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Abstract. Let X, Y, Z be Banach spaces and X
S(z)−→Y

T (z)−→Z an analytically
dependant sequence of operators satisfying T (z)S(z) = 0. We study properties
of the function z 7→ dim Ker T (z)/ Im S(z).

Let X, Y be complex Banach spaces. Denote by L(X,Y ) the set of all bounded
linear operators from X to Y . If Y = X then we write for short L(X) = L(X, X).

Recall the well-known punctured neighbourhood theorem:

Theorem 1. Let T ∈ L(X) be a Fredholm operator. Then there exist ε > 0 and
constants k1 ≤ dim Ker T , k2 ≤ codim Im T such that dim Ker(T − z) = k1 and
codim Im(T − z) = k2 for all z, 0 < |z| < ε.

In this paper we study a more general situation. Let X, Y, Z be Banach spaces,
let U be an open subset of Cn, let S : U → L(X, Y ) and T : U → L(Y, Z) be analytic
operator-valued functions satisfying T (z)S(z) = 0 for all z ∈ U . For z ∈ U write
α(z) = dim Ker T (z)/ Im S(z).

The aim of the paper is to study the behaviour of the function z 7→ α(z).
The main result of the first section is the following generalization of Theorem 1

— if U ⊂ C, w ∈ U , Im T (w) is closed and α(w) < ∞ then α(z) = k is constant in a
punctured neighbourhood of w.

Clearly the classical punctured neighbourhood theorem follows easily from this
generalization for sequences 0→ X

T−z−→Y and X
T−z−→Y → 0, respectively.

In the second section we study the case n ≥ 2. This situation has been studied
mainly in connection with the Koszul complex of an n-tuple of commuting operators.

I.

For T ∈ L(X, Y ) denote by γ(T ) the Kato reduced minimum modulus, γ(T ) =
inf

{‖Tx‖ : dist{x, Ker T} = 1
}

(formally we set γ(0) = ∞). Clearly γ(T ) > 0 if and
only if Im T is closed.

If M, L are closed subspaces of X then write

δ(M, L) = sup
x∈M
‖x‖≤1

dist{x, L}

and the gap between M and L is defined by δ̂(M,L) = max{δ(M, L), δ(L,M)}. For
the properties of the reduced minimum modulus and the gap see [6].
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The following result is due to Markus, cf. [13], Theorem 1.4.

Theorem 2. Let U be an open subset of Cn, let T : U → L(X, Y ) be a norm-
continuous function, let w ∈ U and Im T (w) be closed. The following conditions are
equivalent:
(i) the function z 7→ γ(T (z)) is continuous at w,

(ii) lim infz→w γ(T (z)) > 0,
(iii) limz→w δ

(
Ker T (w), Ker T (z)

)
= 0,

(iv) limz→w δ̂
(
Ker T (w), Ker T (z)

)
= 0,

(v) limz→w δ
(
Im T (z), Im T (w)

)
= 0,

(vi) limz→w δ̂
(
Im T (z), Im T (w)

)
= 0.

The equivalences (iii) ⇔ (iv) and (v) ⇔ (vi) follow from the fact that automati-
cally limz→w δ

(
Ker T (z), Ker T (w)

)
= 0 and limz→w δ(Im T (w), Im T (z)) = 0.

A continuous function T : U → L(X, Y ) is called regular at w if Im T (w)) is closed
and T satisfies any of equivalent conditions (i) – (vi). In particular, condition (ii)
implies that the set of all regularity points of T is open. Also, T is regular at w if and
only if the adjoint function z 7→ T (z)∗ is regular at w.

Regular functions are closely related to the exactness:

Theorem 3. ([13], Theorem 2) Let U be an open subset of Cn, w ∈ U and let
T : U → L(X, Y ) be an analytic function. The following conditions are equivalent:
(i) T is regular at w,

(ii) there exists a neighbourhood U0 ⊂ U of w, a Banach space E and an analytic
function S : U0 → L(E,X) such that Im S(z) = Ker T (z) (z ∈ U0),

(iii) there exists a neighbourhood U0 ⊂ U of w, a Banach space E′ and an analytic
function S′ : U0 → L(Y, E′) such that Im T (z) = Ker S′(z) (z ∈ U0).

In particular, if T : U → L(X,Y ) is regular at w and x ∈ Ker T (w) then there
exist a neighbourhood U0 of w and an analytic function f : U0 → X such that f(w) = x
and T (z)f(z) = 0 (z ∈ U0). Indeed, let S : U0 → L(E,X) be an analytic function
satisfying the properties of (ii). Choose e ∈ E with S(w)e = x and set f(z) = S(z)e.

Lemma 4. Let U be an open subset of Cn, let S : U → L(X, Y ) and T : U → L(Y, Z)
be functions regular in U . Suppose that T (z)S(z) = 0 for all z ∈ U . Then α(z) is
constant on each connected subset of U .

Proof. Let w ∈ U satisfy α(w) = dim Ker T (w)/ Im S(w) <∞. By Theorem 2 (iv) and
(vi), limz→w δ̂

(
Ker T (w), Ker T (z)

)
= 0 and limz→w δ̂

(
Im T (w), Im T (z)

)
= 0. Thus

there exists ε > 0 such that δ̂
(
Ker T (z), Ker T (w)

)
< 1/9 and δ̂

(
Im S(z), Im S(w)

)
<

1/9 for z ∈ U , dist{z, w} < ε. By [1] this implies that

α(z) = dim Ker T (z)/ Im S(z) = dim Ker T (w)/ Im S(w) = α(w)

for all z ∈ U , dist{z, w} < ε.
Thus α(z) is locally constant and a standard argument gives that α(z) is constant

on the component of connectivity of U containing w.
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If U0 is a component of U and there is no w ∈ U0 with α(w) < ∞ then clearly
α(z) =∞ on U0.

An operator T ∈ L(X) with the property that the function z 7→ T − z is regular at
0 is called semi-regular (sometimes Kato regular). Semi-regular operators exhibit very
nice properties and have been studied intensely, see e.g. [9], [10], [12].

An essential version of semi-regular operators has been also studied. Recall that if
M, L are closed subspaces of X then we write M

e⊂L (M is essentially contained in L)
if dim M/(M ∩ L) < ∞. We summarize some of equivalent conditions characterizing
essentially semi-regular operators.

Theorem 5. ([10], Theorem 3.1) Let T ∈ L(X) be an operator with closed range. The
following conditions are equivalent:
(i) (Kato decomposition) there exists a decomposition X = X1⊕X2 such that TX1 ⊂

X1, TX2 ⊂ X2, dim X1 < ∞, T |X1 is nilpotent and T |X2 is an semi-regular
operator,

(ii)
⋂

z 6=0 Im(T − z)
e⊂ Im T ,

(iii) dim Ker T/N∗(T ) < ∞, where N∗(T ) is the set of all x ∈ X such that there are
complex numbers zi (i = 1, 2, . . .) tending to 0 and elements xi ∈ Ker(T −zi) such
that x = limi→∞ xi (clearly N∗(T ) ⊂ Ker T ),

(iv) dim R∗(T )/ Im T <∞ where R∗(T ) is the set of all x ∈ X such that x = limi→∞ xi

for some xi ∈ Im(T − zi) and some zi → 0 (clearly Im T ⊂ R∗(T )).

Note that condition (i) implies that the function z 7→ T−z is regular in a punctured
neighbourhood {z : 0 < |z| < ε} for some ε > 0.

General analytic operator-valued functions of one variable can be reduced to the
linear case by the method of linearization, see [2], Theorem 2.6.

Theorem 6. Let U ⊂ C be an open set, T : U → L(X, Y ) an analytic function and
w ∈ U . Then there exist a neighbourhood U0 of w, Banach spaces Z and M , an operator
V ∈ L(M) and analytic functions A : U0 → L(M, X ⊕Z), B : U0 → L(Y ⊕Z, M) such
that A(z) and B(z) are invertible operators and

B(z)
(
T (z)⊕ IZ

)
A(z) = V − zIM (z ∈ U0).

Let U ⊂ C be an open set and let T : U → L(X,Y ) be an analytic operator-valued
function. Let w ∈ U . Write

R∗(T (w)) =
{
y ∈ Y : there exist zk ∈ U, zk → w and yk ∈ Im T (zk) with yk → y

}
,

R∗∗(T (w)) =
{
y ∈ Y : lim

z→w
dist{y, Im T (z)} = 0

}
.

Clearly Im T (w) ⊂ R∗∗(T (w)) ⊂ R∗(T (w)) and R∗(T (w)), R∗∗(T (w)) are closed sub-
spaces of Y .

Similarly write

N∗(T (w)) =
{
x ∈ X : there are zk ∈ U, xk ∈ Ker T (zk) with zk → w and xk → x

}
,

N∗∗(T (w)) =
{
x ∈ X : lim

z→w
dist{x, Ker T (z)} = 0

}
.
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Clearly N∗∗(T (w)) ⊂ N∗(T (w)) ⊂ Ker T (w) and N∗(T (w)), N∗∗(T (w)) are closed
subspaces of X.

Theorem 7. Let U ⊂ C be an open set, T : U → L(X, Y ) an analytic function and
w ∈ U . The following statements are equivalent:
(i) dim R∗(T (w))/ Im T (w) <∞,

(ii) dim R∗∗(T (w))/ Im T (w) <∞,
(iii) dim Ker T (w)/N∗(T (w)) <∞ and Im T (w) is closed,
(iv) dim Ker T (w)/N∗∗(T (w)) <∞ and Im T (w) is closed.

Any of these conditions implies that there exists ε > 0 such that the function
T is regular in the punctured neighbourhood {z ∈ U : 0 < |z − w| < ε}. Fur-
ther N∗(T (w)) = N∗∗(T (w)), R∗(T (w)) = R∗∗(T (w)) and dim Ker T (w)/N∗(T (w)) =
dim R∗(T (w))/ Im T (w).

Proof.
A. Suppose first that Y = X and T (z) = V − zIX for some operator V ∈ L(X). We
show that in this case conditions (i) – (iv) are equivalent to
(v) V − w is essentially semi-regular.

Clearly (i)⇒ (ii) and (iv)⇒ (iii).
By Theorem 5, (i)⇔ (iii)⇔ (v).
(ii)⇒ (v): Clearly (ii) implies that Im T (w) is closed. Further

⋂

z 6=w

Im(V − z) ⊂ R∗∗(V − w)

so that, by Theorem 5, V − w is essentially semi-regular.
Suppose now that V − w is essentially semi-regular. Let X = X1 ⊕ X2 be the

Kato decomposition of V −w, i.e., V X1 ⊂ X1, V X2 ⊂ X2, dim X1 <∞, (V −w)|X1 is
nilpotent and (V −w)|X2 is semi-regular. It is easy to see that, for z 6= w, Ker(V −z) =
Ker((V − z)|X2) and Im(V − z) = X1 + Im((V − z)|X2). Thus

N∗(V − w) = N∗∗(V − w) = Ker
(
(V − w)|X2

)

and
R∗(V − w) = R∗∗(V − w) = X1 + Im

(
(V − w)|X2

)
.

Hence (v) implies (iv). Further

dim Ker(V − w)/N∗(V − w) = dim Ker
(
(V − w)|X1

)

= dim X1/(V − w)X1 = dim R∗(V − w)/ Im(V − w).

Also the Kato decomposition implies that the function z 7→ V −z is regular in a certain
punctured neighbourhood of w.

B. Let now T (z) be a general analytic operator-valued function. By Theorem 6 there
exist a neighbourhood U0 of w, Banach spaces Z, M , an operator V ∈ L(M) and
analytic functions A : U0 → L(M, X ⊕ Z), B : U0 → L(Y ⊕ Z, M) whose values are
invertible operators, such that

B(z)
(
T (z)⊕ IZ

)
A(z) = V − zIZ (z ∈ U0).
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For z ∈ U0 we have

Ker(V − zI) = Ker
(
(T (z)⊕ IZ)A(z)

)
= A(z)−1 Ker

(
T (z)⊕ IZ

)
= A(z)−1 Ker T (z)

and
Im(V − zI) = Im

(
B(z)(T (z)⊕ IZ)

)
= B(z)(Im T (z) + Z).

Thus
N∗(V − wI) = A(w)−1N∗(T (w)),

N∗∗(V − wI) = A(w)−1N∗∗(T (w)),

R∗(V − wI) = B(w)
(
R∗(T (w)) + Z

)
and

R∗∗(V − wI) = B(w)
(
R∗∗(T (w)) + Z

)
.

Hence all the statements for the function T (z) are equivalent to the corresponding
statements for V − zI and the general case reduces to the previous case.

Remark 8. Let U ⊂ C, w ∈ U and let T : U → L(X,Y ) be an analytic function.
Then dim Ker T (w)/N∗(T (w)) can be interpreted as the ”jump” in the kernel of T (z);
similarly dim R∗(T (w))/ Im T (w) signifies the jump in the range of T (z). It is interesting
to note that these two numbers are always equal.

Theorem 9. Let U be an open subset of C and w ∈ U . Suppose that S : U → L(X, Y ),
T : U → L(Y,Z) are analytic functions satisfying T (z)S(z) = 0 (z ∈ U), α(w) < ∞
and Im T (w) is closed. Then there exist ε > 0 and a constant c ≤ α(w) such that
α(z) = c for all z, 0 < |z − w| < ε.

Proof. By [14], Lemma 2.1, α(z) ≤ α(w) for all z in a neighbourhood of w. Using
the previous theorem, both z 7→ S(z) and z 7→ T (z) are regular in a certain punc-
tured neighbourhood of w so that, by Lemma 4, α(z) is constant in this punctured
neighbourhood.

II.

In this section we study analytic operator-valued functions of n-variables.
It is not possible to expect the punctured neighbourhood theorem for n ≥ 2; the

proper generalization seems to be

Conjecture 10. Let U ⊂ Cn be open, let S : U → L(X,Y ) and T : U →
L(X,Y ) be analytic on U . Suppose that T (z)S(z) = 0, Im T (z) is closed and α(z) =
dim Ker T (z)/ Im S(z) < ∞ (z ∈ U). Let k ∈ N. Then the set {z ∈ U : α(z) ≥ k} is
analytic in U .

Recall that a set M ⊂ U is called analytic in U if for each w ∈ U there exist
a neighbourhood U0 of w and analytic (scalar-valued) functions f1, . . . , fr such that
M ∩ U0 = {z ∈ U0 : f1(z) = · · · = fr(z) = 0}.

The conjecture is true in the following particular cases:
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A. if the ranges and kernels of S(z) and T (z) are complemented subspaces, see Theo-
rem 14 below. In particular, the conjecture is true for operators in Hilbert spaces.

B. if either S(z) ≡ 0 or T (z) ≡ 0; this means that the other function is upper (lower)
semi-Fredholm-valued and the conjecture reduces to the statement about defect
indices of semi-Freholm-valued functions, see [5].

C. if the sequence X
S(z)−→Y

T (z)−→Z is a part of a Fredholm complex vanishing at the ends,
see [7], [8], [11] or Theorem 18 below.

We start with the following lemma:

Lemma 11. Let U ⊂ Cn be an open subset, let T : U → L(X, Y ) be an analytic
function, let k ∈ N. Then the set {z ∈ U : dim Im T (z) < k} is analytic.

Proof. If x1, . . . , xk ∈ X, y∗1 , . . . , y∗k ∈ Y ∗, z ∈ U and dim Im T (z) < k then the vectors
T (z)x1, . . . , T (z)xk are linearly independent and det

(〈T (z)xi, y
∗
j 〉

)
= 0.

On the other hand, if dim Im T (z) ≥ k then there are vectors x1, . . . , xk ∈ X,
y∗1 , . . . , y∗k ∈ Y ∗ such that det

(〈T (z)xi, y
∗
j 〉

) 6= 0. Thus

{
z ∈ U : dim Im T (z) < k}

={z ∈ U : det
(〈T (z)xi, y

∗
j 〉

)
= 0 for all x1, . . . , xk ∈ X, y∗1 , . . . , y∗k ∈ Y ∗}

which is an analytic set, see [3], p. 86.

Corollary 12. Let S : U → L(X, Y ) and T : U → L(Y, Z) be analytic functions and
let k ∈ N. Then the set

{
z ∈ U : dim Im S(z)/

(
Im S(z) ∩Ker T (z)

)
< k

}
is analytic.

Proof. Clearly dim Im S(z)/
(
Im S(z) ∩ Ker T (z)

)
= dim Im

(
T (z)S(z)

)
so that the

corollary follows from the previous lemma.

Lemma 13. Let U be an open subset of Cn, let S : U → L(X, Y ) and T : U → L(Y, Z)
be analytic functions satisfying T (z)S(z) = 0 (z ∈ U). Suppose that there are Banach
spaces X1 and Z1 and regular analytic functions S1 : U → L(X1, Y ), T1 : U → L(Y,Z1)
satisfying

Ker T1(z) ⊂ Im S(z) ⊂ Ker T (z) ⊂ Im S1(z)

and dim Im S1(z)/ Ker T1(z) <∞ (z ∈ U). Then the set

{
z ∈ U : dim Ker T (z)/ Im S(z) ≥ k

}

is analytic in U .

Proof. The situation is illustrated by the following diagram:

X
S(z)−→Y

T (z)−→Z

Fig. 1
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We can assume that U is connected. For each j set

Aj = {z ∈ U : dim Im S(z)/ Ker T1(z) ≤ j}

and
Bj = {z ∈ U : dim Im S1(z)/ Ker T (z) ≤ j}.

By Corollary 12, Aj and Bj are analytic sets. As in the proof of Lemma 4 (or using
Theorem 3) it is easy to that there is a constant c such that dim Im S1(z)/ Ker T1(z) = c
in U . Thus

{
z ∈ U : dim Ker T (z)/ Im S(z) ≥ k

}

=
{
z ∈ U : dim Im S1(z)/ Ker T (z) + dim Im S(z)/ Ker T1(z) ≤ c− k

}

=
c−k⋃

i=0

Ai ∩Bc−k−i.

The last set is clearly analytic.

Let T ∈ L(X, Y ). An operator S ∈ L(Y, X) is called a generalized inverse of T
if TST = T and STS = S. If S is a generalized inverse of T then TS and ST are
projections satisfying Im(TS) = Im T and Ker(ST ) = Ker T . Thus T has a generalized
inverse if and only if both Ker T and Im T are complemented subspaces of X and Y ,
respectively.

The next result shows that Conjecture 10 is true for operators with generalized
inverses. We adopt the method of [4].

Theorem 14. Let U be an open subset of Cn, let S : U → L(X,Y ) and T : U →
L(Y, Z) be analytic functions. Suppose that T (z)S(z) = 0, dim Ker T (z)/ Im S(z) <∞
and the operators S(z) and T (z) have generalized inverses for z ∈ U . Let k ∈ N. Then
the set {z ∈ U : α(z) ≥ k} is analytic in U .

Proof. Let w ∈ U . Let V be a generalized inverse of S(w), i.e., V S(w)V = V and
S(w)V S(w) = S(w). Set P = I − S(w)V . Then P is a projection, Ker P = Im S(w).

For z close to w, the operator I +(S(z)−S(w))V is invertible. Define P (z) ∈ L(Y )

by P (z) = P
(
I+(S(z)−S(w))V

)−1 ∈ L(Y ). Clearly the function z 7→ P (z) is regular at
w since Im P (z) = Im P is constant. We prove Ker P (z) ⊂ Im S(z). Let y ∈ Ker P (z),

i.e., 0 = P (z)y = P
(
I + (S(z)− S(w))V

)−1
y. Then

(
I + (S(z)− S(w))V

)−1
y ∈ Ker P = Im S(w)

For some x ∈ X we have

y =
(
I + (S(z)− S(w))V

)
S(w)x = S(z)V S(w)x ∈ Im S(z).

Similarly, let W be a generalized inverse of T (w). Set Q = I −WT (w). Then
Q is a projection with Im Q = Ker T (w). For z close to w define Q(z) ∈ L(Y ) by
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Q(z) =
(
I + W (S(z) − S(w))

)−1
Q. Clearly the function z 7→ Q(z) is regular since

Ker Q(z) = Ker Q is constant. We have

WT (z) = WT (w) + W (T (z)− T (w)) = I −Q + W (T (z)− T (w))

so that

(
I + W (T (z)− T (w))

)−1
WT (z) = I − (

I + W (T (z)− T (w))
)−1

Q = I −Q(z).

Consequently, Ker T (z) ⊂ Im Q(z).
Thus we have Ker P (z) ⊂ Im S(z) ⊂ Ker T (z) ⊂ Im Q(z) and

dim Im Q(w)/ Ker P (w) = dim Im Q/ Ker P = dim Ker T (w)/ Im S(w) <∞.

As in Lemma 4 we have that dim Im Q(z)/ Ker P (z) < ∞ in a neighbourhood of w.
The rest follows from Lemma 13.

Corollary 15. Conjecture 10 is true for operators in Hilbert spaces.

In the following we consider a complex

0 −→ X0
δ0(z)−→X1

δ1(z)−→ · · · δn−1(z)−→ Xn −→ 0, (1)

where X0, . . . , Xn are Banach spaces, operators δj(z) satisfy δj(z)δj−1(z) = 0 and
depend analytically on a parameter z ∈ U , where U is an open subset of Cn.

Suppose that complex (1) is Fredholm, i.e., dim Ker δj(z)/ Im δj−1(z) < ∞ for all
j = 0, . . . , n and z ∈ U (formally we set δ−1(z) = 0 and δn(z) = 0).

Let k ∈ N. It is a folklore among specialists in the sheaf theory that the set{
z ∈ U : dim Ker δj(z)/ Im δj−1(z) ≥ k

}
is analytic. This result is stated without proof

(for the Koszul complex of a commuting n-tuple of operators) in [7] and [8]; cf also [11].
Since apparently there is no elementary proof of this result, we include the proof here.

We need the following modification of Lemma 13:

Lemma 16. Let U be an open subset of Cn, let S : U → L(X, Y ) and T : U → L(Y, Z)
be analytic functions satisfying T (z)S(z) = 0 (z ∈ U). Suppose that there are Banach
spaces X1, Z1, finite dimensional Banach spaces F, G and regular analytic functions
S1 : U → L(X1, Y ⊕ F ) and T1 : U → L(Y ⊕G,Z1) such that Im S1(z) ⊃ Ker T (z) ⊃
Im S(z), Im S(z) + G ⊃ Ker T1(z) and dim

(
Im S1(z) + G

)
/ Ker T1(z) < ∞ (z ∈ U),

see Fig. 2. Let k ∈ N. Then the set {z ∈ U : α(z) ≥ k} is analytic in U .

X
S(z)−→Y

T (z)−→Z

Fig. 2
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Proof. Set Y ′ = Y ⊕ F ⊕ G. For z ∈ U define operators S′(z) : X ⊕ G → Y ′,
T ′(z) : Y ′ → Z ⊕ F , S′1(z) : X1 ⊕G→ Y ′ and T ′1(z) : Y ′ → Z1 ⊕ F by

S′(z)(x⊕ g) = S(z)x + g,

T ′(z)(y ⊕ f ⊕ g) = T (z)y + f,

S′1(z)(x1 ⊕ g) = S1(z)x1 + g,

T ′1(z)(y ⊕ f ⊕ g) = T1(z)(y ⊕ g) + f

for all x ∈ X, f ∈ F , g ∈ G and x1 ∈ X1. Thus Im S′(z) = Im S(z) + G, Ker T ′(z) =
Ker T (z) + G, Im S′1(z) = Im S1(z) + G and Ker T ′1(z) = Ker T1(z). We have

Im S′1(z) ⊃ Ker T ′(z) ⊃ Im S′(z) ⊃ Ker T ′1(z)

and
dim Im S′1(z)/ Ker T ′1(z) = dim

(
Im S1(z) + G

)
/ Ker T1(z) <∞.

By Lemma 13, the set
{
z ∈ U : dim Ker T ′(z)/ Im S′(z) ≥ k

}
is analytic in U . This

set, however, is equal to the set {z ∈ U : α(z) ≥ k}.

Lemma 17. Let U be an open subset of Cn, let S : U → L(X, Y ) and T : U → L(Y, Z)
be analytic functions satisfying T (z)S(z) = 0 and α(z) < ∞ (z ∈ U). Let w ∈ U .
Suppose that there are finite dimensional spaces G,H, a neighbourhood U1 of w and
a regular analytic function T1 : U1 → L(Y ⊕ G, Z ⊕ H) such that T1(z)|Y = T (z).
Then there exist a finite dimensional space F , a neighbourhood U2 of w and a regular
analytic function S1 : U2 → L(X⊕F, Y ⊕G) such that S1(z)|X = S(z) and Im S1(z) =
Ker T1(z) ⊃ Ker T (z), see Fig. 3.

X
S(z)−→Y

T (z)−→Z

Fig. 3

Proof. For z ∈ U1 we have

dim Ker T1(z)/ Im S(z) = dim Ker T1(z)/ Ker T (z) + dim Ker T (z)/ Im S(z) <∞.

Let y1, . . . , yr be linearly independent vectors in Ker T1(w) such that

Im S(w) ∨ {y1, . . . , yr} = Ker T1(w).

Since T1 is regular, for i = 1, . . . , r, there exists a (Y ⊕G)-valued analytic function φi

defined in a neighbourhood of w such that T1(z)φ(z) = 0 and φi(w) = yi. Let F be an
r-dimensional space with a basis f1 . . . , fr and define S1(z) : X ⊕ F → Y ⊕G by

S1(z)
(
x⊕

r∑

i=1

βifi

)
= S(z)x +

r∑

i=1

βiφ(z)yi (x ∈ X,βi ∈ C).
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Clearly T1(z)S1(z) = 0 and Im S1(w) = Ker T1(w) so that there is a neighbourhood of
w where Ker T1(z) = Im S1(z), see [14]. Thus S1 is regular in a neighbourhood of w
and satisfies all the required conditions.

Theorem 18. Let X0, X1, . . . , Xn be Banach spaces, U an open subset of Cn. Let

0 −→ X0
δ0(z)−→X1

δ1(z)−→ · · · δn−1(z)−→ Xn −→ 0

be a Fredholm complex analytically dependent on z ∈ U
(
i.e., δj(z)δj−1(z) = 0 and

dim Ker δj(z)/ Im δj−1(z) <∞ for all ∈ U and j = 0, . . . , n
)
.

Let 0 ≤ j ≤ n and k ∈ N. Then the set
{
z ∈ U : dim Ker δj(z)/ Im δj−1(z) ≥ k

}
is analytic in U .

Proof. Let w ∈ U . Using Lemma 17 repeatedly it is easy to see by the downward in-
duction that there are finite dimensional spaces Fj−1, Fj and a regular analytic function
S(z) : Xj−1⊕Fj−1 → Xj ⊕Fj defined in a neighbourhood of w such that S(z)|Xj−1 =
δj−1(z) and Im S(z) ⊃ Ker δj(z). In particular, dim Im S(z)/ Ker δj−1(z) <∞.

Consider the ”adjoint” complex

0←− X∗
0

δ∗0 (z)←−X∗
1

δ∗1 (z)←− · · · δ
∗
n−1(z)←− X∗

n ←− 0

where we write for short δ∗j (z) instead of (δj(z))∗. Since this complex is also Fredholm,
similarly as above there exist finite dimensional spaces Gj and Gj+1 and a regular
analytic function T (z) : X∗

j+1⊕Gj+1 → X∗
j ⊕Gj defined in a neighbourhood of w such

that Im T (z) ⊃ Ker
(
δ∗j−1(z)

)
and dim Im T (z)/ Ker δ∗j−1(z) <∞. Further the operator

S∗(z) : X∗
j ⊕ F ∗ → X∗

j−1 ⊕ F ∗j−1 satisfies

Ker S∗(z) = (Im S(z))⊥ ⊂ (Ker δj(z))⊥ + F ∗j = Im δ∗j (z) + F ∗j .

By Lemma 16, the set
{
z : dim Ker δ∗j−1(z)/ Im δ∗j (z) ≥ k

}
is analytic. Since

dim Ker δ∗j−1(z)/ Im δ∗j (z) = dim Ker δj(z)/ Im δj−1(z),

this finishes the proof.

Let A = (A1, . . . , An) be an n-tuple of commuting operators on a Banach space
X. Denote by σT (A) the Taylor spectrum of A. The essential spectrum σTe(A) of A
is defined as the set of all λ = (λ1, . . . , λn) ∈ Cn such that the Koszul complex of the
n-tuple (A1 − λ1, . . . , An − λn) is not Fredholm.

Corollary 19. ([7], [8]) Let A = (A1, . . . , An) be an n-tuple of commuting operators
on a Banach space X. Then the set σT (A) \ σTe(A) is analytic in Cn \ σTe(A).
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