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Non-removable ideals in commutative topological algebras
with separately continuous multiplication.

Vladiḿır Müller, Prague

abstract: An ideal in a commutative topological algebra with separately con-
tinuous multiplication is non-removable if and only if it consists locally of joint
topological divisors of zero. Also, any family of non-removable ideals can be re-
moved simultanously.

The notion of non-removable ideals is commutative Banach algebras was intro-
duced by Arens [1] and further studied e.g. in [2],[3]. In [5] it was proved that an
ideal in a commutative Banach algebra is non-removable if and only if it consists
of joint topological divisors of zero. Any countable family of removable ideals can
be removed simultanously [6] which is not true for non-countable families [3].

Non-removable ideals in locally convex and topological algebras were studied in
[7], [8] and [4]. In [4] some partial results for topological algebras with separately
continuous multiplication were obtained. In the present paper we continue the
investigations of [4]. It turns out that there exists a nice characterization of non-
removable ideals in the class of topological algebras with separately continuous
multiplication.

All algebras in this paper will be commutative, complex and with units.
As in [4], by an s-algebra we shall mean a topological linear space with a sep-

arately continuous associative multiplication which makes of it an algebra. The
topology of an s-algebra A can be given by means of a system V(A) of zero -
neighbourhoods which is closed under finite intersections and satisfies

(1) for every U ∈ V(A) there exists V ∈ V(A) such that V + V ⊂ U
(2) for every U ∈ V(A) and complex number λ with |λ| < 1 , λU ⊂ U
(3) every V ∈ V(A) is absorbent
(4) for every U ∈ V(A) and x ∈ A there exists V ∈ V(A), xV ⊂ U.

Let A,B be commutative s-algebras with unit elements. We say that B is an
extension of A if there exists a unit preserving algebra isomorphism f : A → B
which is also a topological homomorphism. We shall identify A with its image f(A)
and write shortly A ⊂ B.

Let I be an ideal in a commutative s-algebra A with unit e. We say that I is
removable if there exists an extension B ⊃ A such that I is contained in no proper
ideal of B. Equivalently, this means that there exist a finite number of elements

x1, . . . , xn ∈ I and b1, . . . , bn ∈ B such that
n∑

s=1
xsbs = e. Otherwise we say that I

is non-removable. Let {x1, . . . , xn} be a finite subset of a commutative s-algebra
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A. We say that x1, . . . , xn are joint topological divisors of zero if there exists a net
{zα} ⊂ A which does not tend to 0 but lim

α
zαxs = 0 for s = 1, . . . , n.

If V(A) is a system of zero - neighbourhoods giving the topology of A then
x1, . . . , xn are not joint topological divisors of zero if and only if for every U ∈ V(A)
there exists a neighbourhood V ∈ V(A) such that

z ∈ A, zxs ∈ V (s = 1, . . . , n) implies z ∈ U.

Let m ≥ 1. It is easy to prove by induction on m that x1, . . . , xn are not joint
topological divisors of zero if and only if for every U ∈ V(A) there exists a neigh-
bourhood V ∈ V(A) such that

(5) z ∈ A, zxq1
1 . . . xqn

n ∈ V for every q1, . . . , qn,

n∑
t=1

qt = m implies z ∈ U.

Let I be an ideal of a commutative s-algebra A. We say that I consists locally
of joint topological divisors of zero (cf. [8]) if every finite subset of I consists of
joint topological divisors of zero. If I consists locally of joint toplogical divisors
of zero than it is non-removable. Indeed, suppose on the contrary that there exist

B ⊃ A, x1, . . . , xn ∈ I and b1, . . . , bn ∈ B such that
n∑

s=1
xsbs = 1. Let {uα} be the

net satisfying zαxs → 0 (s = 1, . . . , n) and zα 6→ 0.Then

zα = zα(
n∑

s=1

xsbs) =
n∑

s=1

(zαxs)bs.

We have (zαxs)bs → 0 (s = 1, . . . , n) so zα → 0, a contradiction.

The aim of this paper is to prove the converse implication. Also we prove that
any number of removable ideals can be removed simultanously. Thus the situation
in the class of s-algebras differs from that of Banach algebras where only countable
families of removable ideals can be removed simultanously (see [3], [6]).

Theorem 1. Let A be a commutative s-algebra with unit e. Let Λ be a set and pl a
positive integer for every l ∈ Λ. Let ul,s (l ∈ Λ, 1 ≤ s ≤ pl) be a system of elements
of A such that, for each l ∈ Λ, ul,1, . . . , ul,pl

are not joint topological divisors of zero.
Then there exists an extension B ⊃ A and elements bl,s ∈ B (l ∈ Λ, 1 ≤ s ≤ pl)

such that
pl∑

s=1
ulsbls = e for every l ∈ Λ.

proof. We may assume that pl ≥ 2 for every l ∈ Λ (if pl = 1 for some l ∈ Λ we
can replace the element ul,1 by the pair ul,1, ul,2 = ul,1).

Denote by N the set of all non-negative integers,

T = {(l, s), l ∈ Λ, 1 ≤ s ≤ pl},
D = {k : T → N, k((l, s)) 6= 0 only for a finite number of (l, s) ∈ T}.
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For k, j ∈ D and (l, s) ∈ T denote kls = k((l, s)), |k|l =
pl∑

s=1
kls and (k + j) ∈

D, (k + j)ls = kls + jls. We write k ≤ j if kls ≤ jls for all (l, s) ∈ T .
Denote by Q(A) the algebra of all polynomials with coefficients from A and with

variables bj (j ∈ D) i.e.

Q(A) =





∑

j∈D

ajbj, aj ∈ A, aj 6= 0 for finite number of j ∈ D



 .

Here bj stands for
∏

(l,s)∈T

bjls

ls .

The algebraic operations in Q(A) are defined in the natural way.
Let V(A) be a system of zero-neighbourhoods in A giving the topology of A

which satisfies (1) - (4).
We define the topology in Q(A) in the following way: For any mapping d : D →

V(A) define a zero - neighbourhood Vd in Q(A) by

Vd =





∑

j∈D

ajbj ∈ Q(A), aj ∈ d(j) for every j ∈ D



 .

Clearly the system V(Q(A)) = {Vd, d : D → V(A)} satisfies conditions (1)- (4)
(Condition (4) is clear for every a ∈ A and for bj, (j ∈ D) and every x ∈ Q(A) is a
finite combination of these elements).

Therefore Q(A) with the topology determined by this system is an s-algebra.

Let I ⊂ Q(A) be the ideal generated by the elements {e−
pl∑

s=1
ulsbls, l ∈ Λ} and

denote by B = Q(A)|Ī. Then B is an s-algebra (see [4]).
Consider the mapping f : A → B, f = πf0 where f0 : A → Q(A) is the natural

identification of A with the constant polynomials and π : Q(A) → Q(A)|Ī is the
canonical projection. Clearly f is a continuous homomorphism and

pl∑
s=1

f(uls)π(bls) = eB for every l ∈ Λ.

Therefore it is sufficient to show that f is open.
We must show that for every U ∈ V(A) there exists a mapping d′ : D → V(A),

such that

(6) (Vd′ + Ī) ∩A ⊂ U

(cf. [4]). In fact it is sufficient to show that for every U ∈ V(A) there exists a
mapping d : D → V(A) such that
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(7) (Vd + I) ∩A ⊂ U.

Indeed, suppose U ∈ V(A) and Vd ∈ V(Q(A)) satisfies (7). Find Vd′ ∈ V(Q(A))
such that Vd′ + Vd′ ⊂ Vd.

Let a ∈ A and x ∈ Ī satisfy a − x ∈ Vd′ . Then there exists x0 ∈ I such that
x − x0 ∈ Vd′ and a − x0 = (a − x) + (x − x0) ∈ Vd′ + Vd′ ⊂ Vd. By (7), a ∈ U .
Therefore (6) is also satisfied and f : A → B is open.

Denote by G = {g : Λ → N, g(l) 6= 0 for finite number of l ∈ Λ}. For g ∈ G put
|g| =

∑
l∈Λ

g(l). For j ∈ D let g(j) ∈ G be defined by (g(j)) (l) = |j|l (l ∈ Λ).

Let U ∈ V(A). We define the zero - neighbourhoods Ug, U
′
g ∈ V(A) for g ∈ G

inductively. Choose Uō ∈ V(A) such that Uō + Uō ⊂ U (here ō is the zero function
Λ → N). Suppose Uh is defined for all h ∈ G,h ≤ g, h 6= g. Choose U ′

g ∈ V(A)
such that

(8)

xuq1
l1 . . . u

qpl

lpl
∈ U ′

g for every q1, . . . , ql ∈ N,

pl∑
s=1

qs = pl(g(l)−1)+1 implies x ∈ Uh

whenever l ∈ Λ, g(l) 6= 0 and h ∈ G is determined by h(l) = g(l) − 1, h(m) =
g(m) (m 6= l).

This is possible because of (5) and g(l) 6= 0 only for finite number of l ∈ Λ.

Choose further Ug ∈ V(A) such that

(9) Ug + Ug + · · ·+ Ug︸ ︷︷ ︸
c

⊂ U ′
g.

where c = 2|g| · ∏
l∈Λ

p
g(l)2

l .

For j ∈ D find now a zero - neighbourhood Vj ∈ V(A) such that

(10) Vjuq ⊂ Ug(j) for every q ∈ D such that |q|l ≤ pl|j|2l .

Define d : D → V(A) by d(j) = Vj (j ∈ D).
We prove that the corresponding zero - neighbourhood Vd ∈ V(Q(A)) satisfies

(7).
Let a ∈ A, x ∈ I, a + x ∈ Vd,

x =
∑

l∈Λ

∑

j∈D

a
(l)
j (e− ul1bl1 − · · · − ul,pl

bl,pl
)
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where only a finite number of elements a
(l)
j ∈ A are non-zero. The condition

a + x ∈ Vd may be rewritten as follows:

a +
∑

l∈Λ

a
(l)
0 ∈ V0 = U0̄

(11) fi ∈ Vi (i ∈ D, i 6= 0) where

fi =
∑

l∈Λ

a
(l)
i −

∑

l∈Λ

∑

1≤t≤pl

ilt 6=0

a
(l)
j ult

and jlt = ilt − 1, jms = ims for (m, s) 6= (l, t).

Suppose that elements a, aj (j ∈ D) satisfying (11) are fixed. It is sufficient to
show that (11) implies a ∈ U .

In the following we shall need some notations and results of [6].

It is convenient to consider linear combinations of a
(l),
j s as formal expressions.

Therefore we denote by W the free additive group with generators â
(l)
j ûk (j, k ∈

D, l ∈ Λ). Here we consider â
(l)
j ûk as one symbol; there is no multiplication in W .

Define the additive mapping P : W → A by P â
(l)
j ûk = a

(l)
j uk.

Define the following additive mappings acting in W :
Let i, k ∈ D, k ≥ i, l,m ∈ Λ, d ∈ N . Put

Hmd(â(l)
i ûk−i) =

{
â

(l)
i ûk−i if |i|m = d

0 otherwise ,

πlm(â(l)
i ûk−i) = â

(m)
i ûk−i, πlm(â(r)

i ûk−i) = 0 for r 6= l,

Flm(â(l)
i ûk−i) =

∑

j∈Mi,m

â
(l)
j ûk−j

where Mi,m = {j ∈ D, there exists t, 1 ≤ t ≤ pm such that jmt = imt−1, jrs = irs

for (r, s) 6= (m, t)},

Flm(â(r)
i ûk−i) = 0 for r 6= l.

For 1 ≤ s ≤ pl, kls ≥ ils + |i|l + 1 put

Gls(â(l)
i ûk−i) =

∑

j∈J1

(−1)jls−ils−1 (jls − ils − 1)!∏
t 6=s

1≤t≤pl

(ilt − jlt!)
â

(l)
j ûk−j,

where

J1 = {j ∈ D, jrt = irt for r 6= l, jlt ≤ ilt for t 6= s and |j|l = |i|l + 1} .
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We put Gls(â(r)
i ûk−i) = 0 if either r 6= l or kls < ils + |i|l + 1.

For v̂ =
∑
l∈Λ

∑
i,j∈D

γ
(l)
i,j â

(l)
i ûj ∈ W ( a finite sum with integer coefficients γ

(l)
i,j )

define
|v̂| = max

l∈Λ

∑

i,j∈D

|γ(l)
i,j |.

By the definition of Gls we have

(12) |Glsâ
(l)
i ûj| ≤

|i|l∑
t=1

∑
n1...npl−1

n1+···+npl−1=t

t!
n1! . . . npl−1!

=
|i|l∑
t=1

(pl − 1)t ≤ p
|i|l
l .

(see Lemma 2 of [5]).
Further put Zls = Gls +

∑
m6=l

(πlmGls − πlmFlmGls + πmm).

The properties of these mappings can be found in [6]. We shall need the following
lemma (Lemma 5.1 of [6]).

Lemma 2. Let k ∈ D, g ∈ G, v̂ =
∑
l∈Λ

∑
i∈D

γ
(l)
i â

(l)
i ûk−i ∈ W (finite sums with integer

coefficients γ
(l)
i ). Let Λ0 =

{
l ∈ Λ, γ

(l)
i 6= 0 for some i ∈ D

}
. Let l ∈ Λ0, 1 ≤ s ≤

pl, kls ≥ ils + |i|l + 1 whenever γ
(l)
i 6= 0. Suppose that

1o |i|m ≤ g(m) whenever γ
(m′)
i 6= 0 for some m′ ∈ Λ and |i|m = g(m) if γ

(m)
i 6= 0

2o Hm′,g(m′)πmmv̂ = πm,mv̂ − Fmm′πmmv̂ for every m,m′ ∈ Λ0,m 6= m′

3o Hm,g(m)πm′m′ v̂ = πmm′Hm′,g(m′)πmmv̂ for every m, m′ ∈ Λ (i.e. γ
(m)
i = γ

(m′)
i

for every m,m′ ∈ Λ0, i ∈ D, |i|m = g(m), |i|m′ = g(m′).
Then ŵ = Zlsv̂ satisfies conditions 1o – 3o for g′ ∈ G determined by

g′(l) = g(l) + 1, g′(l′) = g(l′) for l′ 6= l.

Further |ŵ| ≤ 2p
g(l)
l |v̂|.

proof. The statements 1o–3o are proved in Lemma 5.1 of [6].
Further

|Zlsv̂| =

∣∣∣∣∣∣
Glsv̂ +

∑

m 6=l

(πlmGls − πlmFlmGls + πmm)v̂

∣∣∣∣∣∣
=

=

∣∣∣∣∣∣
∑

m6=l

πmmv̂

∣∣∣∣∣∣
+

∣∣∣∣∣∣
Glsv̂ +

∑

m 6=l

πlmHm,g′(m)Glsv̂

∣∣∣∣∣∣
≤

≤|v̂|+ |Glsv̂| ≤ |v̂|(1 + p
g(l)
l ) ≤ 2p

g(l)
l |v̂|.

(We used the fact that Gls = πllGls and property 2o).
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Suppose now that elements aj(l) ∈ A (j ∈ D, l ∈ Λ) satisfying (11) are given

such that only finite number of them are non-zero. Put Λ0 = {l ∈ Λ, a
(l)
j 6= 0 for

some j ∈ D}. Choose a sequence g0, g1, g2, · · · ∈ G such that g0 = 0̄ ∈ G, gn+1 ≥
gn, |gn| = n (n = 0, 1, . . . ), gn(l) = 0 for l /∈ Λ0 and such that, for n sufficiently
large,

gn(l) > |j|l whenever j ∈ D and a
(l)
j 6= 0.

Put M0 =

{
∑

l∈Λ0

âl
0

}
⊂ W and define inductively sets Mn ⊂ W (n = 1, 2, . . . )

by Mn+1 =
{

Zls(x̂uq1
l1

. . . u
qpl

lpl
)
}

, where x̂ ∈ Mn, l ∈ Λ is determined by gn+1(l) =

gn(l) + 1,
pl∑

t=1
qt = gn(l)pl + 1, 1 ≤ s ≤ pl and qs ≥ gn(l) + 1.

Lemma 3. Let x̂ ∈ Mn. Then x̂ satisfies conditions 1o – 3o of Lemma 2 for
g = gn ∈ G and for some k ∈ D, |k|m ≤ pmgn(m)2 (m ∈ Λ).

Further |x̂| ≤ 2n · ∏
m∈Λ

p
gn(m)2

m .

proof. By induction on n:
Suppose x̂ ∈ Mn satisfies conditions 1o – 3o of Lemma 2 for g = gn and for some

k ∈ D, |k|m ≤ pmgn(m)2 (m ∈ Λ) and let |x̂| ≤ 2n
∏

m∈Λ p
gn(m)2

m . Let l ∈ Λ be

determined by gn+1(l) = gn(l) + 1 and let q1, . . . , qpl
∈ N,

pl∑
t=1

gt = gm(l)pl + 1. Let

1 ≤ s ≤ pl and qs ≥ gn(l) + 1. Put ŷ = x̂ûq1
l1

. . . û
qpl

lpl
.

Then ŷ satisfies conditions 1o – 3o of Lemma 2 for g = gn and for k′ ∈ D where
|k′|m = |k|m ≤ pmgn(m)2 = pmgm+1(m)2 for m 6= l and

|k′|l = |k|l + plgm(l) + 1 ≤ pl(gn(l)2 + gn(l)) + 1 ≤ pl(gn(l) + 1)2 = plgn+1(l)2.

Hence Zlsŷ satisfies conditions 1o – 3o of Lemma 2 for g = gn+1 and for k′ ∈ D.
Further

|Zlsŷ| ≤ 2p
gn(l)
l |ŷ| = 2p

gn(l)
l |x̂| ≤ 2p

gn(l)
l · 2n

∏

m∈Λ

pgn(m)2

m ≤ 2n+1
∏

m∈Λ

pgn+1(m)2

m .

We prove PMn ⊂ Ugn (n = 0, 1, 2, . . . ).
By the previous lemma PMn = {0} for n sufficiently large as only finite number

of the elements a
(m)
j are non-zero. Therefore it is sufficient to prove PMn+1 ⊂

Ugn+1 ⇒ PMn ⊂ Ugn (n = 0, 1, . . . ).
Let x̂ ∈ Mn and let l ∈ Λ be determined by gn+1(l) = gn(l) + 1. To prove

Px̂ ∈ Ugn it is sufficient to show

P (x̂ûq1
l1

. . . ûgl

l,pl
) ∈ U ′

gn+1
for every q1, . . . qpl

∈ N,

pl∑
t=1

qt = plgn(l) + 1
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(see (8)).Fix q1, . . . qpl
and put ŷ = x̂ûq1

l1
. . . û

qpl

l,pl
. Then there exists s, 1 ≤ s ≤ pl

such that qs ≥ gn(l) + 1. Then Zlsŷ ∈ Mn+1 by Lemma 2, so PZlsŷ ∈ Ugn+1.

We shall need the following lemma:

Lemma 4. Let i, k ∈ D, g(i) = gn, let |k|m ≤ pm(gn+1(m))2 for every m ∈ Λ, let
kls ≥ ils + |i|l + 1.

Then
P

(
â

(l)
i ûk−i − Zlsâ

(l)ûk−i
)
∈ Ugn+1 + · · ·+ Ugn+1︸ ︷︷ ︸

p
gn(l)
l

− times

.

proof. By [6], Lemmas 3.1 and 3.2 we have

P
(
â

(l)
i ûk−i − Zlsâ

(l)ûk−i
)

=
∑

j∈J1

(−1)jls−ils
(jls − ils − 1)!∏

t 6=s
1≤t≤pl

(ilt − jlt)!
fjuk−j .

For every j ∈ J1 we have fj ∈ Vj so fjuk−j ∈ Ugn+1 by (10). (Note that g(j) = gn+1

for j ∈ J1).
The rest follows from the estimation

∑

j∈J1

(jls − ils − 1))!∏
t 6=s

1≤t≤pl

(ilt − jlt)!
≤ p

gn(l)
l

(see(12)).

(continuation of the proof of Theorem 1):
We have

ŷ = (ŷ − Zlsŷ) + Zlsŷ ∈ Ugn+1 + · · ·+ Ugn+1︸ ︷︷ ︸
c− times

where
c ≤ p

gn(l)
l · 2n ·

∏

m∈Λ

pgn(m)2

m + 1 ≤ 2n+1
∏

m∈Λ

pgn+1(m)2

m

hence ŷ ∈ U ′gn+1 by (9).
We have proved that PMn ⊂ Ugn for every n. In particular,

∑

l∈Λ0

a
(l)
0 ∈ PM0 ⊂ Ug0 = U0̄

and by (11),

a = (a +
∑

l∈Λ0

a
(l)
0 )−

∑

l∈Λ

a
(l)
0 ∈ U0̄ + U0̄ ⊂ U.

This finishes the proof of Theorem 1.
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Corollary. An ideal I in a commutative s-algebra A with unit e is non-removable
if and only if it consists locally of joint topological divisors of zero.

proof. If I does not consist locally of joint topological divisors of zero then there
exist elements u1, . . . , un ∈ I which are not joint topological divisors of zero. The-
orem 1 for card Λ = 1 gives the existence of an extension B ⊃ A and elements

b1, . . . , bn ∈ B such that
n∑

t=1
utbt = l, i.e. I is removable.

Corollary. Let {Tl}l∈Λ be any family of removable ideals in a commutative s-
algebra A with unit e. Then there exists an extension B ⊃ A such that, for overy
l ∈ I, Il is not contained in a proper ideal of B.

proof. Il does not consist locally of joint topological divisors of zero so there
exists a finite number of elements ul1, . . . ulpl

∈ Il which are not joint topological
divisors of zero. Apply Theorem 1.

Corollary. Let {uα}α∈Λ be any family of elements of a commutative s-algebra
A with unit e. Suppose that uα is not a topological divisor of zero for every α ∈ Λ.
Then there exists an extension B ⊃ A such that all uα’s are invertible in B.
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