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Abstract: We show that the commutant lifting theorem for n-tuples of commuting
contractions with regular dilations fails to be true. A positive answer is given for
operators which ”double intertwine” given n-tuples of contractions.

The commutant lifting theorem is one of the most important results of the Sz.
Nagy—Foias dilation theory. It is usually stated in the following way:

Theorem. Let T and T ′ be contractions in Hilbert spaces H and H ′. Let A : H → H ′

be a contraction which intertwines T and T ′, i.e. AT = T ′A. Let V ∈ B(K+) and
V ′ ∈ B(K ′

+) be the minimal isometric dilations of T and T ′. Then there exists a
contraction B : K+ → K ′

+ such that BV = V ′B and APH = PH′B.
(We denote by PM the orthogonal projection onto a closed subspace M).

The commutant lifting theorem has been studied intensely (see [3]) because, apart
from its interesting operator-theoretic consequences, it has a number of applications
concerning interpolation problems, in the control theory and even in some pure technical
problems.

The aim of this paper is to study the commutant lifting theorem for n-tuples
of commuting contractions. It is well-known that in general (for n ≥ 3) n-tuples of
commuting contractions have no dilations. A pair of commuting contractions has a
(Ando) dilation, but this dilation is not unique and the structure of the corresponding
space is rather complicated. By example VII.6.3 of [3] the commutant lifting theorem
fails to be true for the Ando dilations. Therefore we restrict ourselves to the case
of commuting contractions having a regular dilation, which exhibits many properties
similar to the case of a single contraction.

We use the method of Timotin [7] which relates the commutant lifting theorem with
a problem of finding a positive semidefinite extension of some partial operator-valued
matrix.

Let I be an index set and let, for each α ∈ I, a Hilbert space Hα be given. Let
operators Tα,β : Hβ → Hα be given for all α, β ∈ I. We say that the matrix (Tα,β)α,β∈I

is positive semidefinite if ∑

α,β∈I

< Tα,βhβ , hα >≥ 0

for every function h : α 7→ hα ∈ Hα with a finite support.
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If (Tα,β)α,β∈I is a positive semidefinite matrix then it is well-known that there is
a (uniquely determined up to a unitary equivalence) Hilbert space K and isometries
Wα : Hα → K such that K =

∨
α∈I WαHα and Tα,β = W ∗

αWβ (α, β ∈ I). The space
K will be called the representation space of the matrix (Tα,β)α,β∈I (see [7]).

Conversely, if Tα,β = W ∗
αWβ (α, β ∈ I) for some isometries Wα : Hα → K, then

the matrix (Tα,β)α,β∈I is positive semidefinite.

Lemma 1. Let I be a finite set and let (Tα,β)α,β∈I be a positive semidefinite operator-
valued matrix. Let hα ∈ Hα (α ∈ I). Then the complex matrix

(
< Tα,βhβ , hα >

)
α,β∈I

is positive semidefinite.

Proof. Let cα be complex numbers. We have

0 ≤
∑

α,β∈I

< Tα,βcβhβ , cαhα >=
∑

α,β∈I

< Tα,βhβ , hα > cβ c̄α

so that the matrix
(
< Tα,βhβ , hα >

)
α,β∈I

is positive semidefinite.

In the following we shall use the standard multiindex notation. Denote by Z
and Z+ the set of all integers and of all non-negative integers, respectively. For α =
(α1, . . . , αn), β = (β1, . . . , βn) ∈ Zn we write α ≤ β if αi ≤ βi (i = 1, . . . , n) and
α+β = (α1 +β1, . . . , αn +βn). For α ∈ Zn denote by α+ and α− its positive (negative)
part, α+ =

(
max(α1, 0), . . . , max(αn, 0)

)
, α− =

(−min(α1, 0), . . . ,−min(αn, 0)
)
. Thus

α = α+ − α−. Denote further by |α| =
∑n

i=1 |αi|. If T = (T1, . . . , Tn) is an n-tuple of
commuting operators and α ∈ Zn

+, then we write shortly Tα = Tα1
1 · · ·Tαn

n .

Let T = (T1, . . . , Tn) be an n-tuple of mutually commuting contractions in a Hilbert
space H. Let U = (U1, . . . , Un) be an n-tuple of mutually commuting unitary operators
in a Hilbert space K ⊃ H. Then U is called the minimal regular unitary dilation of T
(see [5]) if K =

∨
α∈Zn UαH and T ∗α−Tα+ = PHUα|H for every α ∈ Zn.

By [5], Theorem I.9.1, T = (T1, . . . , Tn) has a minimal regular unitary dilation if
and only if ∑

F⊂{1,...,n}
(−1)|F |T ∗e(F )T e(F ) ≥ 0 (1)

where e(F ) ∈ Zn is defined by e(F ) = (α1, . . . , αn) and αi =

{
1 (i ∈ F )
0 (i /∈ F ).

In this case denote by K+ =
∨

α∈Zn

+
UαH and Vi = Ui|K+ (i = 1, . . . , n). Then

Vi are commuting isometries in K+ and V = (V1, . . . , Vn) is the minimal regular iso-
metric dilation of T .

The minimal regular unitary (isometric) dilation is determined uniquely up to a
unitary equivalence.

Let T = (T1, . . . , Tn) be a commuting n-tuple of contractions. Then T has a
regular unitary dilation if and only if the matrix

(
Tα,β

)
α,β∈Zn , where Hα = H for

each α ∈ Zn and Tα,β = T ∗(β−α)−T (β−α)+ (α, β ∈ Zn) is positive semidefinite (see[5],
p. 34–37). The corresponding representation space is the space K of the minimal
regular unitary dilation and the embeddings Wα : Hα → K (α ∈ Zn) are given
by Wα = Uα|H. Clearly the representation space of the positive semidefinite matrix
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(
Tα,β

)
α,β∈Zn

+
, where Tα,β = T ∗(β−α)−T (β−α)+ is the space K+ of the minimal regular

isometric dilation.

We are going to study the following problem:

Problem 1. Let T = (T1, . . . , Tn) and T ′ = (T ′1, . . . , T
′
n) be commuting n-tuples of

contractions in Hilbert spaces H and H ′. Suppose that T and T ′ have minimal regular
isometric dilations V = (V1, . . . , Vn) ∈ B(K+)n and V ′ = (V ′

1 , . . . , V ′
n) ∈ B(K ′

+)n. Let
A : H → H ′ be a contraction satisfying ATi = T ′iA (i = 1, . . . , n). Does there exists
a contraction B : K+ → K ′

+ such that PH′B = APH and BVi = V ′
i B (i = 1, . . . , n) ?

Theorem 2. The answer to the previous problem is negative for n ≥ 2.

Proof. Suppose that T = (T1, T2) ∈ B(H)2, T ′ = (T ′1, T
′
2) ∈ B(H ′)2 and A : H → H ′

satisfy all the conditions required in Problem 1 and suppose that there is a contraction
B : K+ → K ′

+ such that PH′B = APH and BVi = V ′
i B (i = 1, 2).

By [7] there exists a (uniquely determined) Hilbert space K̃ containing K+ and
K ′

+ such that K̃ = K+ ∨K ′
+ and B = PK′

+
|K+.

Let I be a disjoint union of two copies of Z2
+. The elements of these two copies

will be denoted by α and α′ (α ∈ Z2
+). Set Hα = H, Hα′ = H ′ (α ∈ Z2

+). Define
operators Wi : Hi → K̃ (i ∈ I) by Wα = V α|H (Wα : H → K+ ⊂ K̃) and
Wα′ = V ′α|H ′ (Wα′ : H ′ → K ′

+ ⊂ K̃). For i, j ∈ I define Ti,j : Hj → Hi by
Ti,j = W ∗

i Wj . Then

(Ti,j)i,j∈I =

(
Tα,β Tα,β′

Tα′,β Tα′,β′

)

α,β∈Z2
+

is a positive semidefinite matrix.
For α, β ∈ Z2

+ we have

Tα,β = PHV ∗αV β |H = PHV ∗(β−α)−V (β−α)+ |H = T ∗(β−α)−T (β−α)+ ,

analogously Tα′,β′ = T ′∗(β−α)−T ′(β−α)+ ,

Tα′,β =PH′V ′∗αBV β |H = PH′V ′∗αV
′β−(β−α)+BV (β−α)+ |H

=PH′V ′∗(β−α)−BV (β−α)+ |H = T
′∗(β−α)−AT (β−α)+ ,

and Tα,β′ = (Tα′,β)∗.
In particular, Tα′,α = PH′B|H = A.
Consider the submatrix of (Ti,j)i,j∈I corresponding to the rows and columns in-

dexed by (1, 0), (0, 1), (1, 0)′, (0, 1)′. This matrix is positive semidefinite and it has form




I T ∗1 T2 A∗ Y ∗

T ∗2 T1 I X∗ A∗

A X I T ′∗1 T ′2
Y A T ′∗2 T1 I


 ,

where X, Y are certain operators H → H ′.

3



Let h1, h2 ∈ H, h′1, h
′
2 ∈ H ′ be arbitrary vectors. By Lemma 1 the complex matrix




< h1, h1 > < T ∗1 T2h2, h1 > < A∗h′1, h1 > ȳ
< T ∗2 T1h1, h2 > < h2, h2 > x̄ < A∗h′2, h2 >

< Ah1, h
′
1 > x < h′1, h

′
1 > < T ′∗1 T ′2h

′
2, h

′
1 >

y < Ah2, h
′
2 > < T ′∗2 T ′1h

′
1, h

′
2 > < h′2, h

′
2 >


 (2)

is positive semidefinite, where x =< Xh2, h
′
1 >, y =< Y h1, h

′
2 >.

Lemma 3. There exist Hilbert spaces H,H ′, operators T1, T2 ∈ B(H), T ′1, T
′
2 ∈ B(H ′),

A : H → H ′ satisfying all conditions of Problem 1 and vectors h1, h2 ∈ H, h′1, h
′
2 ∈ H ′

such that ‖h1‖ = ‖h2‖ = ‖h′1‖ = ‖h′2‖ = 1, < T1h1, T2h2 >= 0, < T ′1h
′
1, T

′
2h
′
2 > 6= 0,

Ah1 = h′1 and Ah2 = h′2.

Proof. Let dim H = dim H ′ = 4, let {e1, . . . , e4} and {f1, . . . , f4} be orthonormal
bases of H and H ′, respectively. With respect to these basis set

T1 =




0 0 0 0
0 0 0 0

1/2 0 0 0
0 0 0 0


 , T2 =




0 0 0 0
0 0 0 0
0 0 0 0
0 1/2 0 0


 ,

T ′1 =




0 0 0 0
0 0 0 0

1/4 0 0 0
0 0 0 0


 , T ′2 =




0 0 0 0
0 0 0 0
0 1/4 0 0
0 0 0 0


 , A =




1 0 0 0
0 1 0 0
0 0 1/2 1/2
0 0 0 0


 .

It is easy to check that T1T2 = T2T1 = 0, T ′1T
′
2 = T ′2T

′
1 = 0, T ∗1 T1 + T ∗2 T2 ≤ I and

T ′∗1T
′
1 + T ′∗2T

′
2 ≤ I so that the pairs (T1, T2), (T ′1, T

′
2) have regular isometric dilations,

AT1 = T ′1A =




0 0 0 0
0 0 0 0

1/4 0 0 0
0 0 0 0


 , AT2 = T ′2A =




0 0 0 0
0 0 0 0
0 1/4 0 0
0 0 0 0




and ‖A‖ ≤ 1. Set h1 = e1, h2 = e2, h′1 = f1 and h′2 = f2. Then ‖h1‖ = ‖h2‖ = ‖h′1‖ =
‖h′2‖ = 1, < T1h1, T2h2 >=< 1

2e3,
1
2e4 >= 0, < T ′1h

′
1, T

′
2h
′
2 >=< 1

4f3,
1
4f3 > 6= 0,

Ah1 = h′1 and Ah2 = h′2.

Continuation of the proof of Theorem 2. Let (V1, V2) ∈ B(K+)2 and (V ′
1 , V ′

2) ∈
B(K ′

+)2 be the minimal regular isometric dilations of the pairs (T1, T2) and (T ′1, T
′
2)

which were constructed in the previous lemma. Suppose on the contrary that there is
a contraction B : K+ → K ′

+ such that PH′B = APH and BVi = V ′
i B (i = 1, 2). Let

h1, h2, h
′
1, h

′
2 be the vectors constructed in the previous lemma.

By substituting into (2) we have




1 0 1 ȳ
0 1 x̄ 1
1 x 1 ā
y 1 a 1


 ≥ 0,
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where a =< T ′1h
′
1, T

′
2h
′
2 >6= 0 and x, y are certain complex numbers. Then

0 ≤ det




1 0 1
0 1 x̄
1 x 1


 = −|x|2

so that x = 0 and

0 ≤ det




1 x̄ 1
x 1 ā
1 a 1


 = det




1 0 1
0 1 ā
1 a 1


 = −|a|2 < 0,

a contradiction.
Thus the commutant lifting theorem is not true for n-tuples of commuting con-

tractions with the regular dilation.

Remark 1. In the construction we have used instead of the condition APH = PH′B
only the weaker condition A = PH′B|H. Thus there is no lifting of A satisfying only
this weaker condition.

Remark 2. Clearly it is possible to consider regular unitary dilations instead of isomet-
ric dilations. The reasoning given in the example remains true so that the commutant
lifting theorem is not true for regular unitary dilations.

Remark 3. It is easy to modify the example of Theorem 3 for any n ≥ 2. It is sufficient
to consider the n-tuples (T1, T2, 0, . . . , 0) and (T ′1, T

′
2, 0, . . . , 0).

Remark 4. Regular dilations are connected with the polydisc

Dn = {(z1, . . . , zn) ∈ Cn, |zi| ≤ 1, i = 1, . . . , n}

in the following way. An n-tuple T = (T1, . . . , Tn) of commuting contractions has a
regular dilation if and only if T is unitarily equivalent to the restriction of M∗

z ⊕ W
to an invariant subspace, where W is an n-tuple of commuting unitary operators and
Mz = (Mz1 , . . . , Mzn) where Mzi is the operator of multiplication by zi in the space
H2(Dn) (with infinite multiplicity), see [2].

There is a parallel theory for the ball

Bn =
{

(z1, . . . , zn) ∈ Cn,

n∑

i=1

|zi|2 ≤ 1
}
,

see [1], [4], or [8]. Condition (1) is then replaced by

I −
n∑

i=1

T ∗i Ti ≥ 0 (3)

and ∑

|α|≤n

(−1)|α|
n!

α!(n− |α|)!T
∗αTα ≥ 0. (4)
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An n-tuple T = (T1, . . . , Tn) of commuting contractions satisfies (3) and (4) if and only if
T is unitarily equivalent to the restriction of M∗

z ⊕W where W = (W1, . . . , Wn) is an n-
tuple of commuting normal operators with

∑n
i=1 W ∗

i Wi = I and Mz = (Mz1 , . . . ,Mzn
),

where Mzi
is the multiplication by zi in H2(Bn) (for details see [4]).

The n-tuple T has then a spherical dilation, i.e. there are commuting normal
operators N = (N1, . . . , Nn) such that

∑
N∗

i Ni = I and Tα = PHNα|H for each
α ∈ Zn

+.
It is easy to check that the pairs T = (T1, T2) and T ′ = (T ′1, T

′
2) constructed in

Theorem 3 satisfy also (3) and (4). It is possible to show that the operator A from
Theorem 3 can not be lifted to an operator B satisfying N ′

iB = BNi (i = 1, 2) where
N = (N1, N2), N ′ = (N ′

1, N
′
2) are the spherical dilations of T and T ′. We omit the

proof since it requires more detailed information about the spherical dilations N and
N ′.

In the following we shall suppose that the operator A ”double intertwines” T =
(T1, . . . , Tn) and T ′ = (T ′1, . . . , T

′
n), i.e. both ATi = T ′iA and AT ∗i = T ′∗i A for all i. We

show that then A can be lifted to the space of the minimal regular unitary dilation.

Theorem 4. Let T = (T1, . . . , Tn) and T ′ = (T ′1, . . . , T
′
n) be commuting n-tuples

of contractions in Hilbert spaces H and H ′, respectively. Suppose that T and T ′

have the minimal regular unitary dilations U = (U1, . . . , Un) ∈ B(K)n and U ′ =
(U ′

1, . . . , U
′
n) ∈ B(K ′)n. Let A : H → H ′ be a contraction satisfying ATi = T ′iA and

AT ∗i = T ′∗i A (i = 1, . . . , n). Then there exists a contraction B : K → K ′ such that
PH′B = APH and BUi = U ′

iB (i = 1, . . . , n).

Proof. For α, β ∈ Zn set

Tα,β = T ∗(β−α)−T (β−α)+

Tα′,β′ = T ′∗(β−α)−T ′(β−α)+

Tα′,β = AT ∗(β−α)−T (β−α)+

Tα,β = (Tα′,β)∗.

We show that the matrix (
Tα,β Tα,β′

Tα′,β Tα′,β′

)

α,β∈Z2
(5)

is positive semidefinite. It is sufficient to show that, for each positive integer k, the
finite matrix (

Tα,β Tα,β′

Tα′,β Tα′,β′

)
α,β∈Z2

|α|,|β|≤k

is positive semidefinite.
By [5] the matrices S = (Tα,β)

α,β∈Z2

|α|,|β|≤k

and S′ = (Tα′,β′) α,β∈Z2

|α|,|β|≤k

are positive

semidefinite.
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Denote by diag (A) the diagonal matrix

diag (A) =




A 0 · · ·
0 A · · ·
...

...
. . .




α,β∈Z2

|α,β≤k

.

Then diag (A) · S = S′ · diag (A) and, by expressing the square root as a limit of
polynomials, also diag (A) · S1/2 = S

′1/2 · diag (A). Thus

(
Tα,β Tα,β′

Tα′,β Tα′,β′

)
α,β∈Z2

|α|,|β|≤k

=

(
S S · diag (A∗)

diag (A) · S S′

)

=

(
S1/2 0

0 S′1/2

)(
I diag (A∗)

diag (A) I

)(
S1/2 0

0 S′1/2

)
,

Since ‖A‖ ≤ 1 we have

(
I A∗

A I

)
≥ 0 and

(
I diag (A∗)

diag (A) I

)
≥ 0. Hence

the matrix (5) is also positive semidefinite.
Denote its representation space by K̃.
Since the representation spaces of matrices (Tα,β)

α,β∈Z2 and (Tα′,β′)α,β∈Z2 are

unitarily equivalent to K and K ′, respectively, we may consider K and K ′ as subspaces
of K̃ and K̃ = K ∨K ′.

Set B = PK′ |K. Clearly ‖B‖ ≤ 1.
For each β ∈ Zn we have

APHUβ |H = AT ∗β−T β+ = T0′,β = PH′PK′Uβ |H = PH′BUβ |H.

Since
∨

β∈Zn UβH = K we conclude that APH = PH′B.
For i = 1, . . . , n denote by ei = (0, . . . , 0︸ ︷︷ ︸

i−1

, 1, 0, . . . , 0) ∈ Zn. We have

Tα′,β = T(α+ei)′,β+ei
(α, β ∈ Zn, i = 1, . . . , n).

Then, for each α, β ∈ Zn, i = 1, . . . , n, h ∈ H and h′ ∈ H ′, we have

< BUiU
βh,U ′αh′ >=< PH′U ′∗αBUβ+eih, h′ >=< Tα′,β+eih, h′ >

= < T(α−ei)′,βh, h′ >=< PH′U ′∗αU ′
iBUβh, h′ >=< U ′

iBUβh, U ′αh′ > .

Since K =
∨

β∈Zn UβH and K ′ =
∨

β∈Zn U ′βH ′ we conclude that BUi = U ′
iB (i =

1, . . . , n).

Remark 5. Consider the minimal regular isometric dilations V ∈ B(K+)n and V ′ ∈
B(K ′

+)n of T and T ′ and let A : H → H ′ double intertwine T and T ′. As in the previous
theorem we can get a contractive lifting C : K+ → K ′

+ such that PH′C = APH , but
instead of the intertwining property V ′

i C = CVi it is possible to prove only the Toeplitz
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type property V ′∗
i CVi = C (i = 1, . . . , n). The lifting to the space of the minimal

regular unitary dilation is the ”symbol” of C, cf. [6].
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