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Abstract. We show that each power bounded operator with spectral radius equal
to one on a reflexive Banach space has a nonzero vector which is not supercyclic.
Equivalently, the operator has a nontrivial closed invariant homogeneous subset.
Moreover, the operator has a nontrivial closed invariant cone if 1 belongs to its
spectrum. This generalizes the corresponding results for Hilbert space operators.

For non-reflexive Banach spaces these results remain true, however, the non-
supercyclic vector (invariant cone, respectively) relates to the adjoint of the operator.

Denote by B(X) the set of all bounded linear operators on a complex Banach
space X. Let T ∈ B(X). A vector x ∈ X is called cyclic for T if the set {p(T )x :
p polynomial} is dense in X. The vector x is called hypercyclic if the set {Tnx :
n = 0, 1, . . . } is dense in X. Clearly T has a nontrivial (closed) invariant subspace
if and only if there is a nonzero vector which is not cyclic for T . Similarly, T has
a nontrivial closed invariant subset if and only if there is a nonzero vector which
is not hypercyclic. Thus the notions of cyclic and hypercyclic vectors are closely
connected with the invariant subspace/subset problem.

By the well-known example of Read [R], there is an operator (acting on `1)
without nontrivial closed invariant subsets. Equivalently, every nonzero vector
is hypercyclic. For operators on Hilbert spaces (and more generally on reflexive
Banach spaces) the invariant subspace/subset problem is still open. For Hilbert
and reflexive spaces there are rather some partial positive results indicating that
the reflexivity of the space might play an important role in these problems.

By [BCP], every Hilbert space contraction whose spectrum contains the unit
circle has a nontrivial invariant subspace. A Banach space version of this result
was proved in [AM]: a polynomially bounded operator on a reflexive Banach space
whose spectrum contains the unit circle has a nontrivial invariant subspace.

An operator T ∈ B(X) is called power bounded if supn ‖Tn‖ < ∞. Clearly
a power bounded operator has no hypercyclic vectors since all orbits {Tnx : n =
0, 1, . . . } are bounded. However, this argument is not valid if we replace hyper-
cyclicity by supercyclicity.

A vector x ∈ X is called supercyclic for an operator T ∈ B(X) if the set {λTnx :
λ ∈ C, n = 0, 1, . . . } is dense in X. The concept of supercyclicity lies between the
cyclic and hypercyclic vectors.
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In [M2], the following analogue of the result [BCP] was proved: if T is a power
bounded operator on a Hilbert space with spectral radius equal to 1 then there
is a nonzero vector which is not supercyclic for T . Equivalently, there is a closed
T -invariant subset M which is homogeneous (i.e., CM ⊂ M).

The aim of this paper is to generalize this result for reflexive Banach spaces.
Moreover, if 1 ∈ σ(T ) then T has a nontrivial closed invariant cone (i.e., a subset
L satisfying L + L ⊂ L and tL ⊂ L for all t ≥ 0).

For non-reflexive Banach spaces these results remain true, but the constructed
non-supercyclic vector (resp. invariant cone) are for T ∗ instead of T .

For an operator T ∈ B(X) denote by σ(T ) and r(T ) its spectrum and spectral
radius, respectively. Let σe(T ) be the essential spectrum of T , σe(T ) = {λ ∈ C :
T − λ is not Fredholm}.

For a subspace L ⊂ X denote by L⊥ its annihilator,

L⊥ =
{
y ∈ X∗ : 〈x, y〉 = 0 for all x ∈ L

}
.

Similarly, for M ⊂ X∗ denote by ⊥M the preannihilator,
⊥M =

{
x ∈ X : 〈x, y〉 = 0 for all y ∈ M

}
.

Theorem 1. Let X be a Banach space which contains no isomorphic copy of c0.
Let T ∈ B(X) satisfy that 1 ∈ σ(T ) and Tnx → 0 for all x ∈ X. Let (an)∞n=0 be
a sequence of positive numbers such that limn→∞ an = 0. Then there exist vectors
x ∈ X and y ∈ X∗ such that Re 〈Tnx, y〉 > an for all n ≥ 0.

Moreover, if there is a Banach space Y such that X is a (isometrical) subspace
of Y ∗, then the vector y can be chosen in Y .

Proof. By the Banach-Steinhaus theorem, the operator T is power bounded. Let
K = supn ‖Tn‖. Clearly r(T ) = 1.

Replacing the numbers an by sup{ai : i ≥ n} we can assume without loss of
generality that a0 ≥ a1 ≥ a2 ≥ · · · .

Suppose first that 1 /∈ σe(T ). Then 1 is an eigenvalue of T and there exists
a nonzero vector x ∈ X such that Tx = x. Let y ∈ X∗ satisfy Re 〈x, y〉 > supn an.
Then Re 〈Tnx, y〉 = Re 〈x, y〉 > an for all n. In the second case (X ⊂ Y ∗) we can
choose y ∈ Y with the same properties.

Therefore we can assume that 1 ∈ σe(T ). Thus 1 ∈ ∂σe(T ) and, by [HW], T − I
is not upper semi-Fredholm. Consequently, if ε > 0 and M ⊂ X is a subspace of
finite codimension, then there exists u ∈ M of norm one such that ‖Tu − u‖ < ε.
Moreover, given n0 ∈ N, we can also find w ∈ M of norm one such that ‖T jw−w‖ <
ε for all j ≤ n0.

We first prove the following auxiliary statement:

Claim A. Let F,M be subspaces of X, dim F < ∞, codim M < ∞, ε > 0,
let v1, . . . , vm be a finite number of elements of X∗ (of Y , respectively), and let
r, r′ ∈ N. Then there exist u ∈ M , ‖u‖ = 1 and r′′ ∈ N, r′′ > max{r, r′} such that

‖T ju− u‖ ≤ ε (j ≤ r),(1)

‖T ju‖ ≤ ε (j ≥ r′′),(2)

|〈T ju, vl〉| ≤ ε(K + 1)‖vl‖ (l = 1, . . . , m, r ≤ j < r′′).(3)

dist {u, F} >
1
3
.(4)
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Proof. We construct inductively vectors x1, x2, · · · ∈ X of norm one and an in-
creasing sequence of integers n1 < n2 < · · · such that

‖T jxk − xk‖ < 2−k (j ≤ nk),(5)

‖T jxi‖ < 2−i (j ≥ nk, i < k),(6)

∥∥∥
∞∑

i=1

αixi

∥∥∥ ≥ 1
3

∥∥∥
t′∑
t

αixi

∥∥∥ (αi ∈ C, t ≤ t′).(7)

Let k ≥ 1 and suppose that the vectors x1, . . . , xk−1 ∈ X and numbers n1 < n2 <
· · · < nk−1 have already been constructed. Since Tnx → 0 for all x ∈ X, we can
choose nk > nk−1 such that (6) is satisfied (for k = 1 set n1 = r).

Let Fk = F ∨ {x1, . . . , xk−1}. By [M1], there exits a subspace Mk ⊂ X of finite
codimension such that

‖f + g‖ ≥ 5
6

max
{‖f‖, ‖g‖/2

}

for all f ∈ Fk and g ∈ Mk. Set

M ′
k = M ∩

k⋂

i=1

Mi ∩
{
x ∈ X : 〈T jx, vl〉 = 0 (l = 1, . . . , m, j ≤ nk)

}
.

Since 1 ∈ ∂σe(T ) and codim M ′
k < ∞, there exists xk ∈ M ′

k ⊂ M of norm one
satisfying (5).

Let (xi)∞i=1 and (ni)∞i=1 be the sequences constructed in the above described way.
Clearly they satisfy conditions (5) and (6). Let αi ∈ C, 1 ≤ t ≤ t′ < ∞ and suppose

that the sum
∑∞

i=1 αixi converges. Since
∑t′

i=1 αixi ∈ Ft′+1,
∑∞

i=t′+1 αixi ∈ Mt′+1,∑t−1
i=1 αixi ∈ Ft and

∑t′

i=t αixi ∈ Mt, we have

∥∥∥
∞∑

i=1

αixi

∥∥∥ ≥ 5
6

∥∥∥
t′∑

i=1

αixi

∥∥∥ ≥ 1
2
·
(5

6

)2∥∥∥
t′∑

i=t

αixi

∥∥∥ ≥ 1
3

∥∥∥
t′∑

i=t

αixi

∥∥∥.

In particular,
∥∥∥∑

i αixi

∥∥∥ ≥ 1
3 maxi |αi| whenever the sum

∑
i αixi converges.

Since X contains no isomorphic copy of c0, we can find s ∈ N and a finite linear
combination u =

∑s
i=1 αixi such that ‖u‖ = 1 and max{|αi| : 1 ≤ i < s} ≤ ε.

Clearly u ∈ M . Without loss of generality we can assume that ns+1 > r′. Set
r′′ = ns+1.

If j ≤ r = n1 then

‖T ju− u‖ =
∥∥∥

s∑

i=1

αi(T
jxi − xi)

∥∥∥ ≤ ε

s∑

i=1

‖T jxi − xi‖ ≤ ε

s∑

i=1

2−i ≤ ε.

If j ≥ r′′ then similarly

‖T ju‖ =
∥∥∥

s∑

i=1

αiT
jxi‖

∥∥∥ ≤ ε

s∑

i=1

2−i ≤ ε.
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To show (3), let 1 ≤ l ≤ m, 1 ≤ k ≤ s and nk ≤ j < nk+1. Then

|〈T ju, vl〉| ≤
∣∣∣
〈k−1∑

i=1

αiT
jxi, vl

〉∣∣∣ + |〈αkT jxk, vl〉|+
∣∣∣
〈 s∑

i=k+1

αiT
jxi, vl

〉∣∣∣

≤ ε

k−1∑

i=1

2−i‖vl‖+ εK‖vl‖ ≤ ε(K + 1)‖vl‖.

Since u ∈ M1 and F ⊂ F1, we have

dist {u, F} = inf{‖u + f‖ : f ∈ F} ≥ 5
12
‖u‖ >

1
3
.

This finishes the proof of Claim A.

Continuation of the Proof of Theorem 1. By Lemma 4 of [M2], there are
positive numbers βm (m = 1, 2, . . . ) such that

∑∞
i=1 βi < 1

3 and

∞∑

i=m+1

β2
i > 3Kβ2

m

for all m ≥ 1.
For m = 1, 2, . . . choose inductively positive numbers εm such that ε1 > ε2 > · · ·

and ∞∑

i=m+1

β2
i − 3Kβ2

m > (K + 2)εm.

Using Claim A we construct inductively an increasing sequence r1 < r2 < · · ·
of positive integers and vectors um ∈ X and vm ∈ X∗ (vm ∈ Y , respectively) such
that ‖um‖ = 1, ‖vm‖ ≤ 3, 〈um, vm〉 = 1 for all m = 1, 2, . . . , and

∞∑

i=m+1

β2
i − 3Kβ2

m − (K + 2)εm > arm ,(8)

‖T jum − um‖ ≤ εm (j ≤ rm),(9)

‖T jus‖ ≤ εm+1 (j ≥ rm+1, s ≤ m),(10)

|〈T jum, vs〉| ≤ 3εm(K + 1) (m, s ∈ N, s < m, rm ≤ j < rm+1)(11)

〈um, vs〉 = 0 (s < m),(12)

|〈T jus, vm〉| = 0 (m, s ∈ N, s < m, j ≤ rm).(13)

Choose r1 such that
∑∞

i=2 β2
i − 3Kβ2

1 − (K + 2)ε1 > ar1 .
Suppose that m ≥ 1 and the numbers r1 < r2 < · · · < rm, vectors u1, . . . , um−1 ∈

X and v1, . . . , vm−1 ∈ X∗ (resp., v1, . . . , vm−1 ∈ Y ) satisfying conditions (8)–(13)
have already been constructed. Find r′ such that

∞∑

i=m+2

β2
i − 3Kβ2

m+1 − (K + 2)εm+1 > ar′
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and
‖T jus‖ ≤ εm+1 (s ≤ m− 1, j ≥ r′).

Let F =
∨{T jus : 1 ≤ s ≤ m − 1, 0 ≤ j ≤ rm} and M = {x ∈ X : 〈x, vs〉 =

0 (s = 1, . . . ,m − 1)}. By Claim A for the numbers ε = εm, r = rm and the
vectors v1, . . . , vm−1, we can find an integer rm+1 > max{rm, r′} and a vector
um ∈ M such that ‖um‖ = 1, dist {um, F} > 1

3 and the conditions (8)–(12) are
satisfied.

Since dist {um, F} > 1
3 , by the Hahn-Banach theorem we can find a functional

vm ∈ F⊥ such that 〈u, vm〉 = 1 and ‖vm‖ ≤ 3.
In the second case (X ⊂ Y ∗), we have (⊥F )∗ = Y ∗/(⊥F )⊥ = Y ∗/F . Since

‖u + F‖Y ∗/F = dist {u, F} > 1/3, there exists vm ∈ ⊥F such that ‖vm‖ ≤ 3,
〈u, vm〉 = 1. Thus in both cases we have (13).

Let (ui)∞i=1 and (vi)∞i=1 be the sequences constructed in the above described way.
Set u =

∑∞
i=1 βiui and v =

∑∞
i=1 βivi. Then ‖u‖ ≤ 1 and ‖v‖ ≤ 1.

Let m ∈ N, rm ≤ j < rm+1. Then

Re 〈T ju, v〉 = Re
〈m−1∑

i=1

βiT
jui, v

〉
+ βmRe 〈T jum, v〉+ Re

〈 ∞∑

i=m+1

βiT
jui, v

〉

≥ −
m−1∑

i=1

βiεm + Re
m−1∑

i=1

βiβm〈T jum, vi〉+ β2
mRe 〈T jum, vm〉

+ Re
〈 ∞∑

i=m+1

βi(T
jui − ui), v

〉
+ Re

〈 ∞∑

i=m+1

βiui, v
〉

≥ −
∑

i 6=m

βiεm − 3εmβm(K + 1)
m−1∑

i=1

βi − 3Kβ2
m +

∞∑

i=m+1

β2
i

≥
∞∑

i=m+1

β2
i − 3Kβ2

m − εm(K + 2) ≥ arm
≥ aj .

For j < r1 we have

Re 〈T ju, v〉 = Re
〈 ∞∑

i=1

βiT
jui, v

〉
≥ Re

〈 ∞∑

i=1

βiui, v
〉
−

∞∑

i=1

βi‖T jui − ui‖

≥
∞∑

i=1

β2
i −

∞∑

i=1

βiεi ≥
∞∑

i=1

β2
i − ε1 > 0.

Thus for suitable multiples x and y of u and v, respectively, we have the statement
of Theorem 1.

The following corollary improves the results of [N] and [M3].

Corollary 2. Let X be a reflexive Banach space, let T ∈ B(X) be a power bounded
operator satisfying r(T ) = 1 and Tnx → 0 for all x ∈ X. Let (an) be a sequence of
positive numbers satisfying limn an = 0. Then there exist v ∈ X and v∗ ∈ X∗ such
that

|〈T jv, v∗〉| ≥ aj
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for all j ≥ 1.

Proof. Note that X contains no isomorphic copy of c0. Since r(T ) = 1, there exists
λ ∈ σ(T ) with |λ| = 1. Thus the operator S = λ−1T satisfies all the conditions
required in Theorem 1, which implies the statement of Corollary 2.

A subset M of a Banach space X is called a cone if M + M ⊂ M and tM ⊂ M
for all t ≥ 0.

Theorem 3. Let X be a Banach space, let T ∈ B(X) be a power bounded operator
satisfying 1 ∈ σ(T ). Then there are nonzero vectors v∗ ∈ X∗ and v∗∗ ∈ X∗∗ such
that

Re 〈T ∗jv∗, v∗∗〉 ≥ 0

for all j ≥ 0. Consequently, T ∗ has a nontrivial closed invariant cone.

Proof. The statement of Theorem 3 is clear if T ∗ has a nontrivial invariant sub-
space. Indeed, if M ′ ⊂ X∗ is a nontrivial subspace invariant with respect to T ∗,
then for any nonzero vectors v∗ ∈ M ′ and v∗∗ ∈ M ′⊥ we have 〈T ∗jv∗, v∗∗〉 = 0 for
all j.

Therefore we can assume without loss of generality that X∗ is separable (oth-
erwise for any nonzero x∗ ∈ X∗ the vectors T ∗jx∗ generate a nontrivial subspace
invariant with respect to T ∗). By a result of Bessaga and Pe lczynski, see [DU], p.
83, X∗ contains no isomorphic copy of c0.

We may also assume that T is not a scalar multiple of the identity operator,
since the statement becomes trivial in this case.

We use the standard reduction technique, see [NF]. Set M1 = {x∗ ∈ X∗ : T ∗nx →
0}. Then M1 is a closed subspace invariant with respect to T ∗. If M1 is nontrivial
then Theorem 3 is proved. If M1 = X∗ then the statement follows from Theorem 1.
Thus we may assume that M1 = {0}.

Let M = {x ∈ X : Tnx → 0}. Then M is a closed subspace invariant with
respect to T , and so M⊥ is invariant with respect to T ∗. If M is nontrivial then
M⊥ is nontrivial, and so Theorem 3 is proved. If M = {0} then T is a power
bounded operator of class C11, and so T ∗ has plenty of invariant subspaces by
[CF], p. 136 and [AM]. Therefore we may assume that M = X.

Let M2 = {x∗∗ ∈ X∗∗ : T ∗∗nx → 0}. Consider the operator S = T ∗∗|M2.
Clearly X ⊂ M2 and S is an extension of T . Since 1 ∈ ∂σ(T ) ⊂ σπ(T ), where
σπ denotes the approximate point spectrum, we have 1 ∈ σ(S). Thus the second
statement of Theorem 1 for the operator S gives the existence of v∗∗ ∈ M2 ⊂ X∗∗

and v∗ ∈ X∗ satisfying the statement of Theorem 3.
Thus in all cases there are nonzero vectors v∗ ∈ X∗ and v∗∗ ∈ X∗∗ satisfy-

ing Re 〈T ∗jv∗, v∗∗〉 ≥ 0 for all j. Then the closed cone generated by the vectors
T ∗jv∗ (j = 0, 1, . . . ) is nontrivial and invariant with respect to T ∗.

In fact, the set
{
x∗ ∈ X∗ : Re 〈x∗, T ∗∗jv∗∗〉 ≥ 0 for all j

}
is another nontrivial

closed cone invariant with respect to T ∗.

Corollary 4. Let X be a reflexive Banach space, let T ∈ B(X) be a power bounded
operator satisfying 1 ∈ σ(T ). Then there are vectors v ∈ X and v∗ ∈ X∗ such that

Re 〈T jv, v∗〉 ≥ 0
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for all n ≥ 0. In particular, T has a nontrivial closed invariant cone.

Remark 5. (1) In [M2], it was wrongly stated that each power bounded Hilbert
space operator T satisfying r(T ) = 1 has a nontrivial closed invariant cone. In fact
the result was proved only under the assumption that 1 ∈ σ(T ).

(2) Let L ⊂ X be a cone satisfying condition

(14) L ∩ (−L) = {0}

(in fact this condition is sometimes included in the definition of a cone).
A cone L satisfying (14) defines naturally a partial order on X so that the space

X becomes an ordered vector space. An operator T ∈ B(X) satisfying TL ⊂ L is
called positive.

The invariant cone constructed in Theorem 4 in general does not satisfy (14).
However, if (14) is not satisfied, then L ∩ (−L) is a nontrivial closed real subspace
invariant with respect to T (a subset M ⊂ X is called a real subspace if M+M ⊂ M
and tM ⊂ M for all real t).

Thus we have the following alternative:

Theorem 6. Let X be a reflexive Banach space, let T ∈ B(X) be a power bounded
operator satisfying 1 ∈ σ(T ). Then either T has a nontrivial invariant real subspace,
or there is a partial order ≤ on X such that X becomes an ordered vector space
and T a positive operator. Moreover, the cone {x ∈ X : x ≥ 0} is closed.

It is a well-known generalization of the Perron-Frobenius theorem that each
positive operator on a Banach lattice satisfies r(T ) ∈ σ(T ). In fact the condition in
Theorem 1 implies this statement too (provided that the numbers aj are decreasing
sufficiently slowly).

Proposition 7. Let T ∈ B(X), r(T ) ≤ 1, let x ∈ X, x∗ ∈ X∗ and Re 〈T jx, x∗〉 ≥
(j + 1)−1 for all j. Then 1 ∈ σ(T ).

Proof. For z ∈ C, |z| > 1 we have (z − T )−1 =
∑∞

i=0
T j

zj+1 . Therefore

lim sup
t→1+

‖(t− T )−1‖ ≥ 1
‖x‖ · ‖x∗‖ lim sup

t→1+

|〈(t− T )−1x, x∗〉|

≥ 1
‖x‖ · ‖x∗‖ lim sup

t→1+

Re
〈 ∞∑

j=0

T jx

tj+1
, x∗

〉
≥ 1
‖x‖ · ‖x∗‖ lim sup

t→1+

∞∑

j=0

1
(j + 1)tj+1

.

By an elementary calculation it is possible to show that the last expression is equal
to ∞, and so the resolvent (z − T )−1 is unbounded in each neighbourhood of 1.
Therefore 1 ∈ σ(T ).

Theorem 8. Let X be a reflexive Banach space, dim X ≥ 2, let T ∈ B(X) be
a power bounded operator satisfying r(T ) = 1. Then there is a non-zero vector
v ∈ X which is not supercyclic for T .

Proof. Without loss of generality we may assume that 1 ∈ σ(T ) and that T is
not a scalar multiple of the identity operator. We may also assume that the point
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spectrum of T ∗ is empty (otherwise, if λ is an eigenvalue of T ∗, then (T − λ)X is
a nontrivial subspace invariant with respect to T ).

Let v ∈ X, v∗ ∈ X∗ be nonzero vectors satisfying Re 〈T jv, v∗〉 ≥ 0 for all j,
which were constructed in Corollary 4. Then

{tT jv : t ≥ 0, j = 0, 1, . . . }− ⊂ {x ∈ X : Re 〈x, v∗〉 ≥ 0} 6= X.

By [LM], v is not supercyclic for T .

Corollary 9. Let X be a reflexive Banach space, dim X ≥ 2, and let T ∈ B(X)
satisfy ‖T‖ = r(T ). Then there is a non-zero vector v ∈ X which is not supercyclic
for T .

Proof. The statement is clear if T = 0. If T 6= 0 then consider the contraction
T/‖T‖.

Clearly Theorem 8 and Corollary 9 remain true for non-reflexive Banach spaces.
However, in this case the non-supercyclic vector exists for T ∗ instead of T .
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