Littlewood-Richardson Sequences Associated with C_{0}-Operators

Wing Suet Li and Vladimír Müller

Abstract

We generalize the concept of the Littlewood-Richardson sequence associated with an invariant subspace of a nilpotent operator on a finite dimensional vector space to the context of C_{0}-contractions. The similarity invariants of nilpotent operators (decreasing sequences of sizes of the Jordan blocks) are replaced by the quasisimilarity invariants of C_{0}-contractions (sequences of inner functions).

0. INTRODUCTION

Let T be a linear operator on a finite dimensional Hilbert space \mathcal{H} and let \mathcal{M} be an invariant subspace of T. A natural but surprisingly difficult problem is to describe relationships between the similarity invariants for $T, T \mid \mathcal{M}(T$ restricted to $\mathcal{M})$, and the quotient map $\tilde{T}: \mathcal{H} / \mathcal{M} \rightarrow \mathcal{H} / \mathcal{M}$ (or, equivalently, $T_{\mathcal{H} \ominus \mathcal{M}}$, the compression of T to $\mathcal{H} \ominus \mathcal{M}$). This problem (and the more general one about p-modules) has been treated by the use of Littlewood-Richardson sequences (to be described below) first by Azenhas and de Sa [1] and Thijsse [12] (the case of groups was done earlier by Green [7] and Klein [8]). More recently, the finite matrix case and extensions of the problem to a certain class of operators on an infinite dimensional Hilbert space were studied in [6] and [9].

The present paper, which may be considered to be a continuation of [9], is concerned with relations between the quasisimilarity invariants for $T, T \mid \mathcal{M}$, and $T_{\mathcal{H} \ominus \mathcal{M}}$, where T is a C_{0}-operator on an infinite dimensional separable Hilbert space \mathcal{H}.

The paper is organized as follows. We recall some basic facts about operators of class C_{0} in Section 1. In Section 2 we describe how to associate a LittlewoodRichardson sequence to a pair (T, \mathcal{M}) where T is an operator of class C_{0} and \mathcal{M} is an

[^0]invariant subspace of T. Conversely, in Section 3, we show that, given a LittlewoodRichardson sequence, one can construct an operator T of class C_{0} and a sequence of nested invariant subspaces $\left\{\mathcal{M}_{k}\right\}_{k=0}^{\infty}$ of T such that the Jordan models of the operators $\left\{T \mid \mathcal{M}_{k}\right\}$ correspond to the given Littlewood-Richardson sequence.

1. PRELIMINARIES

By an operator we always mean a bounded linear operator on a separable complex Hilbert space. Let \mathcal{H} be a separable complex Hilbert space, and let $\mathcal{L}(\mathcal{H})$ be the set of all operators on \mathcal{H}. For $T \in \mathcal{L}(\mathcal{H})$, we denote by $\operatorname{Lat}(T)$ the lattice of all (closed) invariant subspaces of T. For $x \in \mathcal{H}$, denote by $\mathcal{K}_{T}(x)=\vee\left\{T^{n} x: n \geq 0\right\}$ the invariant subspace of T generated by x, and similarly, $\mathcal{K}_{T}\left(x_{1}, \ldots, x_{n}\right)$ denotes the invariant subspace of T generated by the vectors $x_{1}, \ldots, x_{n} \in \mathcal{H}$. Let μ_{T} be the multiplicity of T, which is defined as the smallest cardinality of a subset $F \subset \mathcal{H}$ with the property that $\mathcal{H}=\vee\left\{T^{n} F: n \geq 0\right\}$. An operator of multiplicity one is also called multiplicityfree. For $T \in \mathcal{L}(\mathcal{H})$ and $\mathcal{M} \in \operatorname{Lat}(T)$, we denote by $T \mid \mathcal{M}$ the restriction of T to \mathcal{M}. If \mathcal{L} is any subspace of \mathcal{H}, the orthogonal projection of \mathcal{H} onto \mathcal{L} is denoted by $P_{\mathcal{L}}$. For $\mathcal{M}, \mathcal{N} \in \operatorname{Lat}(T)$, and $\mathcal{N} \subset \mathcal{M}$, the compression of T to the semi-invariant subspace $\mathcal{M} \ominus \mathcal{N}$ is $T_{\mathcal{M} \ominus \mathcal{N}}=P_{\mathcal{M} \ominus \mathcal{N}} T \mid \mathcal{M} \ominus \mathcal{N}$.

If θ and ψ are inner functions, then we write $\theta \mid \psi$ if $\psi=u \theta$ for some inner function u, and $\theta \equiv \psi$ if and only if $\theta \mid \psi$ and $\psi \mid \theta$. Moreover, $\theta \wedge \psi$ is the greatest common inner divisor and $\theta \vee \psi$ is the least common inner multiple of θ and ψ, respectively.

We recall some facts from the theory of operators of class C_{0}. All results stated below without proof are proved either in [2] or in [11].

Denote by H^{∞} the Banach algebra of all bounded analytic functions on the open unit disk D. A completely nonunitary contraction T is of class C_{0} if there exists a nonzero $u \in H^{\infty}$ such that $u(T)=0$. For a C_{0}-contraction T there exists an inner function m_{T} (so called minimal function of T) such that $u(T)=0$ implies $m_{T} \mid u$.

Next we will define the building blocks of C_{0} operators. Let H^{2} be the set of all analytic functions $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ for $z \in \mathbf{D}$ such that $\|f\|_{2}^{2}=\sum_{0}^{\infty}\left|a_{n}\right|^{2}<\infty$. The shift operator $S \in \mathcal{L}\left(H^{2}\right)$ is defined by $(S f)(z)=z f(z) \quad\left(f \in H^{2}, z \in \mathbf{D}\right)$. If ϕ is an inner function, then ϕH^{2} is invariant for S, and so $H(\phi):=H^{2} \ominus \phi H^{2}$ is invariant for
S^{*}. The Jordan block $S(\phi) \in \mathcal{L}(H(\phi))$ is defined by $S(\phi)^{*}=S^{*} \mid H(\phi)$, equivalently, $S(\phi)=P_{H(\phi)} S \mid H(\phi)$. The operator $S(\phi)$ is of class C_{0} with minimal function ϕ. Some of the basic properties of Jordan blocks are listed below.

Proposition 1.1. ([2], p. 38) Let $\phi \in H^{\infty}$ be an inner function.
(i) If θ is an inner divisor of ϕ then

$$
\theta H^{2} \ominus \phi H^{2}=\operatorname{ran} \theta(S(\phi))=\operatorname{ker}(\phi / \theta)(S(\phi))
$$

(ii) For any inner function $u \in H^{\infty}$, the operator $S(\phi) \mid \overline{\operatorname{ran} u(S(\phi))}$ is unitarily equivalent to $S(\phi /(u \wedge \phi))$.

Recall that a model function is a sequence of inner functions $\Phi=\left\{\phi_{j}: j \geq 1\right\}$ such that $\phi_{j+1} \mid \phi_{j}$ for all $j \geq 1$. For a model function Φ, set $H(\Phi):=\bigoplus_{j=1}^{\infty} H\left(\phi_{j}\right)$ and the Jordan model operator associated with the model function Φ is defined as $S(\Phi):=\bigoplus_{j=1}^{\infty} S\left(\phi_{j}\right)$ on $H(\Phi)$. We say that operators $T \in \mathcal{L}(\mathcal{H})$ and $T^{\prime} \in \mathcal{L}\left(\mathcal{H}{ }^{\prime}\right)$ are quasisimilar (shortly $T \sim T^{\prime}$) if there exist quasiaffinities $X: \mathcal{H} \rightarrow \mathcal{H}^{\prime}$ and $Y: \mathcal{H}^{\prime} \rightarrow \mathcal{H}$ such that $X T=T^{\prime} X$ and $Y T^{\prime}=T Y$. All operators in the class C_{0} can be classified up to quasisimilarity by Jordan model operators.

Theorem 1.2. ([4]) Every operator T of class C_{0} is quasisimilar to a unique Jordan model operator.

The unique Jordan model operator given above is called the Jordan model of T. In addition, if $T \sim S(\Phi)$, we will also call Φ to be the model function associated with T.

We need the following result about the relationship between multiplicity and the Jordan model of T.

Proposition 1.3. (see [2], p.55) Let $T \in \mathcal{L}(\mathcal{H})$ be a C_{0} operator with Jordan model $\bigoplus_{j=1}^{\infty} S\left(\phi_{j}\right)$. Then $\mu_{T} \leq n$ if and only if $\phi_{n+1} \equiv 1$. Furthermore, for each $j \geq 1$,

$$
\phi_{j}=\wedge\left\{u: \mu_{T \mid \overline{u(T) \mathcal{H}}}<j\right\} .
$$

Next result is about the continuity of Jordan models relative to an increasing sequence of invariant subspaces (cf. [2, p. 195]).

Theorem 1.4. Let $T \in \mathcal{L}(\mathcal{H})$ be an operator of class C_{0} with model function $\Theta=$ $\left\{\theta_{j}: j \geq 1\right\}$ and let $\left\{\mathcal{M}_{k}: k \geq 0\right\}$ be a sequence of invariant subspaces of T such that $\mathcal{M}_{k} \subset \mathcal{M}_{k+1}$ for all $k \geq 0$ and $\vee_{k=0}^{\infty} \mathcal{M}_{k}=\mathcal{H}$. Suppose that the model function associated with each $T \mid \mathcal{M}_{k}$ is $\Phi^{(k)}=\left\{\phi_{j}^{(k)}: j \geq 1\right\}$. Then $\theta_{j}=\vee\left\{\phi_{j}^{(k)}: k \geq 0\right\}$ for all j.

We also need the following identities involving the model functions of T, the restriction of T to certain invariant subspace, and the compression of T to the orthogonal complement of the invariant subspace. Part (iii) is from [5].

Proposition 1.5. Let T be an operator of class C_{0} and $\mathcal{M} \in \operatorname{Lat}(T)$. Suppose that the Jordan models associated with $T \mid \mathcal{M}, T_{\mathcal{H} \ominus \mathcal{M}}$ and T are $\bigoplus_{j=1}^{\infty} S\left(\phi_{j}\right), \bigoplus_{j=1}^{\infty} S\left(\psi_{j}\right)$, and $\bigoplus_{j=1}^{\infty} S\left(\theta_{j}\right)$, respectively. Then, for all $j, k \geq 1$,
(i) $\phi_{j}\left|\theta_{j}, \psi_{j}\right| \theta_{j}$,
(ii) $\left(\theta_{1} \theta_{2} \cdots \theta_{j}\right) \mid\left(\phi_{1} \phi_{2} \cdots \phi_{j} \cdot \psi_{1} \psi_{2} \cdots \psi_{j}\right)$,
(iii) $\left(\phi_{1} \phi_{2} \cdots \phi_{j} \cdot \psi_{1} \psi_{2} \cdots \psi_{k}\right) \mid\left(\theta_{1} \theta_{2} \cdots \theta_{j+k}\right)$,
(iv) $\left(\prod_{n=1}^{\infty} \phi_{n}\right) \cdot\left(\prod_{n=1}^{\infty} \psi_{n}\right)=\prod_{n=1}^{\infty} \theta_{n}$ if $\prod_{n=1}^{\infty} \theta_{n}$ converges.

Recall from [2] that an operator T of class C_{0} with Jordan model $\bigoplus_{j=1}^{\infty} S\left(\theta_{j}\right)$ has property (P) if $\wedge\left\{\theta_{j}: j \geq 1\right\} \equiv 1$. In this case we also say that the model function $\Theta=\left\{\theta_{j}: j \geq 1\right\}$ has property (P). The following corollary is a direct consequence of Proposition 1.5.

Corollary 1.6. Let $T \in \mathcal{L}(\mathcal{H})$ be an operator of class C_{0} with model function $\Theta=$ $\left\{\theta_{j}: j \geq 1\right\}$ and property (P). Let $\mathcal{M} \in \operatorname{Lat}(T)$ and let $\Phi=\left\{\phi_{j}: j \geq 1\right\}$ be the model function of $T \mid \mathcal{M}$. Assume that $T_{\mathcal{H} \ominus \mathcal{M}}$ is multiplicity-free. Then the Jordan model of $T_{\mathcal{H} \ominus \mathcal{M}}$ is $S\left(\prod_{j=1}^{\infty} \frac{\theta_{j}}{\phi_{j}}\right)$.

Proof. Since $T_{\mathcal{H} \ominus \mathcal{M}}$ is multiplicity-free, we set the Jordan model of $T_{\mathcal{H} \ominus \mathcal{M}}$ to be $S(\alpha)$. From Proposition 1.5 (ii) and (iii), we immediately have, for each $j \geq 1$, $\left(\theta_{1} \cdots \theta_{j}\right) \mid\left(\phi_{1} \cdots \phi_{j} \cdot \alpha\right)$ and $\left(\alpha \cdot \phi_{1} \cdots \phi_{j}\right) \mid\left(\theta_{1} \cdots \theta_{j} \theta_{j+1}\right)$. Thus $\left.\left(\frac{\theta_{1}}{\phi_{1}} \cdots \frac{\theta_{j}}{\phi_{j}}\right) \right\rvert\, \alpha$ and $\alpha \mid \theta_{j+1}$. $\left(\frac{\theta_{1}}{\phi_{1}} \cdots \frac{\theta_{j}}{\phi_{j}}\right)$. Since $\wedge\left\{\theta_{j}: j \geq 1\right\} \equiv 1$, we have $\alpha \equiv \prod_{j=1}^{\infty} \frac{\theta_{j}}{\phi_{j}}$.
Q.E.D.

The above corollary is false if T does not have property (P). Indeed, if $\wedge\left\{\theta_{j}: j \geq\right.$ $1\}=\theta_{0}$ and $\theta_{0} \not \equiv 1$, then $T \oplus S\left(\theta_{0}\right) \sim T$.

Finally, we need to recall some facts about maximal vectors.

Let $T \in \mathcal{L}(\mathcal{H})$ be of class C_{0} and $\mathcal{M} \in \operatorname{Lat}(T)$. Recall that a vector x is said to be maximal for T if $u(T) x=0$ implies $u(T)=0$. For each nonzero vector $x \in \mathcal{H}$ write $h_{T}(x, \mathcal{M})=\wedge\left\{u \in H^{\infty}: u\right.$ is inner and $\left.u(T) x \in \mathcal{M}\right\}$. A vector x is called (T, \mathcal{M}) - maximal if $h_{T}(y, \mathcal{M}) \mid h_{T}(x, \mathcal{M})$ for all $y \in \mathcal{H}$. Equivalently, $P_{\mathcal{H} \ominus \mathcal{M}} x$ is maximal for $T_{\mathcal{H} \ominus \mathcal{M}}$.

Our next result is a consequence of the "splitting principle" (cf. [2]); it can be also viewed as a special case of Proposition 1.17 of [3].

Proposition 1.7. Let $T \in \mathcal{L}(\mathcal{H})$ be an operator of class C_{0} and let $\bigoplus_{j=1}^{\infty} S\left(\theta_{j}\right)$ be the Jordan model of T. Suppose that $\left\{x_{j}: j \geq 1\right\}$ is a sequence of vectors in \mathcal{H} satisfying the following two conditions:
(i) x_{1} is maximal for T,
(ii) for each $j \geq 2, x_{j}$ is $\left(T, \mathcal{M}_{j-1}\right)$-maximal where $\mathcal{M}_{j-1}=\mathcal{K}_{T}\left(x_{1}, \ldots, x_{j-1}\right)$. Then $\theta_{1}=m_{T}$ and $\theta_{j}=h_{T}\left(x_{j}, \mathcal{M}_{j-1}\right)$ for each $j \geq 2$.

For a given $\mathcal{M} \in \operatorname{Lat}(T)$, the set of all (T, \mathcal{M})-maximal vectors is a dense G_{δ} set in \mathcal{H}. This fact together with the Baire category theorem gives the first part of the next lemma; the second part is from [6].

Lemma 1.8. Let $T \in \mathcal{L}(\mathcal{H})$ be an operator of class C_{0} and $\left\{\mathcal{M}_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ a collection of invariant subspaces of T. Suppose that either of the following two conditions is satisfied:
(i) the set $\left\{\mathcal{M}_{\alpha}: \alpha \in \mathcal{A}\right\}$ is countable,
(ii) the set $\left\{\mathcal{M}_{\alpha}: \alpha \in \mathcal{A}\right\}$ is totally ordered by inclusion.

Then the set $\left\{x \in \mathcal{H}: x\right.$ is $\left(T, \mathcal{M}_{\alpha}\right)$-maximal for all $\left.\alpha \in \mathcal{A}\right\}$ is a dense G_{δ} set.

2. LITTLEWOOD-RICHARDSON SEQUENCES OF C_{0} OPERATORS

Classical Littlewood-Richardson sequences are certain sequences of partitions where by a partition we mean a finite decreasing sequence of nonnegative integers. We refer the interested readers to I. Macdonal's book [10]. Here we will generalize LittlewoodRichardson sequences to sequences of model functions. If all the inner functions in the model functions are of the form $z \mapsto z^{n}$, our definition coincides with the classical one.

As in [9], we define Littlewood-Richardson sequences in terms of Littlewood-Richardson pairs and triples. This definition is equivalent to that in [6].

Definition 2.1. Let $\Phi=\left\{\phi_{j}: j \geq 1\right\}, \Psi=\left\{\psi_{j}: j \geq 1\right\}$, and $\Theta=\left\{\theta_{j}: j \geq 1\right\}$ be model functions.
(i) (Φ, Ψ) is a Littlewood-Richardson pair if $\psi_{j+1} \mid \phi_{j}$ and $\phi_{j} \mid \psi_{j}$ for all $j \geq 1$.
(ii) (Φ, Ψ, Θ) is a Littlewood-Richardson triple if both (Φ, Ψ) and (Ψ, Θ) are LittlewoodRichardson pairs and

$$
\begin{equation*}
\frac{\theta_{1} \cdots \theta_{j}}{\psi_{1} \cdots \psi_{j}} \left\lvert\, \frac{\psi_{1} \cdots \psi_{j-1}}{\phi_{1} \cdots \phi_{j-1}}\right., \quad \text { for all } \quad j \geq 1 \tag{2.1}
\end{equation*}
$$

(In particular for $j=1$ this means $\theta_{1}=\psi_{1}$.)
(iii) A sequence of model functions $\left(\Phi^{(k)}\right)_{k=0}^{\infty}$ is a Littlewood-Richardson sequence if $\left(\Phi^{(k-1)}, \Phi^{(k)}, \Phi^{(k+1)}\right)$ is a Littlewood-Richardson triple for each $k \geq 1$.

Remark 2.2.

(i) If (Φ, Ψ) is a Littlewood-Richardson pair, then $\prod_{j \geq 1}\left(\frac{\psi_{j}}{\phi_{j}}\right)$ is an inner function and $\left.\left(\prod_{j=1}^{\infty} \frac{\psi_{j}}{\phi_{j}}\right) \right\rvert\, \psi_{1}$.
(ii) If $\left(\Phi^{(k)}\right)_{k=0}^{\infty}$ is a Littlewood-Richardson sequence and $\Phi^{(k)}=\left\{\phi_{j}^{(k)}: j \geq 1\right\}$, then (ii) in Definition 2.1 implies that $\phi_{k}^{(i)}=\phi_{k}^{(k)}$ for all $i \geq k$.
(iii) If $\left(\Phi^{(k)}\right)_{k=0}^{\infty}$ is a Littlewood-Richardson sequence and $\Phi^{(0)}$ has property (P) then $\Phi^{(k)}$ has property (P) for all k.

Let $T \in \mathcal{L}(\mathcal{H})$ be an operator of class C_{0} and let \mathcal{M} be an invariant subspace of T. Our goal in this section is to associate a Littlewood-Richardson sequence with T and \mathcal{M} in the following way: we construct a chain of invariant subspaces $\mathcal{M}=\mathcal{M}_{0} \subset \mathcal{M}_{1} \subset \ldots$ such that $\vee_{k \geq 1} \mathcal{M}_{k}=\mathcal{H}$ and the model functions $\Phi^{(k)}$ of $T \mid \mathcal{M}_{k}$ form a LittlewoodRichardson sequence. Note that another, entirely different approach how to associate a Littlewood-Richardson sequence to a pair (T, \mathcal{M}) was given in [6]. Our approach here is analogous to that in [9].

Proposition 2.3. Let $T \in \mathcal{L}(\mathcal{H})$ be an operator of class C_{0} with model function $\Psi=\left\{\psi_{j}: j \geq 1\right\}$. Let $\mathcal{M} \in \operatorname{Lat}(T)$, and let $\Phi=\left\{\phi_{j}: j \geq 1\right\}$ be the model function of $T \mid \mathcal{M}$. Suppose that $T_{\mathcal{H} \ominus \mathcal{M}}$ is multiplicity-free. Then (Φ, Ψ) is a Littlewood-Richardson pair.

Moreover, if T has property (P) then the Jordan model of $T_{\mathcal{H} \ominus \mathcal{M}}$ is $S\left(\prod_{j=1}^{\infty} \frac{\psi_{j}}{\phi_{j}}\right)$.
Proof. Since $T_{\mathcal{H} \ominus \mathcal{M}}$ is multiplicity-free, there exists $x \in \mathcal{H}$ such that $\mathcal{H}=\mathcal{M} \vee$ $\mathcal{K}_{T}(x)$. For every inner function u we have $\overline{u(T) \mathcal{H}}=\overline{u(T) \mathcal{M}} \vee \mathcal{K}_{T}(u(T) x)$ so that

$$
\mu(T \mid \overline{u(T) \mathcal{M}}) \leq \mu(T \mid \overline{u(T) \mathcal{H}}) \leq \mu(T \mid \overline{u(T) \mathcal{M}})+1
$$

By Proposition 1.3, we have $\psi_{j}=\wedge\{u: \mu(T \mid \overline{u(T) \mathcal{H}})<j\}$ and

$$
\phi_{j}=\wedge\{u: \mu(T \mid \overline{u(T) \mathcal{M}})<j\} .
$$

Therefore $\phi_{j} \mid \psi_{j}$ and $\psi_{j+1} \mid \phi_{j}$ for all j.
If T has property (P) then the Jordan model of $T_{\mathcal{H} \ominus \mathcal{M}}$ is $S\left(\prod_{j=1}^{\infty}\left(\frac{\psi_{j}}{\phi_{j}}\right)\right)$ by Corollary 1.6.
Q.E.D.

Our next goal is to show that if $\mu_{T_{\mathcal{H} \Theta \mathcal{M}}}=2$, then one can find $\mathcal{L} \in \operatorname{Lat}(T)$ such that $\mathcal{M} \subset \mathcal{L}$ and the model functions of $T|\mathcal{M}, T| \mathcal{L}$ and T form a Littlewood-Richardson triple.

For the rest of the section, fix an operator $T \in \mathcal{L}(\mathcal{H})$ of class C_{0} with minimal function m_{T}. Write m_{T} as

$$
m_{T}(z)=\gamma \prod_{\lambda \in \mathbf{D}}\left(b_{\lambda}(z)\right)^{n(\lambda)} \exp \left(\int_{\mathbf{T}} \frac{z+\zeta}{z-\zeta} d \nu(\zeta)\right)
$$

where $|\gamma|=1, b_{\lambda}(z)=\frac{\bar{\lambda}}{\lambda}\left(\frac{\lambda-z}{1-\lambda z}\right)$ if $\lambda \neq 0$ and $b_{0}(z)=z, n: \mathbf{D} \rightarrow\{0,1,2 \ldots\}$ is the Blaschke function for θ : that is, n satisfies $\sum_{\lambda \in \mathbf{D}} n(\lambda)(1-|\lambda|)<\infty$, and finally ν is a positive singular measure on $\mathbf{T}=\{z:|z|=1\}$.

Let u be an inner divisor of m_{T}. Then

$$
u(z)=\gamma_{u} \prod_{\lambda \in \mathbf{D}}\left(b_{\lambda}(z)\right)^{n_{u}(\lambda)} \exp \left(\int_{\mathbf{T}} \frac{z+\zeta}{z-\zeta} d \nu_{u}(\zeta)\right)
$$

where $\left|\gamma_{u}\right|=1,0 \leq n_{u}(\lambda) \leq n(\lambda) \quad(\lambda \in \mathbf{D})$ and ν_{u} is a positive measure satisfying $0 \leq \nu_{u} \leq \nu$.

Thus we can associate with each inner divisor u of m_{T} the function $f_{u}: \overline{\mathbf{D}} \rightarrow[0, \infty)$ defined by

$$
\begin{aligned}
f_{u} \mid \mathbf{D} & =n_{u} \\
f_{u} \mid \mathbf{T} & =\frac{d \nu}{d \nu_{u}} \quad \text { (the Radon - Nikodym derivative). }
\end{aligned}
$$

The function f_{u} is integer-valued on $\mathbf{D}, \sum_{\lambda \in \mathbf{D}} f_{u}(\lambda)(1-|\lambda|)<\infty$ and $f_{u} \mid \mathbf{T} \in L^{1}(\nu)$, $0 \leq f_{u} \mid \mathbf{T} \leq 1$; it is defined for all $\lambda \in \mathbf{D}$ and a.e. (ν) on \mathbf{T}.

If u and v are inner divisors of m_{T} then

$$
\begin{aligned}
& u \mid v \Longleftrightarrow f_{u}(z) \leq f_{v}(z) \\
& f_{u v}(z)=f_{u}(z)+f_{v}(z) \\
& f_{u \wedge v}(z)=\min \left\{f_{u}(z), f_{v}(z)\right\}
\end{aligned}
$$

a.e. (ν); by a.e. (ν) we mean that the relation is true for each $z \in \mathbf{D}$ and almost every $z \in \mathbf{T}$.

Let $b(z)=\prod_{\lambda \in \mathbf{D}}\left(b_{\lambda}(z)\right)^{\min \{n(\lambda), 1\}}$ and denote by $e(z)=\exp \left(\int_{\mathbf{T}} \frac{z+\zeta}{z-\zeta} d \nu(\zeta)\right)$ the singular part of m_{T}. Thus (a.e. (ν)),

$$
f_{b}(z)= \begin{cases}\min \left\{1, f_{m_{T}}\right\} & (z \in \mathbf{D}), \\ 0 & (z \in \mathbf{T}),\end{cases}
$$

and

$$
f_{e}(z)= \begin{cases}0 & (z \in \mathbf{D}), \\ 1 & (z \in \mathbf{T})\end{cases}
$$

Theorem 2.4. Let $T \in \mathcal{L}(\mathcal{H})$ be an operator of class C_{0} and let $\mathcal{M} \in \operatorname{Lat}(T)$ satisfy $\mu\left(T_{\mathcal{H} \ominus \mathcal{M}}\right)=2$. Then there exists $\mathcal{L} \in \operatorname{Lat}(T), \mathcal{M} \subset \mathcal{L}$, such that $T_{\mathcal{H} \ominus \mathcal{L}}$ and $T_{\mathcal{L} \ominus \mathcal{M}}$ are multiplicity-free and the model functions of $T|\mathcal{M}, T| \mathcal{L}$ and T form a LittlewoodRichardson triple.

Proof. It follows from Lemma 1.4 that we can find a vector $x \in \mathcal{H}$ such that x is $\left(T, \overline{b^{m}(T) \mathcal{M}}\right)$-maximal for all integers $m \geq 0$ and $\left(T, \overline{e^{t}(T) \mathcal{M}}\right)$-maximal for all $t \in[0,1]$. Fix x with these properties. Set $\mathcal{L}=\mathcal{M} \vee \mathcal{K}_{T}(x)$. Since $\mu\left(T_{\mathcal{H} \ominus \mathcal{M}}\right)=2$ and x is also (T, \mathcal{M})-maximal, we have immediately that both $T_{\mathcal{H} \ominus \mathcal{L}}$ and $T_{\mathcal{L} \ominus \mathcal{M}}$ are multiplicity-free.

Let $\Phi=\left\{\phi_{j}: j \geq 1\right\}, \Psi=\left\{\psi_{j}: j \geq 1\right\}$, and $\Theta=\left\{\theta_{j}: j \geq 1\right\}$ be the model functions associated with $T|\mathcal{M}, T| \mathcal{L}$, and T respectively. From Theorem 2.1, we have that (Φ, Ψ) and (Ψ, Θ) are Littlewood-Richardson pairs. To finish the proof, it suffices to show that, for each $j \geq 1$,

$$
\frac{\theta_{1} \cdots \theta_{j}}{\psi_{1} \cdots \psi_{j}} \left\lvert\, \frac{\psi_{1} \cdots \psi_{j-1}}{\phi_{1} \cdots \phi_{j-1}}\right.
$$

i.e.,

$$
\begin{equation*}
\sum_{i=1}^{j}\left(f_{\theta_{i}}(\lambda)-f_{\psi_{i}}(\lambda)\right) \leq \sum_{i=1}^{j-1}\left(f_{\psi_{i}}(\lambda)-f_{\phi_{i}}(\lambda)\right) \quad(\text { a.e. }(\nu)) \tag{2.4}
\end{equation*}
$$

We prove (2.4) in several steps. Fix $j \geq 1$.
Step I. Let g be either b^{m} or e^{t} for some integer $m \geq 0$ or $t \in[0,1]$. Let u and v be the minimal functions of $T_{\overline{g(T) \mathcal{L}} \ominus} \overline{g(T) \mathcal{M}}$ and $T_{\overline{g(T) \mathcal{H}}} \ominus \overline{g(T) \mathcal{L}}$, respectively. Then $u(T) g(T) x \in \overline{g(T) \mathcal{M}}$ and the maximality of x implies that $u(T) g(T) \mathcal{H} \subset \overline{g(T) \mathcal{M}} \subset$ $\overline{g(T) \mathcal{L}}$, so that $v \mid u$.

Step II. Let g, u and v be as in Step I. It is easy to see (using Proposition 1.1) that the Jordan models of $T|\overline{g(T) \mathcal{M}}, T| \overline{g(T) \mathcal{L}}$, and $T \mid \overline{g(T) \mathcal{H}}$ are $\bigoplus_{i=1}^{\infty} S\left(\frac{\phi_{i}}{g \wedge \phi_{i}}\right)$, $\bigoplus_{i=1}^{\infty} S\left(\frac{\psi_{i}}{g \wedge \psi_{i}}\right)$ and $\bigoplus_{i=1}^{\infty} S\left(\frac{\theta_{i}}{g \wedge \theta_{i}}\right)$, respectively. From Proposition 1.5, we have

$$
\prod_{i=1}^{j} \frac{\theta_{i}}{g \wedge \theta_{i}} \left\lvert\, v \cdot \prod_{i=1}^{j} \frac{\psi_{i}}{g \wedge \psi_{i}}\right.
$$

and

$$
\left.u \cdot \prod_{i=1}^{j-1} \frac{\phi_{i}}{g \wedge \phi_{i}} \right\rvert\, \prod_{i=1}^{j} \frac{\psi_{i}}{g \wedge \psi_{i}}
$$

This, together with $v \mid u$, gives

$$
\prod_{i=1}^{j}\left(\frac{\theta_{i}}{\psi_{i}} \cdot \frac{g \wedge \psi_{i}}{g \wedge \theta_{i}}\right) \left\lvert\, \prod_{i=1}^{j-1}\left(\frac{\psi_{i}}{\phi_{i}} \cdot \frac{g \wedge \phi_{i}}{g \wedge \psi_{i}}\right) \cdot \frac{\psi_{j}}{g \wedge \psi_{j}}\right.
$$

Thus, a.e. (ν),

$$
\begin{align*}
& \sum_{i=1}^{j}\left(f_{\theta_{i}}(z)-f_{\psi_{i}}(z)+\min \left\{f_{g}(z), f_{\psi_{i}}(z)\right\}-\min \left\{f_{g}(z), f_{\theta_{i}}(z)\right\}\right) \\
\leq & \sum_{i=1}^{j-1}\left(f_{\psi_{i}}(z)-f_{\phi_{i}}(z)+\min \left\{f_{g}(z), f_{\phi_{i}}(z)\right\}-\min \left\{f_{g}(z), f_{\psi_{i}}(z)\right\}\right) \tag{2.5}\\
+ & f_{\psi_{j}}(z)-\min \left\{f_{g}(z), f_{\psi_{j}}(z)\right\} .
\end{align*}
$$

Step III. Let $z \in \mathbf{D}$, and let $g=b^{f_{\psi_{j}}(z)}$. Then $f_{g}(z)=f_{\psi_{j}}(z)$. Therefore, for $1 \leq i \leq j$ we have $f_{\psi_{i}}(z) \geq f_{g}(z)$ and $f_{\theta_{i}}(z) \geq f_{g}(z)$. Since (Φ, Ψ) is a LittlewoodRichardson pair, for each $1 \leq i \leq j-1$ we have $f_{\phi_{i}(z)} \geq f_{g}(z)$. Now (2.5) reduces to

$$
\sum_{i=1}^{j}\left(f_{\theta_{i}}(z)-f_{\psi_{i}}(z)\right) \leq \sum_{i=1}^{j-1}\left(f_{\psi_{i}}(z)-f_{\phi_{i}}(z)\right)
$$

so that we have (2.4) for $z \in \mathbf{D}$.

Step IV. Since $f_{e^{s}}(z)=s$ for $z \in \mathbf{T}$ (a.e.($\left.\nu\right)$), if we set $g=e^{s}$, then (2.5) reduces to

$$
\begin{align*}
& \sum_{i=1}^{j}\left(f_{\theta_{i}}(z)-f_{\psi_{i}}(z)+\min \left\{s, f_{\psi_{i}}(z)\right\}-\min \left\{s, f_{\theta_{i}}(z)\right\}\right) \\
\leq & \sum_{i=1}^{j-1}\left(f_{\psi_{i}}(z)-f_{\phi_{i}}(z)+\min \left\{s, f_{\phi_{i}}(z)\right\}-\min \left\{s, f_{\psi_{i}}(z)\right\}\right) \tag{2.6}\\
+ & f_{\psi_{j}}(z)-\min \left\{s, f_{\psi_{j}}(z)\right\} .
\end{align*}
$$

a.e. (ν). Denote by A the set of all points $z \in \mathbf{T}$ for which (2.6) is true for all rational $s \in[0,1]$. Then $\nu(A)=\nu(\mathbf{T})$.

Fix $z \in A$. From the continuity in s we infer that (2.6) is true for all $s \in[0,1]$. In particular, for $s=f_{\psi_{j}(z)}$ we have

$$
\sum_{i=1}^{j}\left(f_{\theta_{i}}(z)-f_{\psi_{i}}(z)\right) \leq \sum_{i=1}^{j-1}\left(f_{\psi_{i}}(z)-f_{\phi_{i}}(z)\right)
$$

for all $z \in A$, so that (2.4) is true.
Q.E.D.

Theorem 2.5. Let $\mathcal{M} \in \operatorname{Lat}(T)$. There exists a sequence of invariant subspaces $\mathcal{M}=\mathcal{M}_{0} \subset \mathcal{M}_{1} \subset \cdots \subset \mathcal{H}$, such that $\vee_{k=0}^{\infty} \mathcal{M}_{k}=\mathcal{H}$ and the model functions $\Phi^{(k)}=\left\{\phi_{j}^{(k)}: j \geq 1\right\}$ of $T \mid \mathcal{M}_{k}$ form a Littlewood-Richardson sequence.

Moreover, if T has property (P) then the Jordan model of $T_{\mathcal{H} \ominus \mathcal{M}}$ is

$$
\bigoplus_{k=1}^{\infty} S\left(\prod_{j=1}^{\infty} \frac{\phi_{j}^{(k)}}{\phi_{j}^{(k-1)}}\right)
$$

Proof. Let $\mathcal{G}=\left\{b^{m}: m=0,1 \ldots\right\} \cup\left\{e^{t}: t \in[0,1]\right\}$.
We construct the required sequence of invariant subspaces $\left\{\mathcal{M}_{i}\right\}$ inductively. As in Theorem 2.4, let x_{1} be $(T, \overline{g(T) \mathcal{M})})$-maximal for all $g \in \mathcal{G}$ and $\mathcal{M}_{1}=\mathcal{M} \vee \mathcal{K}_{T}\left(x_{1}\right)$. For $j \geq 2$, take x_{j} to be $\left(T, \overline{g(T) \mathcal{M}_{j-1}}\right)$-maximal for all $g \in \mathcal{G}$ and define $\mathcal{M}_{j}=$ $\mathcal{M}_{j-1} \vee \mathcal{K}_{T}\left(x_{j}\right)$. It follows immediately from Theorem 2.4 that $\left(\Phi^{(k)}\right)$ is a LittlewoodRichardson sequence. Moreover, since each x_{j} can be chosen from a dense subset of \mathcal{H}, it is easy to achieve that $\vee_{k=0}^{\infty} \mathcal{M}_{k}=\mathcal{H}$.

The second statement follows from Proposition 1.7.
Q.E.D.

3. CONSTRUCTION

The aim of this section is to construct an operator T of class C_{0} and a chain of invariant subspaces $\mathcal{M}_{0} \subset \mathcal{M}_{1} \subset \ldots$ of T such that the model functions of $T \mid \mathcal{M}_{k}$ form a given Littlewood-Richardson sequence ($\Phi^{(k)}$).

To keep the description of the construction clear, we will construct operators similar to the Jordan model operators. It is clear that the Sz.-Nagy-Foias functional calculus can be extended to the operators that are similar to completely nonunitary operators. That is, if $T=X T^{\prime} X^{-1}$ and T^{\prime} is a completely nonunitary contraction, the map $u \mapsto u(T)=X u\left(T^{\prime}\right) X^{-1}$ is a continuous algebra homomorphism. If T is similar to an operator T^{\prime} in the class C_{0}, then we define the Jordan model of T to be the Jordan model of T^{\prime}. Similarly, we extend the notions of multiplicity and maximal vectors.

We set up some notations that we will need throughout the section. Let \hat{S} : $\bigoplus_{1}^{\infty} H^{2} \rightarrow \bigoplus_{1}^{\infty} H^{2}$ be the unilateral shift of infinite multiplicity. Recall that for a model function $\Phi=\left\{\phi_{j}: j \geq 1\right\}$ we write $H(\Phi)=\bigoplus_{j=1}^{\infty}\left(H^{2} \ominus \phi_{j} H^{2}\right)$. The standard basis $\left\{e_{j}\right\}$ of $S(\Phi):=P_{\mathcal{H}(\Phi)} \hat{S} \mid \mathcal{H}(\Phi)$ is defined to be

$$
e_{j}=P_{\mathcal{H}(\Phi)}\left(\left(\bigoplus_{i=1}^{j-1} 0\right) \oplus 1 \oplus\left(\bigoplus_{i=j+1}^{\infty} 0\right)\right) .
$$

Let T be similar to $S(\Phi)$, say $T=X S(\Phi) X^{-1}$. The set of vectors $\left\{x_{j}=X e_{j}: j=\right.$ $1,2, \ldots\}$ is called a standard basis of T (induced by X). Clearly the vectors x_{j} determine the similarity X uniquely. Set $C_{\left\{x_{j}\right\}}=\|X\|\left\|X^{-1}\right\|$.

Our first step is to build an operator T and $\mathcal{M} \in \operatorname{Lat}(T)$ such that the model functions of $T \mid \mathcal{M}$ and T coincide with a given Littlewood-Richardson pair.

Proposition 3.1. Let (Φ, Ψ) be a Littlewood-Richardson pair, $\phi=\left\{\Phi_{j}\right\}, \Psi=\left\{\Psi_{j}\right\}$, let Φ have property (P) and $\epsilon>0$. Suppose that $T \in \mathcal{L}(\mathcal{M})$ is similar to $S(\Phi)$, with the standard basis $\left\{x_{j}: j \geq 1\right\}$. Then there exists an extension V of T (that is, $\mathcal{M} \in \operatorname{Lat}(V)$ and $V \mid \mathcal{M}=T)$ such that V is similar to $S(\Psi)$, with a standard basis $\left\{y_{j}\right\}$, and:
(i) $V_{\mathcal{H} \ominus \mathcal{M}}$ is multiplicity-free with minimal function $\prod_{j=1}^{\infty} \frac{\psi_{j}}{\phi_{j}}$,
(ii) $\vee\left\{\frac{\psi_{j}}{\phi_{j}}(V) y_{j}, x_{j}\right\}=\vee\left\{y_{j+1}, x_{j}\right\}$ for all $j=1,2, \ldots$,
(iii) $C_{\left\{y_{j}\right\}}<(1+\epsilon) C_{\left\{x_{j}\right\}}$.

Proof. Let $m=\psi_{1}$. We first consider the case when $\mathcal{M}=\bigoplus_{j=1}^{\infty}\left(\frac{m}{\phi_{j}} H^{2} \ominus\right.$ $m H^{2}$) and $T=P_{\mathcal{M}} \hat{S} \mid \mathcal{M}$. Clearly T is unitarily equivalent to $S(\Phi)$ and the vectors $x_{j}=P_{\mathcal{M}}\left(\frac{m}{\phi_{j}} e_{j}\right) \quad(j \geq 1)$ form a standard basis for T. Set $\mathcal{K}=\bigoplus_{n=1}^{\infty}\left(H^{2} \ominus m H^{2}\right)$, $\hat{S}_{\mathcal{K}}=P_{\mathcal{K}} \hat{S} \mid \mathcal{K}$, and let a be a positive constant large enough so that $a>2$ and $\frac{2}{a-2}<\epsilon$. Define

$$
y_{j}=P_{\mathcal{K}}\left(\bigoplus_{i=1}^{j-1} 0 \oplus \frac{m}{\psi_{j}} \oplus \bigoplus_{i=j+1}^{\infty} \frac{1}{a^{i-j}} \cdot \frac{m}{\psi_{j}} \cdot \frac{\phi_{j} \cdots \phi_{i-1}}{\psi_{j+1} \cdots \psi_{i}}\right)
$$

Let $\mathcal{H}=\vee\left\{\hat{S}_{\mathcal{K}}^{n} y_{j}: n \geq 0, j \geq 1\right\}$ and $V=\hat{S}_{\mathcal{K}} \mid \mathcal{H}$. It is obvious from the definition of y_{j} that

$$
\begin{equation*}
\frac{\psi_{j}}{\phi_{j}}(V) y_{j}-x_{j}=\frac{1}{a} y_{j+1} . \tag{3.1}
\end{equation*}
$$

Thus (ii) is satisfied.
Also, (3.1) implies $\mathcal{M} \subset \mathcal{H}, \mathcal{M} \in \operatorname{Lat}(V)$, and $T=V \mid \mathcal{M}$. It is easy to show by induction on j that $y_{j} \in \mathcal{M} \vee \mathcal{K}_{V}\left(y_{1}\right)$, so that $\mathcal{H}=\mathcal{M} \vee \mathcal{K}_{V}\left(y_{1}\right)$ and $V_{\mathcal{H} \ominus \mathcal{M}}$ is multiplicity-free.

Consider the lower triangular operator matrix

$$
B: \bigoplus_{j=1}^{\infty} H^{2} \rightarrow \bigoplus_{j=1}^{\infty} H^{2}
$$

defined by

$$
B=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & \ldots \\
\frac{1}{a} \frac{\phi_{1}}{\psi_{2}} & 1 & 0 & 0 & \ldots \\
\frac{1}{a^{2}} \frac{\phi_{1} \phi_{2}}{\psi_{2} \psi_{3}} & \frac{1}{a} \frac{\phi_{2}}{\psi_{3}} & 1 & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots
\end{array}\right) .
$$

Clearly B is a bounded operator, $\|B\| \leq \sum_{k=0}^{\infty} a^{-k}=\frac{1}{1-a^{-1}}$ and $\|B-I\| \leq \sum_{k=1}^{\infty} a^{-k}=$ $\frac{1}{a-1}<1$ so that B is invertible and $\left\|B^{-1}\right\|=\left\|\sum_{k=0}^{\infty}(I-B)^{k}\right\| \leq \sum_{k=0}^{\infty} \frac{1}{(a-1)^{k}}=\frac{a-1}{a-2}$. Thus $\|B\| \cdot\left\|B^{-1}\right\|<1+\epsilon$.

Let $\hat{B}: \mathcal{K} \rightarrow \mathcal{K}$ be the operator defined by $\hat{B}=P_{\mathcal{K}} B \mid \mathcal{K}$. Then \hat{B} is an invertible operator and $\|\hat{B}\| \cdot\left\|\hat{B}^{-1}\right\|<1+\epsilon$.

Let $\mathcal{K}_{0}=\bigoplus_{j=1}^{\infty}\left(\frac{m}{\psi_{j}} H^{2} \ominus m H^{2}\right)$. Then $\hat{B} \mathcal{K}_{0}=\mathcal{H}$ and \hat{B} is a similarity between $P_{\mathcal{K}_{0}} \hat{S} \mid \mathcal{K}_{0}$ (which is unitarily equivalent to $S(\Psi)$) and V. From Corollary 1.6 we have immediately that the minimal function of $V_{\mathcal{H} \ominus \mathcal{M}}$ is $\prod_{j=1}^{\infty} \frac{\psi_{j}}{\phi_{j}}$. Further, \hat{B} carries the standard basis to $\left\{y_{j}\right\}$, so that $C_{\left\{y_{j}\right\}}<1+\epsilon$. This finishes the proof for the case when T is unitarily equivalent to S_{Φ}.

The general case of T being only similar to $S(\Phi)$ follows immediately from the following lemma.

Lemma 3.2. Let $\mathcal{H}, \mathcal{M}^{\prime}$ be Hilbert spaces, let $V \in \mathcal{L}(\mathcal{H}), \mathcal{M} \in \operatorname{Lat}(V), T=V \mid \mathcal{M}$, $T^{\prime} \in \mathcal{L}\left(\mathcal{M}^{\prime}\right)$, and let $X: \mathcal{M} \rightarrow \mathcal{M}^{\prime}$ be an invertible operator satisfying $X T=T^{\prime} X$. Then there exist a Hilbert space $\mathcal{H}^{\prime} \supset \mathcal{M}^{\prime}, V^{\prime} \in \mathcal{L}\left(\mathcal{H}^{\prime}\right)$ and an invertible operator $Y: \mathcal{H} \rightarrow \mathcal{H}^{\prime}$ such that $\mathcal{M}^{\prime} \in \operatorname{Lat}\left(V^{\prime}\right), V^{\prime} \mid \mathcal{M}^{\prime}=T^{\prime}, Y V=V^{\prime} Y$, and $\|Y\|\left\|Y^{-1}\right\|=$ $\|X\|\left\|X^{-1}\right\|$.

Proof. Let $\mathcal{N}=\mathcal{H} \ominus \mathcal{M}$ and $\mathcal{H}^{\prime}=\mathcal{M} \oplus \mathcal{N}$. Define $Y: \mathcal{H} \rightarrow \mathcal{H}^{\prime}$ by $Y=X \oplus I_{\mathcal{N}}$ and $V^{\prime} \in \mathcal{L}\left(\mathcal{H}^{\prime}\right)$ by $V^{\prime}=Y V Y^{-1}$. Then V^{\prime} and Y satisfy all conditions required.

This finishes the proof of Lemma 3.2 and also of Theorem 3.1.
Q.E.D.

Corollary 3.3. Let Φ, Ψ be model functions. The following conditions are equivalent:
(i) (Φ, Ψ) is a Littlewood-Richardson pair.
(ii) There exist an operator T of class C_{0} and $\mathcal{M} \in \operatorname{Lat}(T)$, such that $T_{\mathcal{H} \ominus \mathcal{M}}$ is multiplicity free and the model functions of $T \mid \mathcal{M}$ and T are Φ and Ψ, respectively.

Now we are ready to construct an operator T similar to an operator in the class C_{0} and associated with a given Littlewood-Richardson sequence in the sense of Theorem 2.5.

Theorem 3.4. Let $\left\{\Phi^{(k)}\right\}_{k=0}^{\infty}$ be a Littlewood-Richardson sequence with $\wedge_{j=1}^{\infty} \phi_{j}^{(0)}=1$. Then there exist $T \in \mathcal{L}(\mathcal{H})$, and a sequence of increasing invariant subspaces, $\mathcal{M}_{0} \subset$ $\mathcal{M}_{1} \subset \ldots \subset \mathcal{H}$ such that $\mathcal{H}=\vee_{k=0}^{\infty} \mathcal{M}_{k}$ and
(i) $T \mid \mathcal{M}_{k}$ is similar to $S\left(\Phi^{(k)}\right)$,
(ii) $T_{\mathcal{M}_{k} \ominus \mathcal{M}_{k-1}}$ is multiplicity-free for all k,
(iii) T is similar to an operator of class C_{0} with Jordan model $\bigoplus_{k=1}^{\infty} S\left(\phi_{k}^{(k)}\right)$,
(iv) the Jordan model of $T_{\mathcal{H} \ominus \mathcal{M}}$ is $\bigoplus_{k=1}^{\infty} S\left(\prod_{j=1}^{\infty} \frac{\phi_{j}^{(k)}}{\phi_{j}^{(k-1)}}\right)$.

Proof. Choose positive numbers $\epsilon_{1}, \epsilon_{2}, \ldots$ such that $\prod_{k=1}^{\infty}\left(1+\epsilon_{k}\right)<\infty$. Let $T \in \mathcal{L}\left(\mathcal{M}_{0}\right)$ be an operator unitarily equivalent to $S\left(\Phi^{(0)}\right)$. Apply Proposition 3.1 inductively, so that we obtain an increasing sequence of subspaces $\mathcal{M}_{0} \subset \mathcal{M}_{1} \subset \mathcal{M}_{2} \subset$ \ldots and an extension of T defined in each \mathcal{M}_{k}, which we will still denote by T, such that:
(1) $T \mid \mathcal{M}_{k}$ is similar to $S\left(\Phi^{(k)}\right)$,
(2) $T_{\mathcal{M}_{k} \ominus \mathcal{M}_{k-1}}$ is multiplicity-free,
(3) $\left\|T\left|\mathcal{M}_{k}\left\|\leq\left(1+\epsilon_{k}\right)\right\| T\right| \mathcal{M}_{k-1}\right\|$ for $k=1,2, \ldots$,
(4) for each $k \geq 0, T \mid \mathcal{M}_{k}$ has a standard basis $\left\{x_{j}^{(i)}: i \leq k, j \geq 1\right\}$, with the property that

$$
\begin{equation*}
\vee\left\{\frac{\phi_{j}^{(k)}}{\phi_{j}^{(k-1)}}(T) x_{j}^{(k)}, x_{j}^{(k-1)}\right\}=\vee\left\{x_{j+1}^{(k)}, x_{j}^{(k-1)}\right\} \tag{3.2}
\end{equation*}
$$

Let $\mathcal{H}=\vee_{k=0}^{\infty} \mathcal{M}_{k}$. Extend T to \mathcal{H}, and we still denote the extension by T. Thus $\|T\| \leq \prod_{k=1}^{\infty}\left(1+\epsilon_{k}\right)<\infty$. It follows from Theorem 1.4 that the Jordan model function of T is $\left\{\vee_{k=0}^{\infty} \phi_{1}^{(k)}, \vee_{k=0}^{\infty} \phi_{2}^{(k)}, \ldots\right\}=\left\{\phi_{1}^{(1)}, \phi_{2}^{(2)}, \ldots\right\}$. Thus (i)-(iii) are satisfied.

It remains to prove (iv). To simplify the notation, we set $\beta_{j}^{(k)}=\frac{\phi_{j}^{(k)}}{\phi_{j}^{(k-1)}}$. Thus condition (2.1) in Definition 2.1 becomes

$$
\begin{equation*}
\beta_{1}^{(k)} \ldots \beta_{j}^{(k)} \mid \beta_{1}^{(k-1)} \ldots \beta_{j-1}^{(k-1)} \tag{3.3}
\end{equation*}
$$

and (3.2) gives

$$
\begin{equation*}
\beta_{j}^{(k)}(T) x_{j}^{(k)} \in \vee\left\{x_{j+1}^{(k)}, x_{j}^{(k-1)}\right\} \quad \text { and } \quad x_{j+1}^{(k)} \in \vee\left\{\beta_{j}^{(k)}(T) x_{j}^{(k)}, x_{j}^{(k-1)}\right\} . \tag{3.4}
\end{equation*}
$$

We divide the proof of (iv) into several steps.
Claim 1. For all $k \geq 0$ and $j \geq 1$,

$$
\begin{equation*}
x_{j}^{(k)} \in \mathcal{M}_{0}+\left(\beta_{1}^{(k)} \cdots \beta_{j-1}^{(k)}\right)(T) \mathcal{M}_{k} \tag{3.5}
\end{equation*}
$$

(we use the convention that $\beta_{j}^{(0)} \equiv 1$).
Obviously (3.5) holds for $k=0$ or $j=1$. We will prove Claim 1 by double induction, that is, if (3.5) holds for all $\left(k^{\prime}, j^{\prime}\right)$ with $k^{\prime} \leq k, j^{\prime} \leq j$ and $\left(k^{\prime}, j^{\prime}\right) \neq(k, j)$, then we prove (3.5) for (k, j). Suppose that

$$
x_{j}^{(k-1)} \in \mathcal{M}_{0}+\left(\beta_{1}^{(k-1)} \cdots \beta_{j-1}^{(k-1)}\right)(T) \mathcal{M}_{k-1}
$$

and

$$
x_{j-1}^{(k)} \in \mathcal{M}_{0}+\left(\beta_{1}^{(k)} \cdots \beta_{j-2}^{(k)}\right)(T) \mathcal{M}_{k} .
$$

Using (3.4), we have

$$
\begin{aligned}
x_{j}^{(k)} & \in \vee\left\{x_{j-1}^{(k-1)}, \beta_{j-1}^{(k)}(T) x_{j-1}^{(k)}\right\} \\
& \subset \mathcal{M}_{0}+\left(\beta_{1}^{(k-1)} \cdots \beta_{j-2}^{(k-1)}\right)(T) \mathcal{M}_{k-1}+\left(\beta_{1}^{(k)} \cdots \beta_{j-1}^{(k)}\right)(T) \mathcal{M}_{k} \\
& \subset \mathcal{M}_{0}+\left(\beta_{1}^{(k)} \cdots \beta_{j-1}^{(k)}\right)(T) \mathcal{M}_{k},
\end{aligned}
$$

since (3.3) and $\mathcal{M}_{k-1} \subset \mathcal{M}_{k}$.
This finishes the proof of Claim 1.
Claim 2. For each $j \geq 0$,

$$
\left(\beta_{1}^{(k)} \cdots \beta_{j}^{(k)} \phi_{j+1}^{(k)}\right)(T) x_{1}^{(k)} \in \mathcal{M}_{0}+\left(\beta_{1}^{(k)} \cdots \beta_{j}^{(k)} \phi_{j+1}^{(k)}\right)(T) \mathcal{M}_{k-1}
$$

Apply (3.4) repeatedly to obtain

$$
\begin{aligned}
& \left(\beta_{1}^{(k)} \ldots \beta_{j}^{(k)}\right)(T) x_{1}^{(k)} \\
\in & \vee\left\{\left(\beta_{2}^{(k)} \ldots \beta_{j}^{(k)}\right)(T) x_{1}^{(k-1)},\left(\beta_{2}^{(k)} \ldots \beta_{j}^{(k)}\right)(T) x_{2}^{(k)}\right\} \\
\subset & \vee\left\{\left(\beta_{2}^{(k)} \ldots \beta_{j}^{(k)}\right)(T) x_{1}^{(k-1)},\left(\beta_{3}^{(k)} \ldots \beta_{j}^{(k)}\right)(T) x_{2}^{(k-1)},\left(\beta_{3}^{(k)} \ldots \beta_{j}^{(k)}\right)(T) x_{3}^{(k)}\right\} \subset \ldots \\
\subset & \vee\left\{\left(\beta_{2}^{(k)} \ldots \beta_{j}^{(k)}\right)(T) x_{1}^{(k-1)},\left(\beta_{3}^{(k)} \ldots \beta_{j}^{(k)}\right)(T) x_{2}^{(k-1)}, \ldots\right. \\
& \left.\quad\left(\beta_{i+1}^{(k)} \ldots \beta_{j}^{(k)}\right)(T) x_{i}^{(k-1)}, \ldots, \beta_{j}^{(k)}(T) x_{j-1}^{(k-1)}, x_{j}^{(k-1)}, x_{j+1}^{(k)}\right\} .
\end{aligned}
$$

Using Claim 1 and (3.3), we have, for each $i=1, \ldots, j-1$,

$$
\begin{aligned}
\left(\beta_{i+1}^{(k)} \ldots \beta_{j}^{(k)}\right)(T) x_{i}^{(k-1)} & \in \mathcal{M}_{0}+\left(\beta_{1}^{(k-1)} \ldots \beta_{i-1}^{(k-1)} \beta_{i+1}^{(k)} \ldots \beta_{j}^{(k)}\right)(T) \mathcal{M}_{k-1} \\
& \subset \mathcal{M}_{0}+\left(\beta_{1}^{(k)} \ldots \beta_{i-1}^{(k)} \beta_{i}^{(k)} \beta_{i+1}^{(k)} \ldots \beta_{j}^{(k)}\right)(T) \mathcal{M}_{k-1},
\end{aligned}
$$

and thus,

$$
\left(\beta_{1}^{(k)} \ldots \beta_{j}^{(k)}\right)(T) x_{1}^{(k)} \in \mathcal{M}_{0}+\beta_{1}^{(k)} \ldots \beta_{j}^{(k)}(T) \mathcal{M}_{k-1}+\vee\left\{x_{j+1}^{(k)}\right\}
$$

Since $\phi_{j+1}^{(k)}(T) x_{j+1}^{(k)}=0$, we have

$$
\left(\beta_{1}^{(k)} \ldots \beta_{j}^{(k)} \cdot \phi_{j+1}^{(k)}\right)(T) x_{1}^{(k)} \in \mathcal{M}_{0}+\left(\beta_{1}^{(k)} \ldots \beta_{j}^{(k)} \cdot \phi_{j+1}^{(k)}\right)(T) \mathcal{M}_{k-1},
$$

which finishes the proof of Claim 2.

$$
\text { Set } \alpha^{(k)}=\prod_{j=1}^{\infty} \beta_{j}^{(k)}
$$

Claim 3. $\alpha^{(k)}(T) \mathcal{M}_{k} \subset \mathcal{M}_{0}+\alpha^{(k)}(T) \mathcal{M}_{k-1}$.
It is sufficient to show $\alpha^{(k)}(T) x_{1}^{(k)} \in \mathcal{M}_{0}+\alpha^{(k)}(T) \mathcal{M}_{k-1}$ since $\mathcal{M}_{k}=\mathcal{M}_{k-1} \vee$ $\mathcal{K}_{T}\left(x_{1}^{(k)}\right)$. Clearly $\alpha^{(k)} \mid \beta_{1}^{(k)} \ldots \beta_{j}^{(k)} \cdot \phi_{j+1}^{(k)}$ for all $j \geq 0$. By Claim 2, $\beta_{1}^{(k)} \ldots \beta_{j}^{(k)}$. $\phi_{j+1}^{(k)}(T) x_{1}^{(k)} \in \mathcal{M}_{0}+\alpha^{(k)}(T) \mathcal{M}_{k-1}$. Furthermore, $\alpha^{(k)}=\wedge_{j \geq 0}\left(\beta_{1}^{(k)} \ldots \beta_{j}^{(k)} \cdot \phi_{j+1}^{(k)}\right)$, hence $\alpha^{(k)}(T) x_{1}^{(k)} \in \mathcal{M}_{0}+\alpha^{(k)} \mathcal{M}_{k-1}$.

Claim 4. The Jordan model function of $T_{\mathcal{M}_{k} \ominus \mathcal{M}_{0}}$ is $\bigoplus_{i=1}^{k} S\left(\alpha^{(i)}\right)$.
Clearly the multiplicity of $T_{\mathcal{M}_{k} \ominus \mathcal{M}_{0}} \leq k$. Let $\bigoplus_{i=1}^{k} S\left(\gamma^{(i)}\right)$ be the Jordan model of $T_{\mathcal{M}_{k} \ominus \mathcal{M}_{0}}$. Observe that

$$
\begin{equation*}
\prod_{i=1}^{k} \gamma^{(i)}=\prod_{i=1}^{\infty} \frac{\phi_{i}^{(k)}}{\phi_{i}^{(0)}}=\prod_{i=1}^{k} \alpha^{(i)} \tag{3.6}
\end{equation*}
$$

For $j \leq k, \alpha^{(k)} \mid \alpha^{(j)}$ and Claim 3 implies that

$$
\begin{aligned}
\alpha^{(j)}(T) \mathcal{M}_{k} & \subset \mathcal{M}_{0}+\alpha^{(j)}(T) \mathcal{M}_{k-1} \\
& \subset \mathcal{M}_{0}+\alpha^{(j)}(T) \mathcal{M}_{k-2} \subset \ldots \\
& \subset \mathcal{M}_{0}+\alpha^{(j)}(T) \mathcal{M}_{j-1}
\end{aligned}
$$

Thus, $\mu\left(T_{\mathcal{M}_{k} \ominus \mathcal{M}_{0}} \mid \overline{\operatorname{ran} \alpha^{(j)}\left(T_{\mathcal{M}_{k} \ominus \mathcal{M}_{0}}\right)}\right) \leq j-1$. Consequently, $\gamma^{(j)} \mid \alpha^{(j)}$. Using (3.6), we have $\alpha^{(j)} \equiv \gamma^{(j)}$.

Finally, apply Theorem 1.4 to $T_{\mathcal{H} \ominus \mathcal{M}_{0}}$ with the increasing sequence of invariant subspaces $\left\{\mathcal{M}_{k} \ominus \mathcal{M}_{0}\right\}$, to establish (iv).
Q.E.D.

Combining Theorem 2.2 and Theorem 3.4 we have the following characterization of all the possible Jordan models of $\left(T, T \mid \mathcal{M}, T_{\mathcal{H} \ominus \mathcal{M}}\right)$ when T has property (P).

Corollary 3.5. The following statements are equivalent:
(i) There exist an operator $T \in \mathcal{L}(\mathcal{H})$ of class C_{0} with property (P) and $\mathcal{M} \in \operatorname{Lat}(T)$ such that the Jordan models of $T \mid \mathcal{M}, T_{\mathcal{H} \ominus \mathcal{M}}$, and T are $S(\Phi), S(\Psi)$, and $S(\Theta)$, respectively.
(ii) There exists a Littlewood-Richardson sequence $\left(\Phi^{(0)}, \Phi^{(1)}, \ldots\right), \Phi^{(k)}=\left\{\Phi_{j}^{(k)}\right\}_{j=1}^{\infty}$ such that $\Phi^{(0)}=\Phi, \theta_{j}=\phi_{j}^{(j)}$ and $\psi_{j}=\prod_{i=1}^{\infty} \frac{\Phi_{i}^{(j)}}{\Phi_{i}^{(j-1)}}$ for all j.

Acknowledgement. The second named author wishes to express his gratitude to the School of Mathematics of Georgia Institute of Technology for its kind hospitality while this paper was written.

REFERENCES

[1] O. Azenhas and E. Marques de Sa, Matrix realizations of Littlewood-Richardson sequences, Lin. Mult. Alg. 27 (1990), 229-242.
[2] H. Bercovici, Operator Theory and Arithmetic in H^{∞}, Amer. Math. Soc., Providence, Rhode Island, 1988.
[3] H. Bercovici, The quasisimilarity orbits of invariant subspaces, J. Funct. Anal. 95 (1991), 344-363.
[4] H. Bercovici, C. Foias, and B. Sz.-Nagy, Compléments à l'étudedes opérateurs de classe C_{0}. III, Acta Sci. Math. (Szeged) 37 (1975), 313-322.
[5] H. Bercovici, W. Li, and T. Smotzer, Classical linear algebra inequalities for the Jordan models of C_{0} operators, Linear Alg. Appl. 251 (1997), 341-350.
[6] H. Bercovici, W. Li, and T. Smotzer, A continuous version of the LittlewoodRichardson rule and its application to invariant subspaces, preprint.
[7] J. Green, Symmetric functions and p-modules, Lecture notes, Manchester, 1961.
[8] T. Klein, The multiplication of Schur-functions and extensions of p-modules, J. London Math. Soc. 43 (1968), 280-284.
[9] W. Li and V. Müller, Invariant subspaces of nilpotent operators and LR-sequences, preprint.
[10] I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford University Press, New York, 1995.
[11] B. Sz.-Nagy and C. Foias, Harmonic Analysis of Opertors on Hilbert Space, NorthHolland, Amsterdam, 1970.
[12] G. Ph. A. Thijsse, The local invariant factors of a product of holomorphic matrix functions: the order 4 case, Integral Equations Operator Theory 16 (1993), 277-302.

School of Mathematics
Georgia Institute of Technology
Atlanta, Georgia 30332
U.S.A.
e-mail: li@math.gatech.edu

Institute of Mathematics
Academy of Sciences of the Czech Republic
11567 Prague 1, Žitná 25
Czech Republic
e-mail: muller@math.cas.cz

[^0]: 1991 Mathematics Subject Classification:Primary 47A45,47A20, secondary 15A23.
 Keywords and phrases: Littlewood-Richardson sequences, similarity, Jordan models, invariant subspaces of operators in the class C_{0}.

 The first named author was supported by grant DMS-9303702 from the National Science Foundation, the second author by grant No. 201/96/0411 of GA ČR.

