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The notions of nil, nilpotent or PI-rings (= rings satisfying a polynomial identity)
play an important role in the ring theory (see e.g. [8], [11], [20]). Banach algebras
with these properties have been studied considerably less and the existing results are
scattered in literature. The only exception is the work of Krupnik [13], where the
Gelfand theory of Banach PI-algebras is presented. However, even this work has not
get so much attention as it deserves.

The present paper is an attempt to give a survey of results concerning Banach nil,
nilpotent and PI-algebras.

The author would like to thank to J. Zemánek for essential completion of the
bibliography.

I. Nil and nilpotent Banach algebras

All algebras are complex; we do not assume the existence of the unit element.
The set of all positive integers will be denoted by N. For n ∈ N we denote by Pn

the set of all complex polynomials in n non-commuting variables.

Definition 1. Let A be a Banach algebra. We say that
1) A is nil ⇔ every element of A is nilpotent, i.e. for every x ∈ A there is n ∈ N such

that xn = 0,
2) A is nilpotent ⇔ there exists m ∈ N such that x1 · · ·xm = 0 for every x1, . . . , xm ∈

A,
3) A is algebraic ⇔ for every x ∈ A there is a polynomial p ∈ P1, p 6= 0 such that

p(x) = 0,
4) A is locally finite ⇔ every finite subset of A generates a finite-dimensional subal-

gebra,
5) A is a PI-algebra ⇔ there exist n ∈ N and a polynomial p ∈ Pn, p 6= 0 such that

p(x1, . . . , xn) = 0 for all x1, . . ., xn ∈ A,
6) A is locally PI ⇔ for every sequence {xi}∞i=1 ⊂ A there exist n ∈ N and p ∈ Pn,

p 6= 0 such that p(x1, . . . , xn) = 0.

There is a number of relations among these notions:

Theorem 2 [15]. A Banach algebra is PI if and only if it is locally PI.

Theorem 3 [1], cf. also [12], [5] and [10]. Let A be Banach algebra. The following
properties are equivalent

a) A is algebraic,
b) A is locally finite,
c) RadA is nilpotent and codim RadA < ∞.

Theorem 4 [7]. A Banach algebra is nil if and only if it is nilpotent.
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Thus we have
1 ⇔ 2 ⇒ 3 ⇔ 4 ⇒ 5 ⇔ 6.

The algebra of all n × n matrices is an example of an algebraic Banach algebra
which is not nilpotent.

Any infinite dimensional commutative semisimple Banach algebra is an example
of a PI-algebra which is not algebraic (by Theorem 3).

The proof of Theorem 4 consists of two steps:
1) If every element of a Banach algebra A is nilpotent then there exists n ∈ N such

that xn = 0 for every x ∈ A. This (as well as many other results in this paper) is
a consequence of the Baire category theorem.

2) If xn = 0 for every x ∈ A then there exists m ∈ N such that x1 · · ·xm = 0 for
every x1, . . . , xm ∈ A. This is the so called Nagata - Higman theorem, see [16],
[9] or [11], Appendix C, which is purely algebraic (actually, it has been discovered
recently, that this theorem was proved already by Dubnov and Ivanov [4]).

Denote by d(n) the least integer such that x1 · · ·xd(n) = 0 for all x1, . . . , xd(n) ∈ A
provided that xn = 0 (x ∈ A). An interesting open problem is to determine the exact
value of d(n). The best known bounds are [14], [18]

n(n + 1)
2

≤ d(n) ≤ n2.

For a survey of results about the Nagata-Higman theorem, see [6].

II. Approximate properties

A natural approximate analog to the notion of a nilpotent element x of a Banach
algebra A is the concept of quasinilpotent elements:

x ∈ A is quasinilpotent ⇔ r(x) = lim
n→∞

‖xn‖1/n = 0. There are several possibilities

how to define approximative versions of nil or nilpotent algebras (cf. [2]).

Definition 5. Let A be a Banach algebra. Then
1) A is radical (= topologically nil) ⇔ every element of A is quasinilpotent, i.e.

lim
n→∞

‖xn‖1/n = 0

for every x ∈ A,
2) A is uniformly topologically nil ⇔ limn→∞ SA(n) = 0 where

SA(n) = sup
{‖xn‖1/n, x ∈ A, ‖x‖ = 1

}
,

3) A is topologically nilpotent ⇔ lim
n→∞

‖x1 . . . xn‖1/n = 0 for every sequence

x1, x2, . . . ∈ A, ‖xi‖ = 1 (i = 1, 2, . . .),
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4) A is uniformly topologically nilpotent ⇔ limn→∞NA(n) = 0 where

NA(n) = sup
{‖x1 · · ·xn‖1/n, x1, . . . , xn ∈ A, ‖xi‖ = 1 (i = 1, . . . , n)

}
.

These notions are related in the following manner:

Theorem 6 [3]. A Banach algebra is topologically nilpotent if and only if it is uniformly
topologically nilpotent.

Theorem 7 [2]. If A is a topologically nilpotent Banach algebra then A is uniformly
topologically nil. If A is commutative then these two notions are equivalent.

Thus we have
4 ⇔ 3 ⇒ 2 ⇒ 1

and for commutative Banach algebras

4 ⇔ 3 ⇔ 2 ⇒ 1.

An example of a uniformly topologically nil algebra which is not topologically
nilpotent can be found in [3] (clearly such an example is non-commutative).

If A is a uniformly topologically nil then A is clearly radical and it is not difficult to
find an example of a (even commutative) radical Banach algebra which is not uniformly
topologically nil: consider the `1-algebra A generated by elements x1, x2, . . . which
satisfy ‖xi‖ = 1, xixj = 0 (i 6= j), and ‖xi

i‖ = 1, xi+1
i = 0.

Another interesting notion is the following (see [19], [22]; for related concept see
also [17]):

For a bounded subset M of a Banach algebra A denote by ‖M‖ = sup{‖x‖, x ∈ M}
and by r(M) = limn→∞ ‖Mn‖1/n (the spectral radius of M), where

Mn = {x1 . . . xn, xi ∈ M, i = 1, . . . , n}.

Note, that in this notation NA(n) = ‖BA‖1/n, where BA is the closed unit ball of A
and A is topologically nilpotent if and only if r(BA) = 0. An interesting open problem
(see [22]) is

Problem. Let A be a radical Banach algebra. Is then A finitely quasinilpotent, i.e.
r(F ) = 0 for every finite subset F ⊂ A?

It is easy to see that this is true for commutative Banach algebras. A positive
answer is known also if the algebra A consists of compact operators in a Banach space,
see [21].

The example mentioned above is an example of a commutative finitely quasinilpo-
tent algebra, which is not uniformly topologically nil.

A countable version of this problem is not true. As an example it is possible to
take the set M = {x1, x2, . . .} in the `1-algebra with generators x1, x2, . . . which satisfy
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the relation xixj = 0 for j 6= i + 1. In other words the elements of the algebra are of
the form

y =
∑

i<j

αi,jxixi+1 · · ·xj−1

where the complex coefficients αi,j satisfy ‖y‖ =
∑

i<j |αi,j | < ∞.

III. Gelfand theory of Banach PI-algebras

In this section we give a survey of the Gelfand theory for Banach PI-algebras (see
[13]).

To avoid technical difficulties we formulate the results only for algebras with unit.
If A is a Banach PI-algebra without unit, then its unification is also a PI-algebra

(by Theorem 2), so that the results can be modified for algebras without unit in obvious
way.

Among all polynomial identities play an important role the standard identities.
Denote by

en(x1, . . . , xn) =
∑

σ∈Sn

sign(σ) xσ(1) . . . xσ(n),

where Sn is the set of all permutations of the set {1, . . . , n} and sign (σ) = ±1 for even
(odd) permutation σ. Clearly e2(x1, x2) = x1x2 − x2x1.

Examples of Banach PI-algebras:

1) Any commutative Banach algebra A satisfies the standard identity e2(x, y) = 0 for
all x, y ∈ A.

2) Let A be a finite-dimensional Banach algebra, dim A = n. Then it is easy to show
that

en+1(x1, . . . , xn+1) = 0 (x1, . . . , xn+1 ∈ A).

3) An important particular case is the algebra Mn of all n × n (complex) matrices.
By 2), the algebra Mn satisfies the polynomial identity en2+1(x1, . . . , xn2+1) = 0.
Actually, a better result is true:

Theorem 8 (Amitzur, Levitzky). The algebra Mn satisfies the standard identity

e2n(x1, . . . , x2n) = 0 (x1, . . . , x2n ∈ Mn).

It can be shown that Mn satisfies no polynomial identity of grade ≤ 2n.
Denote by Fn the class of all unital Banach algebras A which satisfy the standard

identity en(x1, . . . , xn) = 0 for all x1, . . . , xn ∈ A.
Clearly F2 is the class of all commutative unital Banach algebras so that classes

Fn can be considered as a generalization of commutative Banach algebras. Further
Mn ∈ F2n by Theorem 8.

Denote by M(A) the set of all maximal two-sided ideals in a Banach algebra A.
For M ∈M(A) denote by πA the canonical homomorphism πM : A → A/M .
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It is well-known that if A is a commutative Banach algebra, then maximal ideals
are of codimension 1, ∩{M,M ∈M(A)} = RadA, and x ∈ A is invertible ⇔ πM (x) 6= 0
(M ∈M(A)).

The following theorem is a generalization of these facts:

Theorem 9 ([13], Theorem 21.1). Let A be a Banach algebra of class F2n. Then
a) For every M ∈M(A) is the algebra A/M isomorphic to Ml for some l ≤ n,
b) ∩{M, M ∈M(A)} = RadA,
c) x ∈ A is invertible ⇔ πM (x) is invertible for every M ∈M(A).

If A is a Banach PI-algebra then it can be shown that A satisfies a homogeneous
multilinear identity, i.e. there exist n ∈ N and complex coefficients ασ(σ ∈ Sn) not all
of them equal to 0 such that

∑

σ∈Sn

ασxσ(1) · · ·xσ(n) = 0 (x1, . . . , xn ∈ A).

However, not every Banach PI-algebra satisfies a standard identity. Consider the
exterior algebra A (with unit) generated by elements e1, e2, . . . with multiplication
eiej = −ejei (i, j ∈ N). This algebra is PI as (xy−yx)z−z(xy−yx) = 0 (x, y, z ∈ A)
and it can be seen easily that A does not satisfy any standard identity.

The situation changes when we consider semisimple Banach algebras or, equiva-
lently, Banach PI-algebras modulo radical.

Theorem 10. Let A be a unital Banach algebra. The following statements are equiv-
alent:

1) A|RadA is a PI-algebra.
2) A|RadA ∈ F2n for some n ∈ N .
3) There exists m ∈ N such that x ∈ A is invertible ⇔ π(x) is invertible for all

representations (i.e. unit-preserving homomorphisms) π : A → Mm.
4) There exists m ∈ N such that x ∈ A is invertible ⇔ π(x) is invertible for all

representations π : A → Mm with the property

|(π(y))i,j | ≤ ‖y‖ (y ∈ A, i, j = 1, . . . , m).

Proof. The equivalence 1 ⇔ 2 ⇔ (x ∈ A is invertible ⇔ π(x) is invertible for all
representations π : A → Ml (l ≤ n)) can be found in [13], Theorems 22.1, 22.2.

To show the equivalence with 3, take m = n! (in fact m = n2 is sufficient), so that
for any representation π : A → Ml with l ≤ n there is a representation π̃ : A → Mm,
π̃ =

⊕m/l
i=1 π.

For the equivalence with 4, see [13], Lemma 25.1.

For commutative Banach algebras there is a 1-1 correspondence between maximal
ideals and multiplicative functionals. For PI-algebras the role of multiplicative func-
tionals play finite-dimensional representations, but a finite-dimensional representation
is not uniquely determined by its kernel. Property 4 of the previous theorem shows
that it is sufficient to consider a compact set of representations.
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Let A be a unital Banach algebra such that A|RadA is a PI-algebra. Let m ∈ N
be the integer from the previous theorem. Denote by K the set of all representations
π : A → Mm with the property

∣∣∣
(
π(y)

)
i,j

∣∣∣ ≤ ‖y‖ (y ∈ A, i, j = 1, . . . , m).

We define a topology on K in the following way: the basis of neighborhoods of an
element π ∈ K is formed by the sets

Ux1,...,xk,ε = {π′ ∈ K, ‖π′(xi)− π(xi)‖ < ε, i = 1, . . . , k}

where x1, . . ., xk ∈ A, ε > 0.
Clearly K is a compact set. Denote by C(K,Mm) the algebra of all continuous

functions from K to Mm and define a mapping G : A → C(K,Mm) by

G(a)(π) = π(a) (a ∈ A, π ∈ K).

Theorem 11. Let A be a unital Banach algebra such that A|RadA is a PI-algebra.
Then the mapping G : A → C(K,Mm) has the following properties:

1) G is a continuous homomorphism,
2) a ∈ A is invertible ⇔ G(a) is invertible in C(K,Mm),
3) G(a) = 0 ⇔ a ∈ RadA,
4) σ(a) =

⋃
π∈K σ

(
G(a)(π)

)
so that r(a) = maxπ∈K r

(
G(a)(π)

)
.

References

[1] P. G. Dixon, Locally finite Banach algebras, J. London Math. Soc. 8 (1974), 325–
328.

[2] P. G. Dixon, Topologically nilpotent Banach algebras and factorization, Proc. Ed-
inburgh Math. Soc. A 119 (1991), 329–341.

[3] P. G. Dixon, V. Müller, A note on topologically nilpotent Banach algebras, Studia
Math. 102 (1992), 269–275.

[4] J. Dubnov, V. Ivanov, Sur l’abaissement du degree des polynomes en affineurs,
Dokl. Akad. Nauk SSSR 41 (1943), 95–98.

[5] J. Duncan, A.W. Tullo, Finite dimensionality, nilpotents and quasinilpotents in
Banach algebras, Proc. Edinburgh Math. Soc. 19 (1974/75), 45–49.

[6] E. Formanek, The Nagata-Higman Theorem, Acta Appl. Math. 21 (1990), 185–192.

[7] S. Grabiner, The nilpotency of Banach nil algebras, Proc. Amer. Math. Soc. 21
(1969), 510.

[8] I. N. Herstein, Noncommutative rings, Carus Math. Monographs 15, Math. Assoc.
of Amer., J. Wiley, 1968.

[9] G. Higman, On a conjecture of Nagata, Proc. Cambridge Philos. Soc. 52 (1956),
1–4.

6



[10] R.A. Hirschfeld, B.E. Johnson, Spectral characterization of finite-dimensional al-
gebras, Indag. Math. 34 (1972), 19–23.

[11] N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Publ. 37, Providence,
R. I. 1956.

[12] I. Kaplansky, Ring isomorphisms of Banach algebras, Canad. J. Math. 6 (1954),
374–381.

[13] N. Ya. Krupnik, Banach algebras with symbol and singular integral operators,
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