf{N}$ set $x_{n}=\sum_{i=1}^{n} \varepsilon^{i-1} e_{n i}$. Then $\left\|x_{n}\right\| \geq 1$ and

$$
\left\|(S-\varepsilon) x_{n}\right\|=\left\|-\varepsilon^{n} e_{n n}\right\|=\left|\varepsilon^{n}\right| .
$$

Thus $S-\varepsilon$ is not bounded below and $R(S-\varepsilon)$ is not closed. Hence $S-\varepsilon \notin R_{13}$ and $\sigma_{13}(S)$ is not closed.

Further, for each $k \in \mathbf{N}$, we have

$$
\left\|(S-\varepsilon)^{k} x_{n}\right\|=\left|\varepsilon^{n}\right| \cdot\left\|(S-\varepsilon)^{k-1} e_{n n}\right\| \leq\left|\varepsilon^{n}\right| \cdot\left\|(S-\varepsilon)^{k-1}\right\| \leq\left|\varepsilon^{n}\right| \cdot(1+|\varepsilon|)^{k-1}
$$

so that $\lim _{n \rightarrow \infty}\left\|(S-\varepsilon)^{k} x_{n}\right\|=0$ for all $k \in \mathbf{N}$ and $R\left((S-\varepsilon)^{k}\right)$ is not closed. Consequently, $S-\varepsilon \notin R_{15}$ and $\sigma_{15}(S)$ is not closed.

Example 2. The class $R_{13}$ is not stable under commuting compact perturbations:
Consider the operator $S$ from the previous example and let $K=\bigoplus_{n=1}^{\infty}(1 / n) I_{n}$ where $I_{n}$ denotes the identity operator on $H_{n}$. Clearly $K$ is compact, $K S=S K$, $S+K$ is injective and, as above, $S+K$ is not bounded below. Thus $R(S+K)$ is not closed and $S+K \notin R_{13}$.

Example 3. $R_{13}$ is not stable under commuting quasinilpotent perturbations:
For $k \in \mathbf{N}$ let $H^{(k)}$ be the Hilbert space with an orthonormal basis $e_{n i}^{(k)} \quad(n \in$ $\mathbf{N}, i=1, \ldots, \max \{k, n\})$. Let $S^{(k)} \in \mathcal{L}\left(H^{(k)}\right)$ be the shift to the left,

$$
S^{(k)} e_{n i}^{(k)}= \begin{cases}e_{n, i-1}^{(k)} & (i \geq 2) \\ 0 & (i=1)\end{cases}
$$

Set $S=\bigoplus_{k=1}^{\infty} S^{(k)}$. Clearly $S$ is a direct sum of finite-dimensional shifts where $n$ dimensional shift appears ( $2 n-1$ )-times (once in each $S^{(1)}, \ldots, S^{(n-1)}$ and $n$ times in $\left.S^{(n)}\right)$. Thus $S \in R_{13}$.

Define $Q^{(k)} \in \mathcal{L}\left(H^{(k)}\right)$ by $Q^{(k)} e_{n i}^{(k)}=(1 / n) e_{n+1, i}^{(k)}$ for all $n, i$. Let $Q=\bigoplus_{k=1}^{\infty} Q^{(k)}$. Clearly $S Q=Q S$ and $Q$ is a quasinilpotent since $\left\|Q^{j}\right\|^{1 / j}=(1 / j!)^{1 / j} \rightarrow 0$.

We prove that $S-Q \notin R_{13}$. Set

$$
x^{(k)}=\sum_{n=1}^{\infty} \frac{1}{(n-1)!} e_{n n}^{(k)} \in H^{(k)} .
$$

Then

$$
(S-Q) x^{(k)}=\sum_{n=2}^{\infty} \frac{1}{(n-1)!} e_{n, n-1}^{(k)}-\sum_{n=1}^{\infty} \frac{1}{n!} e_{n+1, n}^{(k)}=0
$$

Further $x^{(k)} \notin R\left(S^{(k)}\right)+R\left(Q^{(k)}\right)$ so that $x^{(k)} \notin R\left(S^{(k)}-Q^{(k)}\right)$. It is easy to see that each linear combination of $x^{(k)}$ 's has the same property with respect to $S$ and $Q$ so that these vectors are linearly independent modulo $R(S-Q)$. Thus

$$
k_{0}(S-Q)=\operatorname{dim} N(S-Q) /(N(S-Q) \cap R(S-Q))=\infty
$$

and $S-Q \notin R_{13}$.
Consequently, the complete version of Table 2 of [4] is:

|  | $(\mathrm{A})$ <br> $\sigma_{i} \neq \emptyset$ | $(\mathrm{B})$ <br> $\sigma_{i}$ closed | $(\mathrm{C})$ <br> small commut. <br> perturbations | $(\mathrm{D})$ <br> finite dim. <br> perturbations | $(\mathrm{E})$ <br> commut.comp. <br> perturbations | (F) <br> commut. <br> quasinilp. pert. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $R_{11}$ <br> semi-reg | yes | yes | yes | no | no | yes |
| $R_{12}$ <br> ess.s-reg. | yes | yes | yes | yes | yes | yes |
| $R_{13}$ | yes | no | no | yes | no | no |
| $R_{14}$ <br> $q \varphi$ | no | yes | no | yes | no | no |
| $R_{15}$ | no | no | no | yes | no | no |

## References

[1] S. Grabiner, Uniform ascent and descent of bounded operators, J. Math. Soc. Japan 34 (1982), 317-337.
[2] V. Kordula, The essential Apostol spectrum and finite dimensional perturbations, Proc. Roy. Irish Acad. 96A (1996), 105-110.
[3] V. Kordula, V. Müller, On the axiomatic theory of spectrum, Studia Math. 119 (1996), 109-128.
[4] M. Mbekhta and V. Müller, On the axiomatic theory of spectrum II, Studia Math. 119 (1996), 129-147.

Department of Mathematics The University of Melbourne Parkville VIC 3052 Australia email: j.koliha@ms.unimelb.edu.au

Institute of Mathematics AV ČR Žitna 25, 11567 Prague 1
Czech Republic
e-mail: muller@math.cas.cz

Université de Lille
U.F.R. de Mathématiques

F-59655 - Villeneuve d'Ascq Cedex
France
Department of Mathematics
The University of Melbourne
Parkville VIC 3052 Australia

