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Abstract

Let T be a polynomially bounded operator on a Banach space X
whose spectrum contains the unit circle. Then T ∗ has a nontrivial
invariant subspace. In particular, if X is reflexive, then T itself has a
nontrivial invariant subspace. This generalizes the well-known result
of Brown, Chevreau, and Pearcy for Hilbert space contractions.
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1 Introduction

An operator T acting on a complex Banach space X is called polynomially
bounded if there is a constant k such that ‖p(T )‖ ≤ k · ‖p‖ for all polynomi-
als p, where ‖p‖ = sup{|p(z)| : |z| ≤ 1}. The smallest constant k with this
property is called the polynomial bound of T . By the von Neumann inequal-
ity, every Hilbert space contraction is polynomially bounded with constant
k = 1.

An early application of the Scott Brown technique gave the existence of
invariant subspaces for Hilbert space contractions with dominant spectrum
[BCP1]. Further results for Hilbert and Banach space operators were given
in [S], [Pr], [AC]. All these results assumed that there are many points of the
spectrum in the open unit disc.
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Further development culminated by the well-known ”second generation”
result of Brown, Chevreau and Pearcy [BCP2] that each Hilbert space con-
traction with spectrum containing the unit circle has a nontrivial invariant
subspace. This result is much stronger than the corresponding one for oper-
ators with dominant spectrum and the proof is much more complicated since
it is not possible to use directly the information provided by the points of
the spectrum in the unit circle. The proof used essentially the properties of
the Sz.-Nagy Foiaş functional model for Hilbert space contractions, and so
there is no direct way of generalizing it.

The aim of this paper is to give a new approach and to generalize the
Brown, Chevreau, Pearcy result for Banach space operators.

The main result can be formulated as follows:

Theorem A. Let T be a polynomially bounded operator acting on a Banach
space X whose spectrum contains the unit circle. Then T ∗ has a nontrivial
invariant subspace.

In particular, if X is reflexive then T has also a nontrivial invariant sub-
space.

The result is new even for Hilbert space operators. Note that there are
polynomially bounded operators on a Hilbert space that are not similar to a
contraction by [P].

Note also that the situation is not symmetrical for nonreflexive Banach
spaces. If M ⊂ X is a nontrivial subspace invariant with respect to an
operator T ∈ B(X) then M⊥ is a nontrivial invariant subspace of T ∗ ∈
B(X∗).

Conversely, if M ′ ⊂ X∗ is a nontrivial subspace invariant with respect
to T ∗ then ⊥M ′ is an invariant subspace of T but it can be trivial (if M ′ is
w∗-dense).

Since the proof of the main theorem A is rather technical we indicate
briefly the plan of the proof in this section.

Without loss of generality it is possible to assume in Theorem A that T
is of class C0., i.e., ‖T nx‖ → 0 for all x ∈ X. It is sufficient to show the
following Theorem B.

Theorem B. Let T be a polynomially bounded operator whose spectrum
contains the unit circle. Suppose that ‖T nx‖ → 0 for all x ∈ X. Then T has
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a nontrivial invariant subspace.

The reduction of Theorem A to Theorem B is rather standard (at least for
Hilbert space operators). It will be shown in the last section. The greatest
part of the paper will be devoted to the proof of Theorem B.

Note that in B the invariant subspace is constructed for the operator T
(not for T ∗ like in Theorem A). Thus Theorem B is not a consequence of
Theorem A, and so it is rather the second main result of the paper.

The basic idea of the Scott Brown technique is to find vectors x ∈ X and
x∗ ∈ X∗ such that

〈T nx, x∗〉 =
{

0 (n ≥ 1)
1 (n = 0).

(1)

If x and x∗ satisfy (1) then
∨{T nx : n ≥ 1} is a closed subspace invariant

with respect to T which is different from X.
Let P denote the normed space of all complex polynomials with the supre-

mum norm on the unit disc. Consider the dual space P∗ with the usual dual
norm. It is well known that (1) can be reformulated equivalently by

x⊗ x∗ = E0 (2)

where x⊗ x∗ is the functional on P defined by p 7→ 〈p(T )x, x∗〉 and E0 is the
evaluation functional p 7→ p(0) at the origin.

Since T nx → 0 for all x, all the functionals of the form x ⊗ x∗ (and in
fact all functional that will be of our interest) are w∗-continuous, i.e., they
are of the form Mf : p 7→ ∫ 2π

0 f(eit)p(eit)dt for some function f ∈ L1 on the
unit circle. Similarly, all the evaluation functionals Eλ : p 7→ p(λ) for |λ| < 1
are of this form since Eλ = MPλ

where Pλ is the Poisson kernel at λ. In
particular, E0 = M1 where 1 is the constant function on the unit circle.

The standard way of solving (2) is to find first an approximate solution
and then a sequence of better and better solutions; the exact solution of (2)
will be obtained as a limit of these approximate solutions.

The starting point of the proof is the result of Apostol that each polyno-
mially bounded operator whose spectrum contains the unit circle has either
a nontrivial invariant subspace or there is a large set Λ in the open unit disc
consisting of ”almost eigenvalues”. Usually this is formulated that the set
Λ is dominant, i.e., sup{|f(z)| : z ∈ Λ} = ‖f‖ for all f ∈ H∞. We use the
full strength of the Apostol theorem that in fact almost all points of the unit

3



circle are radial limits of points of Λ. Sets with this property will be called
Apostol sets. Clearly each Apostol set is dominant but we do not use this
property; in fact we avoid the use of H∞ functions almost completely and
speak only about polynomials.

It is easy to check that if λ ∈ Λ, x is a corresponding ”almost eigenvector”
and x∗ ∈ X∗ is arbitrary, then

x⊗ x∗ ≈ 〈x, x∗〉 · Eλ

and so x ⊗ x∗ is approximately equal (in the sense of the norm in P∗) to a
scalar multiple of the evaluation functional Eλ.

It is a technical fact that the constant function 1 can be approximated
by a finite linear combination with positive coefficients of Poisson kernels
Pλ with the numbers λ in a given Apostol set Λ. More precisely, there are
elements λi ∈ Λ and positive numbers αi such that

∥∥∥1−∑

i

αiPλi

∥∥∥
1
< c (3)

where c < 1 is a universal constant; here ‖ · ‖1 denotes the usual normalized
L1 norm on the unit circle.

Let xi be the corresponding almost eigenvectors, i.e., ‖xi‖ = 1 and Txi ≈
λixi for all i. An approximate solution of (2) will be found by the Zenger
theorem, see Theorem 3.1. Applying this to the vectors xi and numbers αi

we can find a functional x∗ ∈ X∗ and a linear combination x =
∑

i µixi such
that ‖x∗‖ ≤ 1, ‖x‖ ≤ 1 and 〈µixi, x

∗〉 = αi for all i. Thus

‖x⊗ x∗ − E0‖ = sup
‖p‖=1

|〈p(T )x, x∗〉 − p(0)|

= sup
‖p‖=1

∣∣∣
〈∑

i

µip(T )xi, x
∗〉− p(0)

∣∣∣ ≈ sup
‖p‖=1

∣∣∣
〈∑

i

µip(λi)xi, x
∗〉− p(0)

∣∣∣

= sup
‖p‖=1

∣∣∣
∑

i

αip(λi)− p(0)
∣∣∣ =

∥∥∥
∑

i

αiEλi
− E0

∥∥∥ ≤
∥∥∥
∑

i

αiPλi
− 1

∥∥∥
1
< c.

A technical problem here is that the Zenger theorem gives no estimate on the
coefficients µi. Such an estimate, which is essential in the above calculations,
will be obtained by an application of the classical Carleson interpolation
theorem.

Having an approximate solution of (2), it is now necessary to improve it
by finding perturbations y and y∗ of x and x∗, respectively, such that y ⊗ y∗
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approximates E0 better than x⊗ x∗; moreover, ‖y− x‖ and ‖y∗− x∗‖ should
be small.

This step is much easier if T is of class C00, i.e., if T satisfies both T nx→ 0
and T ∗nx∗ → 0 for all x ∈ X and X∗ ∈ X∗. In this case it is sufficient to
use the classical form of the Zenger theorem 3.1 (and even the Carleson
theorem can be avoided). Since in general we can assume only one of these
conditions, the technical difficulties are solved by an improved form of the
Zenger theorem, see Proposition 3.5, which is of independent interest.

The paper is organized as follows. The following three sections discuss
the theorems of Apostol, Zenger and Carleson, respectively. These sections
are independent of each other.

Section 5 contains the proof of (3). An interested reader can start reading
the paper at this section and return to the previous sections 2–4 only for the
necessary auxiliary statements.

Section 6 contains the estimate on the coefficients mentioned above. The
main theorems A and B are proved in the last section.

The authors would like to thank to M. Englǐs and T. Hänninen for drawing
their attention to the classical results of Carleson.

2 Apostol’s theorem

Denote by D = {z ∈ C : |z| < 1} the open unit disc in the complex plane and
by T = {z ∈ C : |z| = 1} the unit circle.

Definition. A subset Λ ⊂ D is called an Apostol set if

sup{r ∈ [0, 1) : reiθ ∈ Λ} = 1

for all but countably many numbers θ ∈ (−π, π].

Theorem 2.1. (Apostol) [A1] Let T be a polynomially bounded operator
on a Banach space such that σ(T ) ⊃ T and T has no nontrivial invariant
subspace. Let ε > 0 and let n ≥ 1 be an integer. Then the set

Λ := {λ ∈ D : there exists u ∈ X with ‖u‖ = 1 and ‖Tu−λu‖ < ε(1−|λ|)n}

is an Apostol set.
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This theorem was proved in [A1] for n = 1 and T contractive on a Hilbert
space. As it was observed in [B], the same proof also works for general
exponent n. For our purpose it is sufficient to use the Apostol theorem with
n = 2. In fact this exponent was used already in [B].

The idea of the proof is to show that if there exists an uncountable set
S ⊂ T of points that are not radial limits of sequences from Λ, then the
kernel of the operator

1

2πi

∫

γ
(T − λ)−1(λ− λ1)

n(λ− λ2)
ndλ

is a nontrivial invariant subspace, where γ is a well-chosen simple rectifiable
closed path crossing T at λ1 and λ2.

The existing proofs of Theorem 1 [A1], [B], [Be] were formulated for
Hilbert space contractions but the proof remains unchanged also for Banach
space operators. Therefore we omit it.

3 Zenger’s theorem

The Zenger theorem proved to be a useful tool in constructions of invariant
subspaces for operators on Banach spaces. The idea of using the Zenger the-
orem in the Scott Brown technique comes from Eschmeier [E]; some similar
ideas were implicitly present already in the pioneering work of Apostol [A2].

The classical version of the Zenger theorem can be found in [BD], p.
18–20.

Theorem 3.1. (Zenger) Let X be a complex Banach space, let u1, . . . , un ∈
X be linearly independent. Let αj (j = 1, . . . , n) be positive numbers with∑n

j=1 αj = 1. Then there exist complex numbers w1, . . . , wn and ϕ ∈ X∗ such

that
∥∥∥∑n

j=1wjuj

∥∥∥ ≤ 1, ‖ϕ‖ ≤ 1 and ϕ(wjuj) = αj for all j = 1, . . . , n.

As it was mentioned in the Introduction, Theorem 3.1 can be used to show
the existence of nontrivial invariant subspaces for polynomially bounded Ba-
nach space operators of class C00 whose spectrum contains the unit circle.
To get rid of the C00 condition, we need a stronger version of the Zenger the-
orem. Roughly speaking, we need to find the functional ϕ in a ball centered
at some given point, not necessarily at the origin.
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The next result is the real version of the required generalization (formu-
lated dually).

Proposition 3.2. Let ‖ · ‖ be a (real) norm on Rn, let α1, . . . , αn be positive
numbers such that

∑n
j=1 αj = 1, let s = (s1, . . . , sn) ∈ Rn. Then there exist

w = (w1, . . . , wn) ∈ Rn and ψ ∈ (Rn, ‖ · ‖)∗ such that ‖ψ‖ ≤ 1, ‖w − s‖ ≤ 1
and ψ(wjej) = αj (j = 1, . . . , n), where (ej)

n
j=1 is the standard basis in Rn,

ej = (0, . . . , 0︸ ︷︷ ︸
j−1

, 1, 0, . . . , 0).

Proof. Let B =
{
x ∈ Rn : ‖x− s‖ ≤ 1

}
and

B+ =
{
(x1, . . . , xn) ∈ B : xjsj ≥ 0 (j = 1, . . . , n)

}
.

Clearly, B+ is a compact subset of Rn. Let F : Rn → 〈0,∞) be the

function defined by F (x1, . . . , xn) =
n∏

j=1
|xj|αj . Let w = (w1, . . . , wn) ∈ B+

satisfy F (w) = max{F (z) : z ∈ B+} := m. Clearly wj 6= 0 for all j.
Let ψ : Rn → R be the functional defined by

ψ(x1, . . . , xn) =
n∑

j=1

αjxjw
−1
j .

Then ψ(w) = 1. In a neighbourhood of w we have

∂F

∂xj

(x) = αj|xj|αj−1signxj ·
∏

k 6=j

|xk|αk =
αjF (x)

xj

.

In particular,
∂F

∂xj

(w) =
αjF (w)

wj

=
mαj

wj

.

Thus F ′(w) = mψ = F (w)ψ. For x→ w we have

F (x)− F (w) = F ′(w)(x− w) + o(‖x− w‖) = mψ(x− w) + o(‖x− w‖),
and so

F (x) = mψ(x) + o(‖x− w‖).
We prove that ψ(x) ≤ 1 for all x ∈ B. Suppose on the contrary that there is
an x ∈ B with ψ(x) > 1. For t ∈ (0, 1) let yt = (1− t)w+ tx = w+ t(x−w).
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Since B is convex, we have yt ∈ B for all t. Furthermore, yt ∈ B+ for all t
small enough. For t→ 0 we have

F (yt) = mψ(yt) + o(t‖x− w‖) = m(ψ(w) + tψ(x− w)) + o(t)
= m+mtψ(x− w) + o(t).

Since ψ(x− w) > 0, we have F (yt) > m for all t > 0 small enough, which is
a contradiction.

Thus ψ(x) ≤ 1 for all x ∈ B. Note that ψ(s) =
∑n

j=1 αjsjw
−1
j ≥ 0.

Hence ‖ψ‖ = max{ψ(x)− ψ(s) : x ∈ B} ≤ 1.
It is easy to see that ψ(wjej) = αj for all j.

The complex version of Proposition 3.2 is an interesting open problem.
We prove it under an additional assumption that the norm is rather regular.
This weaker version will be sufficient for our main purpose — the construction
of invariant subspaces.

Definition. Let X be a complex Banach space, let u1, . . . , un ∈ X be non-
zero vectors, let L > 0. We say that the vectors u1, . . . , un are L-circled
if ∥∥∥

n∑

j=1

βjuj

∥∥∥ ≤ L ·
∥∥∥

n∑

j=1

γjuj

∥∥∥

whenever βj, γj ∈ C, |βj| ≤ |γj| (j = 1, . . . , n).

It is easy to see that L-circled vectors are linearly independent.

Lemma 3.3. Let L > 0, let ‖ · ‖ be a (complex) norm on Cn such that
the standard basis vectors e1, . . . , en are L-circled. Let α1, . . . , αn be positive
numbers such that

∑n
j=1 αj = 1, let s = (s1, . . . , sn) ∈ Cn. Then there exist

w = (w1, . . . , wn) ∈ Cn and a complex-linear functional ψ ∈ (Cn, ‖ · ‖)∗ such
that ‖ψ‖ ≤ L

√
2, ‖w − s‖ ≤ 1 and ψ(wjej) = αj (j = 1, . . . , n).

Proof. For j = 1, . . . , n write sj = |sj| · νj where νj ∈ C, |νj| = 1 (if sj = 0
then choose any νj ∈ T). Consider the real-linear subspace X of Cn generated
by the vectors νjej (j = 1, . . . , n). Clearly s ∈ X and Cn = X + iX.

By Proposition 3.2, there exist real numbers tj (j = 1, . . . , n) and a
real-linear functional ψ0 : X → R such that ψ0(tjνjej) = αj (j = 1, . . . , n),∥∥∥∑n

j=1 tjνjej − s
∥∥∥ ≤ 1 and ‖ψ0‖ ≤ 1.
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Set wj = tjνj. Extend ψ0 to Cn by ψ(x + iy) = ψ0(x) + iψ0(y) for all
x, y ∈ X. It is easy to verify that ψ is a complex-linear functional and
ψ(wjej) = αj (j = 1, . . . , n).

Let bj, cj ∈ R. If
∥∥∥∑n

j=1(bj + icj)νjej

∥∥∥ ≤ 1, then
∥∥∥∑n

j=1 bjνjej

∥∥∥ ≤ L and∥∥∥∑n
j=1 cjνjej

∥∥∥ ≤ L. So

∣∣∣ψ
( n∑

j=1

(bj + icj)νjej

)∣∣∣
2

=
∣∣∣ψ0

( n∑

j=1

bjνjej

)∣∣∣
2
+

∣∣∣ψ0

( n∑

j=1

cjνjej

)∣∣∣
2 ≤ 2L2,

and so ‖ψ‖ ≤ L
√

2.

The next result is a dual version of Lemma 3.3.

Lemma 3.4. Let ‖ · ‖ be a norm on Cn such that the standard basis vec-
tors e1, . . . , en are L-circled. Let α1, . . . , αn be positive numbers such that∑n

j=1 αj = 1, let ϕ ∈ (Cn, ‖ · ‖)∗. Then there exist w = (wj, . . . , wn) ∈ Cn

and a complex-linear functional ψ ∈ (Cn, ‖ · ‖)∗ such that ‖ψ − ϕ‖ ≤ 1,
‖w‖ ≤ L

√
2 and ψ(wjej) = αj (j = 1, . . . , n).

Proof. Let f1, . . . , fn ∈ (Cn, ‖ · ‖)∗ be defined by 〈ej, fk〉 = δj,k (the Kro-
necker symbol). We prove first that f1, . . . , fn are L-circled in (Cn, ‖ · ‖)∗.

Let βj, γj ∈ C, |βj| ≤ |γj| (j = 1, . . . , n). Let F = {j ∈ {1, . . . , n} :
βj 6= 0}. Then

∥∥∥
n∑

j=1

βjfj

∥∥∥ = sup
{∣∣∣

〈∑

j∈F

βjfj,
n∑

j=1

ωjej

〉∣∣∣ :
∥∥∥

n∑

j=1

ωjej

∥∥∥ ≤ 1
}

= sup
{∣∣∣

∑

j∈F

βjωj

∣∣∣ :
∥∥∥

n∑

j=1

ωjej

∥∥∥ ≤ 1
}

= sup
{∣∣∣

〈 n∑

j=1

γjfj,
∑

j∈F

ωjβjγ
−1
j ej

〉∣∣∣ :
∥∥∥

n∑

j=1

ωjej

∥∥∥ ≤ 1
}

≤ sup
{∣∣∣

〈 n∑

j=1

γjfj,
n∑

j=1

µjej

〉∣∣∣ :
∥∥∥

n∑

j=1

µjej

∥∥∥ ≤ L
}

= L ·
∥∥∥

n∑

j=1

γjfj

∥∥∥.

By Lemma 3.3, there is a ψ ∈ (Cn, ‖ · ‖)∗, ψ =
∑n

j=1 ψjfj such that ‖ψ −
ϕ‖ ≤ 1 and w = (w1, . . . , wn) ∈ Cn such that ‖w‖ ≤ L

√
2 and αl =

〈∑n
j=1wjej, ψlfl〉 = wlψl = 〈wlel, ψ〉 for all l = 1, . . . , n.

Proposition 3.5. Let u1, . . . , un be L-circled vectors in a complex Banach
space X. Let α1, . . . , αn be positive numbers such that

∑n
j=1 αj = 1, let
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ϕ ∈ X∗. Then there exist complex numbers wj ∈ C (j = 1, . . . , n) and a
complex-linear functional ψ ∈ X∗ such that ‖ψ − ϕ‖ ≤ 1, ‖∑n

j=1wjuj‖ ≤
L
√

2 and ψ(wjuj) = αj (j = 1, . . . , n).

Proof. Let X0 be the subspace of X generated by the vectors u1, . . . , un.
We can identify X0 with Cn with the norm ‖(w1, . . . , wn)‖ = ‖∑n

j=1wjuj‖X .

By Lemma 3.4, there are wj ∈ C and ψ ∈ X∗
0 such that ‖∑n

j=1wjuj‖ ≤ L
√

2,
〈wjuj, ψ〉 = αj and ‖ψ − ϕ|X0‖X∗

0
≤ 1. By the Hahn-Banach theorem, we

can extend ψ to X such that ‖ψ − ϕ‖X∗ ≤ 1.

4 Carleson’s interpolation theorem

For λ = reiθ ∈ D, set Iλ = {eit : |t − θ| < 2(1− r)}. These sets will play an
important role in the proof.

Lemma 4.1. There is a constant a > 0 with the following property: if
z, λ ∈ D satisfy Iz ∩ Iλ = ∅ and |λ|, |z| ≥ 3/4, then | z−λ

1−λz
| ≥ a.

Proof. We can assume that λ = r > 0. Write z = seiθ with s ≥ 3/4 and
−π < θ ≤ π.

Since s, r ≥ 3/4 and |sin θ
2
| ≥ |θ|

2
· 2

π
, we have

|r − seiθ|2 = (r − s cos θ)2 + s2 sin2 θ = (r − s)2 + 2rs(1− cos θ)

≥ 4rs sin2 θ

2
≥ 9

4

( |θ|
π

)2

=
(

3|θ|
2π

)2

.

Since eiθ 6∈ Ir, we have |θ| ≥ 2(1− r). Thus |z − r| ≥ 3|θ|
2π
≥ 3(1−r)

π
.

Furthermore,

|1− rz| ≤ (1− r2) + |r2 − rz| ≤ 2(1− r) + r|r − z|.
Hence

|z − r|
|1− rz| ≥

|z − r|
2(1− r) + r|z − r| =

1
2(1−r)
|r−z| + r

≥ 1
2π
3

+ 1
≥ 3

2π + 3
.

The last constant is independent of the choice of λ and z.

We remind that a positive measure µ on D is called Carleson if there is a
constant cµ such that

µ(Sθ,h) ≤ cµ h

10



for every sector Sθ,h of the form

Sθ,h = {reit : 1− h ≤ r < 1, |t− θ| ≤ h}. (4)

Lemma 4.2. Let F ⊂ D be a finite set such that the sets Iλ (λ ∈ F ) are
pairwise disjoint. Then the measure µ =

∑
λ∈F (1 − |λ|)δλ is Carleson with

the constant ≤ 1, where δλ denotes the Dirac measure at λ.

Proof. Let Sθ,h be a sector of the form (4). Let Γ = {eit : |t− θ| ≤ h}. Let
λ = reis ∈ F ∩ Sθ,h. Then there are three possible cases: ei(s+2(1−r)) ∈ Γ,
ei(s−2(1−r)) ∈ Γ, or Iλ ⊂ Γ. In all three cases we have

m(Iλ ∩ Γ) ≥ 2(1− |λ|),
where m denotes the Lebesgue measure on T. Thus

µ(Sθ,h) =
∑

λ∈Sθ,h∩F

(1− |λ|) ≤ 1

2
m

(
Γ ∩ ⋃

λ∈F∩Sθ,h

Iλ
)
≤ 1

2
m(Γ) = h.

As usually, denote by H∞ the algebra of all bounded analytic functions
on D with the norm ‖f‖ = sup{|f(z)| : z ∈ D}.

It follows from the Carleson interpolation theory, see [G], Section VII.1,
that, given a finite set F ⊂ D such that Iλ (λ ∈ F ) are pairwise disjoint
and |λ| ≥ 3/4 (λ ∈ F ), and numbers cλ ∈ C, then there exists f ∈ H∞ such
that f(λ) = cλ (λ ∈ F ) and ‖f‖ ≤ b · supλ∈F |cλ|, where b is an absolute
constant, independent of F and cλ. Since the results in [G] are formulated
for the upper half-plane, we indicate briefly the argument in the disc case,
following the comments preceding Theorem VII.1.1.

Lemma 4.3. There is a constant δ > 0 with the following property: if
F ⊂ D is a finite set such that the sets Iλ (λ ∈ F ) are pairwise disjoint and
|λ| ≥ 3/4 (λ ∈ F ), then

∏

λ∈F\{λ0}

∣∣∣ λ0 − λ

1− λλ0

∣∣∣ ≥ δ

for each λ0 ∈ F .
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Proof. Let µ =
∑

λ∈F (1 − |λ|)δλ. Since µ is a Carleson measure with the
constant ≤ 1, by [G], lemma VI.3.3 we have

sup
w∈D

∫ 1− |w|2
|1− wz|2dµ(z) = sup

w∈D

∑

λ∈F

(1− |λ|)(1− |w|2)
|1− wλ|2 ≤ σ <∞,

where σ is a universal constant independent of F . In particular,

∑

λ∈F

(1− |λ|)(1− |λ0|2)
|1− λ0λ|2

≤ σ

for each λ0 ∈ F .
Let a be the constant from Lemma 4.1. Note that a < 1, and so ln a < 0.

Since ln t is a concave function, for any t ∈ (a2, 1) we have

ln t ≥ 2 ln a

1− a2
(1− t).

Let λ ∈ F \{λ0}. Using the identity |1−λλ0|2−|λ0−λ|2 = (1−|λ|2)(1−|λ0|2)
we have

ln
∣∣∣ λ0 − λ

1− λλ0

∣∣∣
2 ≥ 2 ln a

1− a2

(
1−

∣∣∣ λ0 − λ

1− λλ0

∣∣∣
2
)

=
2 ln a

1− a2
· (1− |λ|2)(1− |λ0|2)

|1− λλ0|2
≥ 4 ln a

1− a2
· (1− |λ|)(1− |λ0|2)

|1− λλ0|2
.

Set B(z) =
∏

λ∈F\{λ0}
z−λ
1−λz

. Then

ln |B(λ0) |2 ≥ 4 ln a

1− a2

∑

λ∈F\{λ0}

1− |λ0|2
|1− λ0λ|2

(1− |λ|) ≥ 4 ln a

1− a2
σ.

Thus |B(λ0)| ≥ δ for some constant δ independent of F .

Proposition 4.4. There is a constant b with the following property: if
F ⊂ D is a finite set such that the sets Iλ are pairwise disjoint and |λ| ≥
3/4 (λ ∈ F ), and cλ ∈ C (λ ∈ F ) are given, then there exists f ∈ H∞

such that f(λ) = cλ (λ ∈ F ) and ‖f‖ ≤ b · supλ∈F |cλ|.
Proof. The proof follows from [SS], Theorem 1. More precisely, it is possible
to take b = 2

δ5 (1− 2 ln δ), where δ is the constant from Lemma 4.3.
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5 Preliminary steps

For every λ ∈ D, let Pλ(t) = 1−|λ|2
|λ−eit|2 (t ∈ R) denote the Poisson kernel. It is

well known that
∫ π
−π Pλdt = 2π and maxt Pλ(t) = 1+|λ|

1−|λ| .

Recall that for λ = reiθ ∈ D we write Iλ = {eit : |t− θ| < 2(1− r)}.
Notation. For λ ∈ D define the 2π–periodic function Qλ on R by: Qλ(t) =
Pλ(t) if eit ∈ Iλ, and Qλ(t) = 0 otherwise. Denote by m the Lebesgue
measure both on the real line R and on the unit circle T.

Lemma 5.1. For any λ ∈ D with |λ| ≥ 3/4 we have
∫ π
−π Qλ(t)dt ≥ 7π

6
.

Proof. Without loss of generality we can suppose that λ = r ≥ 3/4. We
have sin2(1− r) ≤ sin(1− r) ≤ 1− r. If eit ∈ Iλ then

cos t ≥ cos 2(1− r) = 1− 2 sin2(1− r) ≥ 2r − 1,

and so 1− r ≥ cos t− r ≥ r − 1. Thus

|r − eit|2 = (r − cos t)2 + sin2 t ≤ (1− r)2 + t2.

Hence
∫ π

−π
Qλ(t)dt =

∫ 2(1−r)

−2(1−r)

1− r2

|r − eit|2dt = 2(1− r2)
∫ 2(1−r)

0

dt

|r − eit|2

≥ 2(1− r2)
∫ 2(1−r)

0

dt

(1− r)2 + t2
= 2(1− r2)

[
1

1− r
tan−1 t

1− r

]2(1−r)

0

= 2(1 + r)tan−1 2 ≥ 7

2
· tan−1

√
3 =

7π

6
.

Corollary 5.2. For each λ ∈ D with |λ| ≥ 3/4 we have
∫ π

−π
(Pλ(t)−Qλ(t))dt ≤ 5

7

∫ π

−π
Qλ(t)dt.

Proof. By Lemma 5.1, we have the estimates
∫ π
−π(Pλ(t)−Qλ(t))dt∫ π

−π Qλ(t)dt
=

∫ π
−π Pλ(t)dt∫ π
−π Qλ(t)dt

− 1 ≤ 2π ·
(

7π

6

)−1

− 1 =
5

7
.

13



Theorem 5.3. Let Λ ⊂ D be an Apostol set. Let t1, t2 ∈ R satisfy −π ≤
t1 < t2 ≤ π. Let f(t) := 1 if t1 ≤ t ≤ t2, and f(t) := 0 otherwise. Then
there is an n0 ≥ 1 such that for every n ≥ n0 there exist a finite set F ⊂ Λ
and positive real numbers αλ (λ ∈ F ) with the following properties:

(i) Iλ ⊂ {eit : t1 < t < t2} for all λ ∈ F ;

(ii) the sets Iλ (λ ∈ F ) are pairwise disjoint;

(iii) m(∪λ∈F Iλ) ≥ 1
40π

(t2 − t1);

(iv) |λ| ≥ 3/4 and |λn − 1| < 1
9

for all λ ∈ F ;

(v)
∑

λ∈F αλ ≤ t2−t1
7

;

(vi)
∫ π
−π |

∑
λ∈F αλλ

nPλ(t)− f(t)|dt ≤ c1 (t2 − t1), where c1 = 1− 1
1920

.

Proof. For every n ≥ 1, set Mn = {t ∈ (t1, t2) : |ei nt − 1| ≤ 1/10}. Clearly
for all n sufficiently large we have

m(Mn) >
t2 − t1
10 · 2π . (5)

Fix n satisfying (5). Let ε > 0 satisfy m(Mn) − ε > (t2 − t1)/ 20π. Let
S ⊂ (t1, t2) be the exceptional set of the Apostol set Λ, i.e., sup{0 ≤ r < 1 :
reiθ ∈ Λ} = 1 for all θ ∈ (t1, t2) \ S. Since S is at most countable, it can be
covered by a countable union U of open intervals with m(U) < ε/2. Then
the set M ′ defined by

M ′ =
(
Mn ∩ [t1 + ε/4, t2 − ε/4]

)
\ U

is compact with m(M ′) > (t2−t1)/ 20π. For each t ∈M ′ we can find rt ≥ 3/4
such that λt := rte

it ∈ Λ, |λn
t − 1| < 1/9 and Iλt ⊂ {eis : t1 < s < t2}. Then

{eis : s ∈ M ′} ⊂ ∪t∈M ′Iλt . Since {eis : s ∈ M ′} is a compact subset of
the 1–dimensional set T, there exists a finite subcover of (Iλt)t∈M ′ such that
any three of these subsets have empty intersection. Considering a cover of
the minimal cardinality with this property it is easy to see that there are
numbers λ1, . . . , λk ∈ Λ with λj = |λj|eisj such that t1 < s1 < · · · < sk < t2,⋃k

j=1 Iλj
⊃ {eis : s ∈ M ′} and Iλj

∩ Iλj′ = ∅ if |j′ − j| ≥ 2. Let F1 =
{λ1, λ3, . . .} and F2 = {λ2, λ4, . . .}. Let F be one of the sets F1, F2 such that

m
( ⋃

λ∈F

Iλ
)

= max
{
m

( ⋃

λ∈F1

Iλ
)
, m

( ⋃

λ∈F2

Iλ
)}
.
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Then Iλ ∩ Iλ′ = ∅ for all distinct λ, λ′ in F , and m
(⋃

λ∈F Iλ
)
≥ m(M ′)/2 >

(t2 − t1)/ 40π. For any λ ∈ F , set αλ = (1 − |λ|)(1 + |λ|)−1. Then αλ > 0
and ∑

λ∈F

αλ ≤ 4

7

∑

λ∈F

(1− |λ|) =
1

7

∑

λ∈F

m(Iλ) ≤ t2 − t1
7

.

Finally,

∫ π

−π

∣∣∣
∑

λ∈F

αλλ
nPλ(t)− f(t)

∣∣∣dt

≤
∫ π

−π

∣∣∣
∑

λ∈F

αλλ
n(Pλ(t)−Qλ(t))

∣∣∣dt+
∫ π

−π

∑

λ∈F

αλ|λn − 1|Qλ(t)dt

+
∫ t2

t1

(
1− ∑

λ∈F

αλQλ(t)
)
dt ≤ ∑

λ∈F

αλ

∫ π

−π
(Pλ(t)−Qλ(t))dt

+
1

9

∫ t2

t1

∑

λ∈F

αλQλ(t)dt+ (t2 − t1)−
∫ t2

t1

∑

λ∈F

αλQλ(t)dt

≤ t2 − t1 +
(5

7
+

1

9
− 1

) ∫ t2

t1

∑

λ∈F

αλQλ(t)dt ≤ t2 − t1 − 1

7

∫ t2

t1

∑

λ∈F

αλQλ(t)dt

≤ t2 − t1 − 1

7

∑

λ∈F

1− |λ|
1 + |λ| ·

7π

6
≤ t2 − t1 − π

12

∑

λ∈F

(1− |λ|)

= t2 − t1 − π

48
·m

( ⋃

λ∈F

Iλ
)
≤ c1(t2 − t1),

where c1 = 1− 1
1920

.

Corollary 5.4. Let c1 be the constant from the previous lemma and let
c2 ∈ (c1, 1). Let f : (−π, π] → [0,∞) be an integrable function and let Λ be
an Apostol set. Then for any n sufficiently large there are a finite set F ⊂ Λ
and positive numbers αλ (λ ∈ F ) such that:

(i) the sets (Iλ)λ∈F are pairwise disjoint;

(ii) |λ| ≥ 3/4 and |λn − 1| ≤ 1
9

for all λ ∈ F ;

(iii)
∑

λ∈F αλ ≤ 1
2π

∫ π
−π f(t)dt;

(iv)
∫ π
−π

∣∣∣∑λ∈F αλλ
nPλ(t)− f(t)

∣∣∣dt ≤ c2
∫ π
−π f(t)dt.

Proof. Let ε > 0 be sufficiently small (ε < min{ c2−c1
2
, 7

2π
− 1}). Let g be

a step function g : (−π, π] → [0,∞) such that
∫ π
−π |f − g|dt ≤ ε

∫ π
−π f(t)dt.
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By Theorem 5.3 applied to each interval where g is constant, we can find a
finite set F ⊂ Λ and positive numbers αλ (λ ∈ F ) satisfying (i), (ii) and

∑

λ∈F

αλ ≤ 1

7

∫ π

−π
g(t)dt ≤ 1

7

(∫ π

−π
f(t)dt+

∫ π

−π
|f − g|dt

)

≤ 1

7
(1 + ε)

∫
f(t)dt ≤ 1

2π

∫ π

−π
f(t)dt.

Further, ∫ π

−π

∣∣∣
∑

λ∈F

αλλ
nPλ(t)− g(t)

∣∣∣dt ≤ c1

∫ π

−π
g(t)dt.

Then we have
∫ π

−π

∣∣∣
∑

λ∈F

αλλ
nPλ(t)− f(t)

∣∣∣dt

≤
∫ π

−π

∣∣∣
∑

λ∈F

αλλ
nPλ(t)− g(t)

∣∣∣dt+
∫ π

−π
|f(t)− g(t)|dt

≤ c1

∫ π

−π
g(t)dt+ ε

∫ π

−π
f(t)dt ≤ (c1 + 2ε)

∫ π

−π
f(t)dt ≤ c2

∫ π

−π
f(t)dt.

6 Polynomially bounded operators

Let T ∈ B(X) be a polynomially bounded operator with polynomial bound
k.

Denote by A(D) the disc algebra consisting of all functions continuous on
D and analytic on D, with the norm ‖f‖ = sup{|f(z)| : z ∈ D}. It is well
known that functions from A(D) are uniform limits of polynomials. Therefore
we can extend the polynomial calculus for T to functions from A(D) with the
same constant k, i.e.,

‖f(T )‖ ≤ k · ‖f‖ (f ∈ A(D)).

Lemma 6.1. Let T ∈ B(X) be a polynomially bounded operator with
polynomial bound k. Let b be the constant from Proposition 4.4. Let F ⊂
D be a finite set with (Iλ)λ∈F pairwise disjoint and |λ| ≥ 3/4 (λ ∈ F ).
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Suppose that there are vectors uλ ∈ X and complex numbers µλ (λ ∈ F )
such that ‖uλ‖ = 1, ‖(T − λ)uλ‖ < 1

2kbπ
(1 − |λ|)2 and ‖∑

λ∈F µλuλ‖ = 1.
Then |µλ| ≤ 2kb for all λ ∈ F .

Proof. Let λ0 ∈ F satisfy |µλ0| = maxλ∈F |µλ|. By Proposition 4.4, there
is a function f ∈ H∞ such that ‖f‖ ≤ b, f(λ0) = 1 and f(λ) = 0 for
λ ∈ F \ {λ0}.

For r ∈ (0, 1) and z ∈ D define fr(z) = f(rz). Clearly ‖fr‖ ≤ ‖f‖ ≤ b
and fr is a function analytic on a neighbourhood of D, and so fr ∈ A(D).
Thus we can define fr(T ) and ‖fr(T )‖ ≤ kb for all r.

Let u =
∑

λ∈F µλuλ. Then ‖fr(T )u‖ ≤ kb‖u‖ = kb for all r.

For λ ∈ F define gr,λ(z) = fr(z)−fr(λ)
z−λ

. Clearly gr,λ is analytic on a neigh-
bourhood of D and ‖gr,λ‖ ≤ 2‖fr‖(1− |λ|)−1 ≤ 2b(1− |λ|)−1. Hence

kb ≥ lim sup
r→1−

‖fr(T )u‖

≥ lim sup
r→1−

(∥∥∥
∑

λ∈F

fr(λ)µλuλ

∥∥∥−
∥∥∥

∑

λ∈F

µλ

(
fr(λ)− fr(T )

)
uλ

∥∥∥
)

≥ ‖µλ0uλ0‖ − lim inf
r→1−

∑

λ∈F

|µλ| · ‖gr,λ(T )(T − λ)uλ‖

≥ |µλ0| − |µλ0|
∑

λ∈F

2kb(1− |λ|)−1 1

2kbπ
(1− |λ|)2

≥ |µλ0|
(
1− ∑

λ∈F

π−1(1− |λ|)
)
≥ |µλ0|

2
,

since
∑

λ∈F (1− |λ|) ≤ 1
4
m

(⋃
λ∈F Iλ

)
≤ π

2
. Hence |µλ| ≤ |µλ0| ≤ 2kb for each

λ ∈ F .

Proposition 6.2. Let T ∈ B(X) be a polynomially bounded operator with
polynomial bound k. Suppose that σ(T ) ⊃ T and that T has no nontrivial
invariant subspace. Let b be the constant constructed in Proposition 4.4.
Then there is a positive constant c2, c2 < 1 with the following property: if
f : (−π, π] → [0,∞) is an integrable function and 0 < ε < 1

2kbπ
, then for any

n sufficiently large there are a finite set F ⊂ D, vectors uλ ∈ X and positive
numbers αλ (λ ∈ F ) such that

(i) the sets (Iλ)λ∈F are pairwise disjoint;

(ii) |λ| ≥ 3/4 and |λn − 1| ≤ 1
9

for all λ ∈ F ;

(iii)
∑

λ∈F αλ ≤ 1
2π

∫ π
−π f(t)dt;
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(iv)
∫ π
−π

∣∣∣∑λ∈F αλλ
nPλ(t)− f(t)

∣∣∣dt ≤ c2
∫ π
−π f(t)dt;

(v) ‖uλ‖ = 1 and ‖(T − λ)uλ‖ < ε(1− |λ|)2 for all λ ∈ F ;
(vi) the vectors uλ (λ ∈ F ) are 2kb-circled.

Proof. Properties (i) – (iv) were proved in Corollary 5.4. Property (v)
follows from the Apostol theorem, see Theorem 2.1.

To show property (vi), let βλ, γλ ∈ C, |βλ| ≤ |γλ| (λ ∈ F ). Suppose that
‖∑

λ∈F γλuλ‖ ≤ 1. By Proposition 4.4, there is a function q ∈ H∞ such that
‖q‖ ≤ b, q(λ) = βλγ

−1
λ for all λ ∈ F with γλ 6= 0, and q(λ) = 0 if γλ = 0.

For r ∈ (0, 1) and z ∈ D define qr by qr(z) = q(rz). Then qr ∈ A(D),
‖qr‖ ≤ ‖q‖ ≤ b for all r and limr→1− qr(λ) = q(λ) (λ ∈ F ). Write gr,λ(z) =
qr(z)−qr(λ)

z−λ
. Then ‖gr,λ‖ ≤ 2‖qr‖(1− |λ|)−1 ≤ 2b(1− |λ|)−1.

Using Lemma 6.1, we have

∥∥∥
∑

λ∈F

βλuλ

∥∥∥ =
∥∥∥

∑

λ∈F

q(λ)γλuλ

∥∥∥ = lim
r→1−

∥∥∥
∑

λ∈F

qr(λ)γλuλ

∥∥∥

≤ lim sup
r→1−

(∥∥∥
∑

λ∈F

qr(T )γλuλ

∥∥∥ +
∥∥∥

∑

λ∈F

(qr(T )− qr(λ))γλuλ

∥∥∥
)

≤ kb
∥∥∥

∑

λ∈F

γλuλ

∥∥∥ + lim sup
r→1−

∑

λ∈F

‖gr,λ(T )‖ · ‖(T − λ)uλ‖ · |γλ|

≤ kb+
∑

λ∈F

2kb(1− |λ|)−1ε(1− |λ|)2|γλ|

≤ kb+
(2kb)2

2kbπ

∑

λ∈F

(1− |λ|) ≤ kb+
2kb

π
· π
2

= 2kb.

Hence the vectors uλ (λ ∈ F ) are 2kb-circled.

7 Invariant subspaces

Denote by P the normed space of all polynomials with the norm ‖p‖ =
sup{|p(z)| : z ∈ D}. Let P∗ be its dual with the usual dual norm.

Let ϕ ∈ P∗. By the Hahn-Banach theorem, ϕ can be extended without
changing the norm to a functional on the space of all continuous function on
T with the sup-norm. By the Riesz theorem, there exists a Borel measure µ
on T such that ‖µ‖ = ‖ϕ‖ and ϕ(p) =

∫
p dµ for all polynomials p.

Let L1 be the Banach space of all complex integrable functions on T with
the norm ‖f‖1 = (2π)−1

∫ π
−π |f(eit)|dt.
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Of particular interest are the following functionals on P :

(i) Let λ ∈ D. Denote by Eλ the evaluation functional defined by Eλ(p) =
p(λ) (p ∈ P). Clearly ‖Eλ‖ = 1.

(ii) Let f ∈ L1. Denote by Mf ∈ P∗ the functional defined by

Mf (p) = (2π)−1
∫ π

−π
p(eit)f(eit)dt (p ∈ P).

Then ‖Mf‖ ≤ ‖f‖1.
In particular, if g = 1 then Mg(p) = p(0) for all p and Mg is the evaluation

at the origin. More generally, if λ ∈ D and g(eit) = Pλ(t) then Mg is the
evaluation at the point λ.

(iii) Let T : X → X be a polynomially bounded operator with polynomial
bound k, let x ∈ X and x∗ ∈ X∗. Let x⊗ x∗ ∈ P∗ be the functional defined
by

(x⊗ x∗)(p) = 〈p(T )x, x∗〉 (p ∈ P).

Since T is polynomially bounded, x⊗x∗ is a bounded functional and we have
‖x⊗ x∗‖ ≤ k‖x‖ · ‖x∗‖.

Of course the definition of x⊗x∗ depends on the operator T but since we
are going to consider only one operator T , this cannot lead to a confusion.

Suppose that T also satisfies the condition that ‖T nu‖ → 0 for all u ∈ X.
It is a folklore result that then all the functionals x ⊗ x∗ where x ∈ X and
x∗ ∈ X∗ can be represented by absolutely continuous measures, and so these
functionals are of the form (ii). Various versions of this result can be found
in [Sz], [KO], [A2], [E]. Usually such results are proved by defining the H∞

calculus for T (by means of radial limits) and by showing that this functional
calculus is (w∗, SOT ) continuous. Since we have not found the precise form
of the necessary statement, we include the proof below; we present a more
direct argument using some classical results from measure theory.

Lemma 7.1. Let T be a polynomially bounded operator on a Banach space
X. Suppose that ‖T nu‖ → 0 for all u ∈ X. Let x ∈ X, x∗ ∈ X∗. Then there
exists f ∈ L1 such that 〈p(T )x, x∗〉 =

∫ π
−π p(e

it)f(eit)dt for all polynomials p.
Moreover, it is possible to choose f ∈ L1 such that ‖f‖1 = ‖x⊗ x∗‖.
Proof. Recall that a sequence (fn)n ⊂ A(D) is called Montel if sup ‖fn‖ <∞
and lim

n→∞ fn(z) = 0 for all z ∈ D.
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We show that 〈fn(T )x, x∗〉 → 0 for any Montel sequence (fn).
Without loss of generality we can assume that sup ‖fn‖ ≤ 1, ‖x‖ ≤ 1

and ‖x∗‖ ≤ 1. Let fn(z) =
∑∞

j=0 cn,jz
j be the Taylor expansion of fn.

By the Cauchy formula and the Lebesgue domination theorem, we have
limn→∞ cn,j = 0 for each j ≥ 0.

Let ε be a positive number such that ε < 2k, where k is the polynomial
bound of T . Choose l such that ‖T lx‖ ≤ ε/ 4k. There exists n0 sufficiently
large such that for every n ≥ n0 we have |cn,j| < ε/ 2lk (j = 0, . . . , l). Fix
such an n and write g(z) =

∑l−1
j=0 cn,jz

j. Then fn(z) = g(z)+ zlh(z) for some

function h ∈ A(D). Clearly ‖g‖ ≤ ∑l−1
j=0 |cn,j| ≤ ε/ 2k and ‖h‖ = ‖fn − g‖.

Thus

|〈fn(T )x, x∗〉| ≤ ‖fn(T )x‖ ≤ ‖g(T )x‖+ ‖(fn − g)(T )x‖
≤ k‖g‖+ ‖h(T )‖ · ‖T lx‖ ≤ ε

2
+ k‖fn − g‖ · ε

4k
≤ ε

2
+
ε

4
· (‖fn‖+ ‖g‖) < ε.

Thus 〈fn(T )x, x∗〉 → 0.
Now let µ be a measure representing the functional x ⊗ x∗ such that

‖µ‖ = ‖x ⊗ x∗‖. Since we have (x ⊗ x∗)(fn) → 0 for each Montel sequence
(fn), µ is a Henkin measure. By the Val’skii theorem and the M. and F. Riesz
theorem, µ is absolutely continuous with respect to the Lebesgue measure.
For details we refer to [R], Theorem 9.2.1 and Remark 9.2.2 (c).

The Radon-Nikodym theorem now implies the statement of the Lemma.

Let c3 be a constant satisfying c2 < c3 < 1, where c2 is the constant from
Proposition 6.2. Let b be the universal constant form Proposition 4.4.

Theorem 7.2. Let T : X → X be a polynomially bounded operator with
constant k, such that σ(T ) ⊃ T and T has no nontrivial invariant subspace.
Let f ∈ L1 be non–negative with ‖f‖1 = 1, and let y∗ ∈ X∗ be arbitrary.
Then for every positive integer n sufficiently large there exist x ∈ X and
x∗ ∈ X∗ such that ‖x‖ ≤ 2kb

√
2, ‖x∗‖ ≤ 1 and ‖x⊗(T ∗nx∗+y∗)−Mf‖ < c3.

Proof. Let ε be a positive number satisfying ε < 1
2kbπ

, ε‖y∗‖2 < 1 and
12k3b2π

√
ε < c3 − c2.
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For any n sufficiently large there exist, by Proposition 6.2, a finite set
F ⊂ D and positive numbers αλ (λ ∈ F ) such that the intervals (Iλ)λ∈F are
pairwise disjoint and

1

2π

∫ π

−π

∣∣∣
∑

λ∈F

αλλ
nPλ(t)− f(t)

∣∣∣ dt ≤ c2.

Also, there exist 2kb-circled vectors uλ ∈ X (λ ∈ F ) such that ‖uλ‖ = 1
and ‖(T − λ)uλ‖ < ε(1− |λ|)2 for all λ ∈ F .

We define, on the linear span of (uλ)λ, the linear functional ϕ by ϕ(uλ) =
λ−ny∗(uλ) (λ ∈ F ). By the Hahn-Banach theorem, we can extend it to a
bounded functional on X denoted by the same symbol ϕ. By Proposition
3.5, there exist complex numbers µλ and a functional ψ ∈ X∗ such that
‖∑

λ∈F µλuλ‖ ≤ 2kb
√

2, ‖ψ − ϕ‖ ≤ 1 and ψ(µλuλ) = αλ for every λ ∈ F .
Note that we have the estimates |µλ| ≤ 4k2b2

√
2 < 6k2b2 by Lemma 6.1. We

take x =
∑

λ∈F µλuλ and x∗ = ψ − ϕ.
Let g ∈ L1 be defined by g(eit) =

∑
λ∈F αλλ

nPλ(t). Thus

‖Mg −Mf‖ ≤ ‖g − f‖1 ≤ c2

and for any polynomial p ∈ P we have

Mgp =
1

2π

∫ π

−π
g(eit)p(eit) dt =

1

2π

∑

λ∈F

αλλ
n

∫ π

−π
Pλ(t)p(e

it) dt =
∑

λ∈F

αλλ
np(λ).

Therefore

‖x⊗ (T ∗nx∗ + y∗)−Mf‖ ≤ ‖T nx ⊗ x∗ + x⊗ y∗ −Mg‖+ ‖Mg −Mf‖
≤ sup

‖p‖≤1

∣∣∣ 〈p(T )T nx, x∗〉+ 〈p(T )x, y∗〉 −Mgp
∣∣∣ + c2.

Now

〈p(T )T nx, x∗〉 =
∑

λ∈F

µλ〈T np(T )uλ, x
∗〉

=
∑

λ∈F

µλ

〈
(T np(T )− λnp(λ))uλ, x

∗〉 +
∑

λ∈F

µλ

〈
λnp(λ)uλ, x

∗〉

and

〈p(T )x, y∗〉 =
∑

λ∈F

µλ〈p(T )uλ, y
∗〉
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=
∑

λ∈F

µλ

〈
(p(T )− p(λ))uλ, y

∗〉 +
∑

λ∈F

µλ〈p(λ)uλ, y
∗〉.

Using the equalities 〈uλ, y
∗〉 = λn〈uλ, ϕ〉, x∗+ϕ = ψ and 〈µλuλ, ψ〉 = αλ, we

obtain that
∑

λ∈F

µλ〈λnp(λ)uλ, x
∗〉+

∑

λ∈F

µλ〈p(λ)uλ, y
∗〉 =

∑

λ∈F

µλ〈λnp(λ)uλ, x
∗ + ϕ〉

=
∑

λ∈F

µλ〈λnp(λ)uλ, ψ〉 =
∑

λ∈F

αλλ
np(λ) = Mgp.

Therefore we have
∣∣∣〈p(T )T nx, x∗〉+ 〈p(T )x, y∗〉 −Mgp

∣∣∣

=
∣∣∣∣
∑

λ∈F

µλ

(〈
(T np(T )− λnp(λ))uλ, x

∗〉 +
∑

λ∈F

〈
(p(T )− p(λ))uλ, y

∗〉)∣∣∣∣. (6)

We estimate the right-hand side of (6) in a standard way. Write q(z) =
znp(z)−λnp(λ)

z−λ
. Clearly ‖q‖ ≤ 2‖p‖(1 − |λ|)−1 ≤ 2(1 − |λ|)−1. Then ‖q(T )‖ ≤

2k(1− |λ|)−1. Hence

‖(T np(T )− λnp(λ))uλ‖ = ‖q(T )(T − λ)uλ‖
≤ 2k(1− |λ|)−1ε(1− |λ|)2 ≤ 2kε(1− |λ|).

Similarly, one obtains the estimate ‖(p(T )− p(λ))uλ‖ ≤ 2kε(1− |λ|). Since
‖x∗‖ ≤ 1 and ε‖y∗‖2 < 1, from (6) we obtain

∣∣∣〈p(T )T nx, x∗〉+ 〈p(T )x, y∗〉 −Mgp
∣∣∣

≤ ∑

λ∈F

|µλ|
(
2kε(1− |λ|) + 2k

√
ε(1− |λ|)

)
≤ 6k2b2 · 4k√ε · π

2

because |µλ| ≤ 6k2b2 and

4
∑

λ∈F

(1− |λ|) = m(
⋃

λ∈F

Iλ) ≤ 2π.

Thus
‖x⊗ (T ∗nx∗ + y∗)−Mf‖ ≤ 12k3b2π

√
ε+ c2 < c3.

This completes the proof.

Theorem 7.3. Let T : X → X be a polynomially bounded operator with
constant k. Suppose that σ(T ) ⊃ T and that T has no nontrivial invariant
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subspace. Assume that ‖T nx‖ → 0 for all x ∈ X. Let w ∈ X, z∗ ∈ X∗,
δ > 0 and f ∈ L1 with f ≥ 0. Then there exist u ∈ X and u∗ ∈ X∗ such
that

(i) ‖u⊗ (u∗ + z∗)−Mf‖ ≤ c3 · ‖f‖1;

(ii) ‖w ⊗ u∗‖ < δ;

(iii) ‖u‖ ≤ 2kb
√

2‖f‖1/2
1 and ‖u∗‖ ≤ k‖f‖1/2

1 .

Proof. The statement is trivial if ‖f‖1 = 0. Assume that ‖f‖1 6= 0. Choose

n large enough such that ‖T nw‖ < δ‖f‖−1/2
1 k−1 and such that, by Theorem

7.2 applied to the function f ·‖f‖−1
1 and the functional z∗‖f‖−1/2

1 , there exist
v ∈ X and v∗ ∈ X∗ with ‖v‖ ≤ 2kb

√
2, ‖v∗‖ ≤ 1 and

∥∥∥v ⊗ (T ∗nv∗ + z∗‖f‖−1/2
1 )−Mf‖f‖−1

∥∥∥ ≤ c3.

Set u = ‖f‖1/2
1 v and u∗ = ‖f‖1/2

1 T ∗nv∗. Then ‖u‖ ≤ 2kb
√

2‖f‖1/2
1 and

‖u∗‖ ≤ k‖f‖1/2
1 .

Furthermore,

‖w⊗u∗‖ = ‖f‖1/2
1 ·‖w⊗T ∗nv∗‖ = ‖f‖1/2

1 ·‖T nw⊗v∗‖ ≤ ‖f‖1/2
1 k ·‖T nw‖ < δ.

Finally,

‖u⊗ (u∗+ z∗)−Mf‖ = ‖f‖1 ·
∥∥∥v⊗ (T ∗nv∗+ z∗‖f‖−1/2

1 )−Mf‖f‖−1
1

∥∥∥ ≤ c3‖f‖1.

We fix an integer N such that c3 + πN−1 < 1 and a positive constant c
such that 1−N−1(1− c3 − πN−1) < c < 1.

Theorem 7.4. Let T : X → X be a polynomially bounded operator with
constant k. Assume ‖T nu‖ → 0 for all u ∈ X. Suppose that σ(T ) ⊃ T and
T has no nontrivial invariant subspace. Let x ∈ X, x∗ ∈ X∗ and h ∈ L1.
Then there exist y ∈ X and y∗ ∈ X∗ such that

(i) ‖y − x‖ ≤ 2kb
√

2‖h‖1/2
1 ;

(ii) ‖y∗ − x∗‖ ≤ k‖h‖1/2
1 ;

(iii) ‖y ⊗ y∗ − x⊗ x∗ −Mh‖ ≤ c‖h‖1.
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Proof. For j = 0, . . . , N − 1 let Bj be the set of all complex numbers that
are of the form reit with r > 0 and − π

N
≤ t− 2πj

N
< π

N
. Fix a representative of

h and define Aj = h−1(Bj) (j = 0, . . . , N − 1). Then ‖h‖1 =
∑N−1

j=0 ‖hχj‖1

where χj is the characteristic function of Aj (j = 0, . . . , N − 1).
Fix j0, 0 ≤ j0 ≤ N − 1 such that ‖hχj0‖1 ≥ N−1‖h‖1.
Set ν = e2πj0i/N . For each z ∈ Aj0 we have

∣∣∣|h(z)|ν − h(z)
∣∣∣ = |h(z)| ·

∣∣∣ν − h(z)

|h(z)|
∣∣∣ ≤ |h(z)|πN−1,

and so
∥∥∥|h|νχj0 − hχj0

∥∥∥
1
≤ πN−1‖hχj0‖1.

Without loss of generality we can assume that ‖h‖1 6= 0. Let δ be a
positive number such that δ‖h‖−1

1 + 1−N−1(1− c3 − πN−1) < c.
By Theorem 7.3, there are vectors u ∈ X and u∗ ∈ X∗ such that ‖u‖ ≤

2kb
√

2‖hχj0‖1/2
1 , ‖u∗‖ ≤ k‖hχj0‖1/2

1 , ‖x⊗ u∗‖ < δ and

‖u⊗ (u∗ + x∗)−M|h|χj0
‖ ≤ c3‖hχj0‖1.

Set y = x+νu and y∗= x∗+u∗. Then ‖y−x‖ = ‖νu‖ ≤ 2kb
√

2‖hχj0‖1/2
1 ≤

2kb
√

2‖h‖1/2
1 and ‖y∗ − x∗‖ = ‖u∗‖ ≤ k‖h‖1/2

1 .
Furthermore,

‖y ⊗ y∗ − x⊗ x∗ −Mh‖ ≤ ‖x⊗ y∗ − x⊗ x∗‖+ ‖νu⊗ y∗ −Mh‖
≤ ‖x⊗ u∗‖+

∥∥∥ν
(
u⊗ (x∗ + u∗)−M|h|χj0

)∥∥∥ + ‖νM|h|χj0
−Mh‖

≤ δ + c3‖hχj0‖1 +
∥∥∥ν|h|χj0 − hχj0

∥∥∥
1
+

∑

j 6=j0

‖hχj‖1

≤ δ + (c3 + πN−1)‖hχj0‖1 + ‖h‖1 − ‖hχj0‖1

≤ ‖h‖1 − ‖hχj0‖1

(
1− c3 − πN−1

)
+ δ

≤ ‖h‖1 ·
(
1−N−1(1− c3 − πN−1)

)
+ δ ≤ c‖h‖1.

Now we are ready to prove the main theorem B.

Theorem B. Let T be a polynomially bounded operator on a complex Ba-
nach space X. Assume that ‖T nx‖ → 0 for all x ∈ X and that the spectrum
of T contains the unit circle. Then T has a nontrivial invariant subspace.
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Proof. Suppose on the contrary that T has no nontrivial invariant subspace.
We construct inductively convergent sequences (xj) ⊂ X and (x∗j) ⊂ X∗ such
that ‖xj ⊗ x∗j −M1‖ → 0, where 1 denotes the constant function equal to 1
on T.

Set x0 = 0 and x∗0 = 0. Let ϕ0 = x0 ⊗ x∗0 −M1. Then ‖ϕ0‖ = 1.
Suppose that we have already constructed vectors xj ∈ X and x∗j ∈ X∗

such that ‖ϕj‖ ≤ cj where ϕj = xj ⊗ x∗j −M1. Let hj ∈ L1 be a function
representing the functional ϕj such that ‖hj‖1 = ‖ϕj‖ ≤ cj. Let k be the
polynomial bound of T . By Theorem 7.4, there are xj+1 ∈ X and x∗j+1 ∈ X∗

such that

‖xj+1 − xj‖ ≤ 2kb
√

2‖hj‖1/2
1 ≤ 2

√
2kbcj/2,

‖x∗j+1 − x∗j‖ ≤ k‖hj‖1/2
1 ≤ kcj/2

and for ϕj+1 := xj+1 ⊗ x∗j+1 −M1 we have

‖ϕj+1‖ = ‖xj+1 ⊗ x∗j+1 − xj ⊗ x∗j + ϕj‖
= ‖xj+1 ⊗ x∗j+1 − xj ⊗ x∗j +Mhj

‖ ≤ c‖hj‖1 ≤ cj+1.

Clearly (xj) and (x∗j) are Cauchy sequences. Let x = limj→∞ xj and
x∗ = limj→∞ x∗j . For each polynomial p with ‖p‖ ≤ 1 we have

∣∣∣〈p(T )xj, x
∗
j〉 − 〈p(T )x, x∗〉

∣∣∣

≤
∣∣∣〈p(T )xj, x

∗
j〉 − 〈p(T )xj, x

∗〉
∣∣∣ +

∣∣∣〈p(T )xj, x
∗〉 − 〈p(T )x, x∗〉

∣∣∣
≤ k‖xj‖ · ‖x∗ − x∗j‖+ k‖xj − x‖ · ‖x∗‖ → 0

uniformly on the unit ball in P . Thus x ⊗ x∗ = limj→∞ xj ⊗ x∗j = M1 and
〈p(T )x, x∗〉 = p(0) for each polynomial p. It is well known that this implies
that T has a nontrivial invariant subspace. Indeed, either Tx = 0 (in this case
x generates a 1-dimensional invariant subspace) or the vectors T kx (k ≥ 1)
generate a nontrivial closed invariant subspace.

The condition T nx → 0 (x ∈ X) in the previous theorem can be omit-
ted. However, in this case we obtain an invariant subspace for T ∗ instead of
T .

Theorem A. Let T be a polynomially bounded operator on a Banach space
X such that σ(T ) ⊃ T. Then T ∗ has a nontrivial closed invariant subspace.
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In particular, if X is reflexive, then T itself has a nontrivial closed invari-
ant subspace.

Proof. We reduce the problem in a standard way. Let X1 = {x ∈ X :
‖T nx‖ → 0} and Y1 = {x∗ ∈ X∗ : ‖T ∗nx∗‖ → 0}. Then X1 and Y1 are
closed subspaces invariant with respect to T and T ∗, respectively. So X⊥

1 is
invariant with respect to T ∗. Thus it is sufficient to consider only the cases
that X1 and Y1 are trivial.

If X1 = X then T has a nontrivial invariant subspace by Theorem B,
and so has T ∗. If Y1 = X∗ then T ∗ has a nontrivial invariant subspace by
Theorem B.

The remaining case of X1 = {0} and Y1 = {0} (i.e., the class C11 in the
terminology of Sz. Nagy and Foiaş [NF]) was discussed in [CF], cf. p. 136.
Since in [CF] it was considered only the case of reflexive Banach spaces, we
indicate briefly the argument in the general situation as a separate theorem,
which will finish the proof of our main result.

Theorem 7.5. If T is a power bounded operator of class C11 on a complex
Banach space X, then either T ∗ has a nontrivial hyperinvariant subspace, or
T is a scalar multiple of the identity.

Proof. We follow closely the lines of the original proof, avoiding the reflex-
ivity assumption on X required in [CF]. For x ∈ X define

‖x‖1 = lim sup
n→∞

‖T nx‖.

Note that ‖x‖1 ≤ k‖x‖. Let X1 be the completion of X with respect to the
norm ‖ · ‖1. Let A : X → X1 be the natural embedding of X into X1. Then
A is a quasiaffinity, i.e., it is a bounded injective linear operator with dense
range.

Since ‖Tx‖1 = ‖x‖1 for all x ∈ X, the operator T extends continuously to
an isometry T1 on X1. We can assume that TX is dense in X, since otherwise
kerT ∗ = (TX)⊥ is a nontrivial subspace hyperinvariant with respect to T ∗.
Hence T1X1 is dense in X1. Therefore T1 is an invertible isometrical operator.
By [CF], Proposition 5.1.4, T1 is C2(T)–unitary, where C2(T) denotes the
algebra of all complex functions of class C2 on T (we refer to the Definitions
3.1.3, 3.1.18 and 5.1.1 of [CF]). Hence T1 is decomposable by Theorem 3.1.19.
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It is easy to see that AT = T1A. Hence T is a quasiaffine transformation
of T1. In the standard notation this is denoted by T ≺ T1. Consequently,
T ∗1 ≺ T ∗.

Applying the same argument to T ∗ instead of T , we get a decomposable
operator T2 such that T ∗ ≺ T2. Thus T ∗1 ≺ T ∗ ≺ T2 where both T ∗1 and T2

are decomposable, see [LN], Theorem 2.5.3. Now [CF], Theorem 2.4.5 leads
to the desired conclusion, except for the case when the spectrum of T ∗1 is a
single point {λ}. In this case the arguments in the proof of Theorem 5.1.9
and Lemma 4.3.5, show that T = λI.
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