SPHERICAL ISOMETRIES ARE HYPOREFLEXIVE

Vladimír Müller and Marek Ptak

Abstract. The result from the title is shown.

Let $L(H)$ denote the algebra of all bounded linear operators on a complex Hilbert space H. If $\mathcal{M} \subset L(H)$, then we denote by \mathcal{M}^{\prime} the commutant of $\mathcal{M}, \mathcal{M}^{\prime}=\{S \in$ $L(H): T S=S T$ for every $T \in \mathcal{M}\}$. The second commutant is denoted by $\mathcal{M}^{\prime \prime}=\left(\mathcal{M}^{\prime}\right)^{\prime}$. Denote further by $\mathcal{W}(\mathcal{M})$ the smallest weakly closed subalgebra of $L(H)$ containing \mathcal{M} and by $\operatorname{AlgLat} \mathcal{M}$ the algebra of all operators leaving invariant all subspaces which are invariant for all operators from \mathcal{M}. Recall that \mathcal{M} is said to be reflexive if $\mathcal{W}(\mathcal{M})=\operatorname{Alg} \operatorname{Lat} \mathcal{M}$. For a commutative set \mathcal{M}, there is also a weaker version of the reflexivity: \mathcal{M} is called hyporeflexive if $\mathcal{W}(\mathcal{M})=\operatorname{Alg} \operatorname{Lat} \mathcal{M} \cap \mathcal{M}^{\prime}$.

Reflexivity and hyporeflexivity have been studied intensely by many authors. Deddens in [D] proved the reflexivity of a single isometry. The result was extended to sets of commuting isometries in [B] (see also [LM]).

An analogy and, in some sense, a generalization of commuting N-tuple of isometries are spherical isometries. A spherical isometry is an N-tuple $T=\left(T_{1}, \ldots, T_{N}\right)$ of mutually commuting operators on H satisfying $T_{1}^{*} T_{1}+\cdots+T_{N}^{*} T_{N}=I_{H}$.

The reflexivity of doubly commuting spherical isometries was mentioned in $[\mathrm{P}]$. The aim of the paper is to show the hyporeflexivity of spherical isometries.

If μ is a positive Borel measure on the unit sphere $\partial \mathbb{B}_{N}=\left\{\left(z_{1}, \ldots, z_{N}\right) \in \mathbb{C}^{N}\right.$: $\left.\left|z_{1}\right|^{2}+\cdots+\left|z_{N}\right|^{2}=1\right\}$, then denote by $H^{2}(\mu)$ the closure of polynomials in $L^{2}(\mu)$. We start with the following

Lemma 1. Let μ be finite positive Borel measure supported on $\partial \mathbb{B}_{N}$. Then, for all non-negative function $h \in L^{1}(\mu)$ and $\varepsilon>0$, there exists a polynomial p such that

$$
\left\|h-|p|^{2}\right\|_{1}<\varepsilon .
$$

Proof. First note that there is a non-negative continuous function g such that $\|h-g\|_{1}<\frac{\varepsilon}{2}$. Moreover, since μ is finite, we can also assume that $g>0$. By Theorem 3.5 of $[\mathrm{R}]$, there exists a sequence p_{n} of of polynomials such that $\left|p_{n}\right|<$ \sqrt{g} and $\left|p_{n}(z)\right| \rightarrow \sqrt{g(z)}$ a.e. μ on $\partial \mathbb{B}_{N}$. Hence $g-\left|p_{n}\right|^{2} \leq g \in L^{1}(\mu)$ and

[^0]$g(z)-\left|p_{n}(z)\right|^{2} \rightarrow 0$ a.e. μ on $\partial \mathbb{B}_{N}$. By the Lebesgue's Dominated Convergence Theorem there exists n such that $\left\|g-\left|p_{n}\right|^{2}\right\|_{1}<\frac{\varepsilon}{2}$. Hence $\left\|h-|p|^{2}\right\|_{1}<\varepsilon$ for $p=p_{n}$.

Using the terminology of Bercovici [B], the result of Lemma 1 exactly means that the subspace $H^{2}(\mu) \subset L^{2}(\mu)$ has the approximate factorization property. Thus, by Corollary 1.2 of [B], we have
Corollary 2. Let μ be a finite positive Borel measure on $\partial \mathbb{B}_{N}$ and $h \in L^{1}(\mu)$. Then there exist $f \in H^{2}(\mu)$ and $g \in L^{2}(\mu)$ such that $h(z)=f(z) \overline{g(z)}$ a.e. μ.

Let us fix from now on a spherical isometry $T=\left(T_{1}, \ldots, T_{N}\right) \subset L(H)$. Then T is jointly subnormal by Proposition 2 of [A]. It means that there exist a Hilbert space $K \supset H$ and an N-tuple $\tilde{T}=\left(\tilde{T}_{1}, \ldots, \tilde{T}_{N}\right)$ of mutually commuting normal operators on K such that $T_{i}=\left.\tilde{T}_{i}\right|_{H}$ for $i=1, \ldots, N$. Further, the joint spectral measure of \tilde{T} is supported on $\partial \mathbb{B}_{N}$, equivalently $\tilde{T}_{1}^{*} \tilde{T}_{1}+\cdots+\tilde{T}_{N}^{*} \tilde{T}_{N}=I$. We can assume that \tilde{T} is the minimal normal extension of T in the sense that $K=\bigvee_{\alpha \in \mathbb{Z}_{+}^{N}} \tilde{T}^{* \alpha} H$.

If $S \in T^{\prime}$, then, by Proposition 8 of [A] there exists $\tilde{S} \in L(K)$ commuting with $\tilde{T}_{i}(i=1, \ldots, N)$ such that $\|\tilde{S}\|=\|S\|$ and $S=\left.\tilde{S}\right|_{H}$. In fact \tilde{S} is uniquely determined for the minimal extension \tilde{T}. Indeed, \tilde{S} commutes also with \tilde{T}_{i}^{*} for $i=1, \ldots, N$ by Fuglede's Theorem and $\tilde{S} \tilde{T}^{* \alpha} x=\tilde{T}^{* \alpha} \tilde{S} x=\tilde{T}^{* \alpha} S x$ for $\alpha \in \mathbb{Z}_{+}^{N}$ and $x \in H$. Hence the uniqueness of \tilde{S} follows from the minimality of the normal extension.
Proposition 3. Let T be a spherical isometry. If $S \in \operatorname{AlgLatT} \cap T^{\prime}$, then $\tilde{S} \in \tilde{T}^{\prime \prime}$.
Proof. Proposition 3, formulated for commuting N-tuples of isometries, was the main result of $[\mathrm{HM}]$, but it remains true with the same proof in our situation. For convenience of the reader we indicate briefly the main steps of the proof.

Let $E(\cdot)$ be the spectral measure of the normal N-tuple \tilde{T}. Denote by $\mu_{x}=$ $\left\|\mu_{x}(\cdot) x\right\|^{2}$ the positive scalar measure corresponding to $x \in K$.
A. (Lemma 4 of $[\mathrm{HM}])$ For $x, y \in H$ there exists a complex number λ such that the measures $\mu_{x} \vee \mu_{y}$ and $\mu_{x+\lambda y}$ are equivalent (i.e., absolutely continuous with respect to each other).

In fact, all but countably many complex numbers satisfy the property of A.
For $x \in H$ denote by $Z_{+}(x) \quad(Z(x))$ the smallest subspace of K containing x which is invariant (reducing, respectively) with respect to all $\tilde{T}_{1}, \ldots, \tilde{T}_{N}$.

By the assumption, \tilde{S} commutes with \tilde{T}_{i} and $\tilde{T}_{i}^{*} \quad(i=1, \ldots, N)$. Further $S Z_{+}(x) \subset Z_{+}(x)$. Since $Z(x)=\bigvee_{\alpha \in \mathbb{Z}_{+}^{n}} T^{* \alpha} Z_{+}(x)$, we have $\tilde{S} Z(x) \subset Z(x)$. Consequently $\tilde{S}\left|Z(x)=t_{x}(\tilde{T})\right| Z(x)$ for some function $t_{x} \in L^{\infty}\left(\mu_{x}\right)$.
B. (Lemma 5 of $[\mathrm{HM}])$ If $x, y \in H$ and $\mu_{x} \prec \mu_{y}$, then $t_{x}=t_{y}$ a.e. μ_{x}.

By induction it is easy to generalize A. and B. to finite families of vectors.
Proof of Proposition 3. Let $\tilde{V} \in L(K)$ commute with $\tilde{T}_{1}, \ldots, \tilde{T}_{N}$, let $u \in K$ and $\varepsilon>0$.

Since $K=\bigvee_{x \in H} Z(x)$, we can find vectors $x_{1}, \ldots, x_{n}, x_{1}^{\prime}, \ldots, x_{m}^{\prime} \in H$ and $u_{i} \in Z\left(x_{i}\right) \quad(i=1, \ldots, n), u_{j}^{\prime} \in Z\left(x_{j}^{\prime}\right) \quad(j=1, \ldots, m)$ such that

$$
\left\|u-\sum_{i=1}^{n} u_{i}\right\|<\varepsilon, \quad\left\|\tilde{V} u-\sum_{j=1}^{m} u_{j}^{\prime}\right\|<\varepsilon .
$$

By A. and B. there exists a function $f \in L^{\infty}(\mu)$ where $\mu=\bigvee_{i=1}^{n} \mu_{x_{i}} \vee \bigvee_{j=1}^{m} \mu_{x_{j}^{\prime}}$ such that $\tilde{S}\left|Z\left(x_{i}\right)=f(\tilde{T})\right| Z\left(x_{i}\right)$ and $\tilde{S}\left|Z\left(x_{j}^{\prime}\right)=f(\tilde{T})\right| Z\left(x_{j}^{\prime}\right)$ for all i, j. Then

$$
\begin{aligned}
& \|\tilde{V} \tilde{S} u-\tilde{S} \tilde{V} u\| \leq\left\|\tilde{V} \tilde{S} u-\tilde{V} \tilde{S} \sum_{i=1}^{n} u_{i}\right\|+\left\|\tilde{V} \tilde{S} \sum_{i=1}^{n} u_{i}-\tilde{S} \sum_{j=1}^{m} u_{j}^{\prime}\right\|+\left\|\tilde{S} \sum_{j=1}^{m} u_{j}^{\prime}-\tilde{S} \tilde{V} u\right\| \\
& \quad \leq\|\tilde{V}\|\|\tilde{S}\|\left\|u-\sum_{i=1}^{n} u_{i}\right\|+\left\|\tilde{V} f(\tilde{T}) \sum_{i=1}^{n} u_{i}-f(\tilde{T}) \sum_{j=1}^{m} u_{j}^{\prime}\right\|+\|\tilde{S}\|\left\|\sum_{j=1}^{m} u_{j}^{\prime}-\tilde{V} u\right\| \\
& \quad \leq\|\tilde{V}\|\|S\| \varepsilon+\|f(\tilde{T})\|\left(\left\|\tilde{V} \sum_{i=1}^{n} u_{i}-\tilde{V} u\right\|+\left\|\tilde{V} u-\sum_{j=1}^{m} u_{j}^{\prime}\right\|\right)+\|S\| \varepsilon \\
& \quad \leq 2\|\tilde{V}\|\|S\| \varepsilon+2\|S\| \varepsilon .
\end{aligned}
$$

Since ε was arbitrary, we have $\tilde{V} \tilde{S} u=\tilde{S} \tilde{V} u$ so that $\tilde{S} \in(\tilde{T})^{\prime \prime}$.
Recall from $[\mathrm{HN}]$ that an algebra $\mathcal{W} \subset L(H)$ closed in the weak operator topology has property D if every weakly continuous functional φ on \mathcal{W} can be written in the form $\varphi(A)=\langle A x, y\rangle \quad(A \in \mathcal{W})$ for certain vectors $x, y \in H$. Now we will show

Lemma 4. Let T be spherical isometry. Then AlgLat $T \cap T^{\prime}$ has property D.
Proof. Let φ be a weakly continuous functional on $\mathcal{B}:=\operatorname{Alg} \operatorname{Lat} T \cap T^{\prime}$. Then there are $x_{i}, y_{i} \in H, i=1, \ldots, n$ such that $\varphi(S)=\sum_{i=1}^{n}\left(S x_{i}, y_{i}\right)$ for $S \in \mathcal{B}$. Let K_{0} be the smallest closed subspace containing $x_{i}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$, which reduces $\tilde{T}_{i}, i=$ $1, \ldots, N$. Using the spectral theory there exist a finite measure $\mu=\bigvee_{i=1}^{n}\left(\mu_{x_{i}} \vee \mu_{y_{i}}\right)$ on $\partial \mathbb{B}_{N}$, sets $\partial \mathbb{B}_{N}=\sigma_{1} \supset \sigma_{2} \supset \cdots \supset \sigma_{2 n}$ and a unitary operator

$$
U: K_{0} \rightarrow \bigoplus_{i=1}^{2 n} L^{2}\left(\left.\mu\right|_{\sigma_{i}}\right)
$$

such that $U v\left(\left.\tilde{T}\right|_{K_{0}}\right) U^{-1}=M_{v}$ for every function $v \in L^{\infty}(\mu)$, where M_{v} is the operator of multiplication by v. Note that the space $\bigoplus_{i=1}^{2 n} L^{2}\left(\left.\mu\right|_{\sigma_{i}}\right)$ can be identified with a subspace of $L^{2}(\mu, \mathcal{F})$, where \mathcal{F} is a Hilbert space with $\operatorname{dim} \mathcal{F}=2 n$.

Let $S \in \mathcal{B}$. Since $S \in \operatorname{AlgLatT}$, the space $H_{0}:=K_{0} \cap H$ is invariant with respect to S. Since $\tilde{S} \in \tilde{T}^{\prime}$, we have also $\tilde{S} K_{0} \subset K_{0}$. Moreover, by Proposition 3, we have $\tilde{S} \in \tilde{T}^{\prime \prime}$ and one can easily show that $\left.\tilde{S}\right|_{K_{0}} \in\left(\left.\tilde{T}\right|_{K_{0}}\right)^{\prime \prime}$. Thus there is a function $u_{S} \in L^{\infty}(\mu)$ such that $\left.\tilde{S}\right|_{K_{0}}=\left.u_{S}(\tilde{T})\right|_{K_{0}}$, and consequently $\left.S\right|_{H_{0}}=\left.u_{S}(\tilde{T})\right|_{H_{0}}$.

Now we have

$$
\begin{aligned}
\varphi(S) & =\sum_{i=1}^{n}\left\langle S x_{i}, y_{i}\right\rangle=\sum_{i=1}^{n}\left\langle U S x_{i}, U y_{i}\right\rangle=\sum_{i=1}^{n}\left\langle U u_{S}(\tilde{T}) x_{i}, U y_{i}\right\rangle \\
& =\sum_{i=1}^{n}\left\langle M_{u_{S}} U x_{i}, U y_{i}\right\rangle=\sum_{i=1}^{n} \int\left\langle u_{S}(z)\left(U x_{i}\right)(z),\left(U y_{i}\right)(z)\right\rangle_{\mathcal{F}} d \mu(z) \\
& =\int u_{S}(z) \sum_{i=1}^{n}\left\langle\left(U x_{i}\right)(z),\left(U y_{i}\right)(z)\right\rangle_{\mathcal{F}} d \mu(z)=\int u_{S}(z) f(z) d \mu(z)
\end{aligned}
$$

where $f(z)=\sum_{i=1}^{n}\left\langle\left(U x_{i}\right)(z),\left(U y_{i}\right)(z)\right\rangle_{\mathcal{F}} \in L^{1}(\mu)$.
By Lemma 4 of $[\mathrm{HM}]$ there is a linear combination w of $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$ such that μ_{w} and μ are absolutely continuous with respect to each other. Hence $d \mu=v d \mu_{w}$ for some function $v \in L^{1}\left(\mu_{w}\right)$ and $v>0$ a.e. μ_{w}. Thus $f v \in L^{1}\left(\mu_{w}\right)$ and, by Corollary 2 , there exist $g \in H^{2}\left(\mu_{w}\right)$ and $h \in L^{2}\left(\mu_{w}\right)$ such that $f v=g \bar{h}$ a.e. μ_{w}.

Denote by K_{1} the smallest subspace of K containing w, which reduces $\tilde{T}_{i}, \quad i=$ $1, \ldots, N$. Let $V: K_{1} \rightarrow L^{2}\left(\mu_{w}\right)$ be the unitary operator such that $\operatorname{Vr}(\tilde{T}) w=r$ for all $r \in L^{\infty}\left(\mu_{w}\right)$. Then we have also $M_{r} V=\operatorname{Vr}(\tilde{T})$ for $r \in L^{\infty}\left(\mu_{w}\right)=L^{\infty}(\mu)$. Denote $x=V^{-1} g \in V^{-1} H^{2}\left(\mu_{w}\right) \subset H$ and $\tilde{y}=V^{-1} h \in K_{1}$. Then, for $S \in \mathcal{B}$, we have

$$
\begin{aligned}
\varphi(S) & =\int u_{S} f d \mu=\int u_{S} f v d \mu_{w}=\int u_{S} g \bar{h} d \mu_{w}=\left\langle M_{u_{S}} g, h\right\rangle_{L^{2}\left(\mu_{w}\right)} \\
& =\left\langle V^{-1} M_{u_{S}} g, V^{-1} h\right\rangle=\left\langle u_{S}(\tilde{T}) V^{-1} g, V^{-1} h\right\rangle=\left\langle u_{S}(\tilde{T}) x, \tilde{y}\right\rangle \\
& =\langle S x, \tilde{y}\rangle=\left\langle S x, P_{H} \tilde{y}\right\rangle=\langle S x, y\rangle
\end{aligned}
$$

where $y=P_{H} \tilde{y}$. Hence \mathcal{B} has property D.
Recall that, by Theorem $6.2(3)$ of $[\mathrm{HN}]$, a unital commutative weakly closed algebra $\mathcal{W} \subset L(H)$ is hyporeflexive if $\operatorname{Alg} L a t \mathcal{W} \cap \mathcal{W}^{\prime}$ has property D. Hence we have proved the following main result of the paper.

Theorem 5. Let T be a spherical isometry. Then T is hyporeflexive, i.e. $\mathcal{W}(T)=$ AlgLat $T \cap T^{\prime}$.

Acknowledgment. The paper was written during the first author's visit at the University of Agriculture, Krakow. He wishes to express his thanks for warm hospitality there.

References

[A] A.Athavale, On the intertwining of joint isometries, J.Operator Theory 23 (1990), 339-350.
[B] H.Bercovici, A factorization theorem with applications to invariant subspaces and the reflexivity of isometries, Math. Resaerch Letters 1 (1994), 511-518.
[D] J.Deddens, Every isometry is reflexive, Proc.Amer.Math.Soc. 28 (1971), 509-512.
[HN] D.H.Hadwin, E.A.Nordgren, Subalgebras of reflexive algebras, J.Operator Theory 7 (1982), 3-23.
[HM] K.Horák, V.Müller, On commuting isometries, Czekoslovak Math.J. 43 (1993), 373-382.
[LM] W.S.Li, J.M ${ }^{\text {c }}$ Carthy, Reflexivity of isometries, Studia Math. (to appear).
$[\mathrm{P}] \quad$ M.Ptak, On the reflexivity of multi-generator algebras, preprint.
$[\mathrm{R}] \quad$ W.Rudin, New constructions of functions holomorphic in the unit ball of \mathbb{C}^{n}, CBMS Regional Conference Series in Mathematics, AMS Providence, Rhode Island, 1986.

Vladimír Müller, Institute of Mathematics, Academy of Sciences of Czech Republic, Žitna 25, 11567 Praha 1, Czech Republic

E-mail address: vmuller@mbox.cesnet.cz

Marek Ptak, Institute of Mathematics, University of Agriculture, ul.Królewska 6, 30-045 Kraków, Poland

E-mail address: rmptak@cyf--kr.edu.pl

[^0]: 1991 Mathematics Subject Classification. Primary 47B20, Secondary 47A15.
 Key words and phrases. Spherical isometry, hyporeflexive, reflexive, commutant.
 The research of the first author was supported by the grant No. 201/96/0411 of GA CR

