SPHERICAL ISOMETRIES ARE HYPOREFLEXIVE

Vladimír Müller and Marek Ptak

ABSTRACT. The result from the title is shown.

Let L(H) denote the algebra of all bounded linear operators on a complex Hilbert space H. If $\mathcal{M} \subset L(H)$, then we denote by \mathcal{M}' the commutant of \mathcal{M} , $\mathcal{M}' = \{S \in L(H) : TS = ST$ for every $T \in \mathcal{M}\}$. The second commutant is denoted by $\mathcal{M}'' = (\mathcal{M}')'$. Denote further by $\mathcal{W}(\mathcal{M})$ the smallest weakly closed subalgebra of L(H) containing \mathcal{M} and by $AlgLat\mathcal{M}$ the algebra of all operators leaving invariant all subspaces which are invariant for all operators from \mathcal{M} . Recall that \mathcal{M} is said to be *reflexive* if $\mathcal{W}(\mathcal{M}) = AlgLat\mathcal{M}$. For a commutative set \mathcal{M} , there is also a weaker version of the reflexivity: \mathcal{M} is called *hyporeflexive* if $\mathcal{W}(\mathcal{M}) = AlgLat\mathcal{M} \cap \mathcal{M}'$.

Reflexivity and hyporeflexivity have been studied intensely by many authors. Deddens in [D] proved the reflexivity of a single isometry. The result was extended to sets of commuting isometries in [B] (see also [LM]).

An analogy and, in some sense, a generalization of commuting N-tuple of isometries are spherical isometries. A spherical isometry is an N-tuple $T = (T_1, \ldots, T_N)$ of mutually commuting operators on H satisfying $T_1^*T_1 + \cdots + T_N^*T_N = I_H$.

The reflexivity of doubly commuting spherical isometries was mentioned in [P]. The aim of the paper is to show the hyporeflexivity of spherical isometries.

If μ is a positive Borel measure on the unit sphere $\partial \mathbb{B}_N = \{(z_1, \ldots, z_N) \in \mathbb{C}^N : |z_1|^2 + \cdots + |z_N|^2 = 1\}$, then denote by $H^2(\mu)$ the closure of polynomials in $L^2(\mu)$. We start with the following

Lemma 1. Let μ be finite positive Borel measure supported on $\partial \mathbb{B}_N$. Then, for all non-negative function $h \in L^1(\mu)$ and $\varepsilon > 0$, there exists a polynomial p such that

$$\|h - |p|^2\|_1 < \varepsilon.$$

Proof. First note that there is a non-negative continuous function g such that $||h - g||_1 < \frac{\varepsilon}{2}$. Moreover, since μ is finite, we can also assume that g > 0. By Theorem 3.5 of [R], there exists a sequence p_n of of polynomials such that $|p_n| < \sqrt{g}$ and $|p_n(z)| \to \sqrt{g(z)}$ a.e. μ on $\partial \mathbb{B}_N$. Hence $g - |p_n|^2 \leq g \in L^1(\mu)$ and

¹⁹⁹¹ Mathematics Subject Classification. Primary 47B20, Secondary 47A15.

Key words and phrases. Spherical isometry, hyporeflexive, reflexive, commutant.

The research of the first author was supported by the grant No. 201/96/0411 of GA CR

 $g(z) - |p_n(z)|^2 \to 0$ a.e. μ on $\partial \mathbb{B}_N$. By the Lebesgue's Dominated Convergence Theorem there exists n such that $||g - |p_n|^2||_1 < \frac{\varepsilon}{2}$. Hence $||h - |p|^2||_1 < \varepsilon$ for $p = p_n$.

Using the terminology of Bercovici [B], the result of Lemma 1 exactly means that the subspace $H^2(\mu) \subset L^2(\mu)$ has the *approximate factorization property*. Thus, by Corollary 1.2 of [B], we have

Corollary 2. Let μ be a finite positive Borel measure on $\partial \mathbb{B}_N$ and $h \in L^1(\mu)$. Then there exist $f \in H^2(\mu)$ and $g \in L^2(\mu)$ such that $h(z) = f(z)\overline{g(z)}$ a.e. μ .

Let us fix from now on a spherical isometry $T = (T_1, \ldots, T_N) \subset L(H)$. Then T is jointly subnormal by Proposition 2 of [A]. It means that there exist a Hilbert space $K \supset H$ and an N-tuple $\tilde{T} = (\tilde{T}_1, \ldots, \tilde{T}_N)$ of mutually commuting normal operators on K such that $T_i = \tilde{T}_i|_H$ for $i = 1, \ldots, N$. Further, the joint spectral measure of \tilde{T} is supported on $\partial \mathbb{B}_N$, equivalently $\tilde{T}_1^* \tilde{T}_1 + \cdots + \tilde{T}_N^* \tilde{T}_N = I$. We can assume that \tilde{T} is the minimal normal extension of T in the sense that $K = \bigvee_{\alpha \in \mathbb{Z}_+^N} \tilde{T}^{*\alpha} H$.

If $S \in T'$, then, by Proposition 8 of [A] there exists $\tilde{S} \in L(K)$ commuting with \tilde{T}_i (i = 1, ..., N) such that $\|\tilde{S}\| = \|S\|$ and $S = \tilde{S}|_H$. In fact \tilde{S} is uniquely determined for the minimal extension \tilde{T} . Indeed, \tilde{S} commutes also with \tilde{T}_i^* for i = 1, ..., N by Fuglede's Theorem and $\tilde{S}\tilde{T}^{*\alpha}x = \tilde{T}^{*\alpha}\tilde{S}x = \tilde{T}^{*\alpha}Sx$ for $\alpha \in \mathbb{Z}_+^N$ and $x \in H$. Hence the uniqueness of \tilde{S} follows from the minimality of the normal extension.

Proposition 3. Let T be a spherical isometry. If $S \in AlgLatT \cap T'$, then $\tilde{S} \in \tilde{T}''$.

Proof. Proposition 3, formulated for commuting *N*-tuples of isometries, was the main result of [HM], but it remains true with the same proof in our situation. For convenience of the reader we indicate briefly the main steps of the proof.

Let $E(\cdot)$ be the spectral measure of the normal N-tuple T. Denote by $\mu_x = \|\mu_x(\cdot)x\|^2$ the positive scalar measure corresponding to $x \in K$.

A. (Lemma 4 of [HM]) For $x, y \in H$ there exists a complex number λ such that the measures $\mu_x \vee \mu_y$ and $\mu_{x+\lambda y}$ are equivalent (i.e., absolutely continuous with respect to each other).

In fact, all but countably many complex numbers satisfy the property of A.

For $x \in H$ denote by $Z_+(x)$ (Z(x)) the smallest subspace of K containing x which is invariant (reducing, respectively) with respect to all $\tilde{T}_1, \ldots, \tilde{T}_N$.

By the assumption, \tilde{S} commutes with \tilde{T}_i and \tilde{T}_i^* (i = 1, ..., N). Further $SZ_+(x) \subset Z_+(x)$. Since $Z(x) = \bigvee_{\alpha \in \mathbb{Z}_+^n} T^{*\alpha} Z_+(x)$, we have $\tilde{S}Z(x) \subset Z(x)$. Consequently $\tilde{S}|Z(x) = t_x(\tilde{T})|Z(x)$ for some function $t_x \in L^{\infty}(\mu_x)$.

B. (Lemma 5 of [HM]) If $x, y \in H$ and $\mu_x \prec \mu_y$, then $t_x = t_y$ a.e. μ_x .

By induction it is easy to generalize A. and B. to finite families of vectors.

Proof of Proposition 3. Let $\tilde{V} \in L(K)$ commute with $\tilde{T}_1, \ldots, \tilde{T}_N$, let $u \in K$ and $\varepsilon > 0$.

Since $K = \bigvee_{x \in H} Z(x)$, we can find vectors $x_1, \ldots, x_n, x'_1, \ldots, x'_m \in H$ and $u_i \in Z(x_i)$ $(i = 1, \ldots, n), u'_j \in Z(x'_j)$ $(j = 1, \ldots, m)$ such that

$$\left\|u-\sum_{i=1}^{n}u_{i}\right\|<\varepsilon,\qquad \left\|\tilde{V}u-\sum_{j=1}^{m}u_{j}'\right\|<\varepsilon.$$

By A. and B. there exists a function $f \in L^{\infty}(\mu)$ where $\mu = \bigvee_{i=1}^{n} \mu_{x_i} \vee \bigvee_{j=1}^{m} \mu_{x'_j}$ such that $\tilde{S}|Z(x_i) = f(\tilde{T})|Z(x_i)$ and $\tilde{S}|Z(x'_j) = f(\tilde{T})|Z(x'_j)$ for all i, j. Then

$$\begin{split} \|\tilde{V}\tilde{S}u - \tilde{S}\tilde{V}u\| &\leq \left\|\tilde{V}\tilde{S}u - \tilde{V}\tilde{S}\sum_{i=1}^{n} u_{i}\right\| + \left\|\tilde{V}\tilde{S}\sum_{i=1}^{n} u_{i} - \tilde{S}\sum_{j=1}^{m} u_{j}'\right\| + \left\|\tilde{S}\sum_{j=1}^{m} u_{j}' - \tilde{S}\tilde{V}u\right\| \\ &\leq \|\tilde{V}\|\|\tilde{S}\| \left\|u - \sum_{i=1}^{n} u_{i}\right\| + \left\|\tilde{V}f(\tilde{T})\sum_{i=1}^{n} u_{i} - f(\tilde{T})\sum_{j=1}^{m} u_{j}'\right\| + \|\tilde{S}\| \left\|\sum_{j=1}^{m} u_{j}' - \tilde{V}u\right\| \\ &\leq \|\tilde{V}\|\|S\|\varepsilon + \|f(\tilde{T})\| \left(\left\|\tilde{V}\sum_{i=1}^{n} u_{i} - \tilde{V}u\right\| + \left\|\tilde{V}u - \sum_{j=1}^{m} u_{j}'\right\|\right) + \|S\|\varepsilon \\ &\leq 2\|\tilde{V}\|\|S\|\varepsilon + 2\|S\|\varepsilon. \end{split}$$

Since ε was arbitrary, we have $\tilde{V}\tilde{S}u = \tilde{S}\tilde{V}u$ so that $\tilde{S} \in (\tilde{T})''$.

Recall from [HN] that an algebra $\mathcal{W} \subset L(H)$ closed in the weak operator topology has property D if every weakly continuous functional φ on \mathcal{W} can be written in the form $\varphi(A) = \langle Ax, y \rangle$ $(A \in \mathcal{W})$ for certain vectors $x, y \in H$. Now we will show

Lemma 4. Let T be spherical isometry. Then $AlgLatT \cap T'$ has property D.

Proof. Let φ be a weakly continuous functional on $\mathcal{B} := AlgLatT \cap T'$. Then there are $x_i, y_i \in H, i = 1, ..., n$ such that $\varphi(S) = \sum_{i=1}^n (Sx_i, y_i)$ for $S \in \mathcal{B}$. Let K_0 be the smallest closed subspace containing $x_i, ..., x_n, y_1, ..., y_n$, which reduces $\tilde{T}_i, i = 1, ..., N$. Using the spectral theory there exist a finite measure $\mu = \bigvee_{i=1}^n (\mu_{x_i} \vee \mu_{y_i})$ on $\partial \mathbb{B}_N$, sets $\partial \mathbb{B}_N = \sigma_1 \supset \sigma_2 \supset \cdots \supset \sigma_{2n}$ and a unitary operator

$$U: K_0 \to \bigoplus_{i=1}^{2n} L^2(\mu|_{\sigma_i})$$

such that $Uv(\tilde{T}|_{K_0})U^{-1} = M_v$ for every function $v \in L^{\infty}(\mu)$, where M_v is the operator of multiplication by v. Note that the space $\bigoplus_{i=1}^{2n} L^2(\mu|_{\sigma_i})$ can be identified with a subspace of $L^2(\mu, \mathcal{F})$, where \mathcal{F} is a Hilbert space with dim $\mathcal{F} = 2n$.

Let $S \in \mathcal{B}$. Since $S \in AlgLatT$, the space $H_0 := K_0 \cap H$ is invariant with respect to S. Since $\tilde{S} \in \tilde{T}'$, we have also $\tilde{S}K_0 \subset K_0$. Moreover, by Proposition 3, we have $\tilde{S} \in \tilde{T}''$ and one can easily show that $\tilde{S}|_{K_0} \in (\tilde{T}|_{K_0})''$. Thus there is a function $u_S \in L^{\infty}(\mu)$ such that $\tilde{S}|_{K_0} = u_S(\tilde{T})|_{K_0}$, and consequently $S|_{H_0} = u_S(\tilde{T})|_{H_0}$. Now we have

$$\varphi(S) = \sum_{i=1}^{n} \langle Sx_i, y_i \rangle = \sum_{i=1}^{n} \langle USx_i, Uy_i \rangle = \sum_{i=1}^{n} \langle Uu_S(\tilde{T})x_i, Uy_i \rangle$$
$$= \sum_{i=1}^{n} \langle M_{u_S}Ux_i, Uy_i \rangle = \sum_{i=1}^{n} \int \langle u_S(z)(Ux_i)(z), (Uy_i)(z) \rangle_{\mathcal{F}} d\mu(z)$$
$$= \int u_S(z) \sum_{i=1}^{n} \langle (Ux_i)(z), (Uy_i)(z) \rangle_{\mathcal{F}} d\mu(z) = \int u_S(z) f(z) d\mu(z),$$

where $f(z) = \sum_{i=1}^{n} \langle (Ux_i)(z), (Uy_i)(z) \rangle_{\mathcal{F}} \in L^1(\mu).$

By Lemma 4 of [HM] there is a linear combination w of $x_1, \ldots, x_n, y_1, \ldots, y_n$ such that μ_w and μ are absolutely continuous with respect to each other. Hence $d\mu = vd\mu_w$ for some function $v \in L^1(\mu_w)$ and v > 0 a.e. μ_w . Thus $fv \in L^1(\mu_w)$ and, by Corollary 2, there exist $g \in H^2(\mu_w)$ and $h \in L^2(\mu_w)$ such that fv = gha.e. μ_w .

Denote by K_1 the smallest subspace of K containing w, which reduces \tilde{T}_i , $i = 1, \ldots, N$. Let $V : K_1 \to L^2(\mu_w)$ be the unitary operator such that $Vr(\tilde{T})w = r$ for all $r \in L^{\infty}(\mu_w)$. Then we have also $M_r V = Vr(\tilde{T})$ for $r \in L^{\infty}(\mu_w) = L^{\infty}(\mu)$. Denote $x = V^{-1}g \in V^{-1}H^2(\mu_w) \subset H$ and $\tilde{y} = V^{-1}h \in K_1$. Then, for $S \in \mathcal{B}$, we have

$$\begin{aligned} \varphi(S) &= \int u_S f \, d\mu = \int u_S f \, v \, d\mu_w = \int u_S \, g \, \overline{h} \, d\mu_w = \langle M_{u_S} \, g, h \rangle_{L^2(\mu_w)} \\ &= \langle V^{-1} M_{u_S} \, g, V^{-1} h \rangle = \langle u_S(\tilde{T}) \, V^{-1} \, g, V^{-1} h \rangle = \langle u_S(\tilde{T}) \, x, \tilde{y} \rangle \\ &= \langle Sx, \tilde{y} \rangle = \langle Sx, P_H \tilde{y} \rangle = \langle Sx, y \rangle , \end{aligned}$$

where $y = P_H \tilde{y}$. Hence \mathcal{B} has property D.

Recall that, by Theorem 6.2(3) of [HN], a unital commutative weakly closed algebra $\mathcal{W} \subset L(H)$ is hyporeflexive if $AlgLat\mathcal{W} \cap \mathcal{W}'$ has property D. Hence we have proved the following main result of the paper.

Theorem 5. Let T be a spherical isometry. Then T is hyporeflexive, i.e. $W(T) = AlgLatT \cap T'$.

Acknowledgment. The paper was written during the first author's visit at the University of Agriculture, Krakow. He wishes to express his thanks for warm hospitality there.

References

- [A] A.Athavale, On the intertwining of joint isometries, J.Operator Theory 23 (1990), 339-350.
- [B] H.Bercovici, A factorization theorem with applications to invariant subspaces and the reflexivity of isometries, Math. Resaerch Letters 1 (1994), 511-518.
- [D] J.Deddens, Every isometry is reflexive, Proc.Amer.Math.Soc. 28 (1971), 509-512.

- [HN] D.H.Hadwin, E.A.Nordgren, Subalgebras of reflexive algebras, J.Operator Theory 7 (1982), 3-23.
- [HM] K.Horák, V.Müller, On commuting isometries, Czekoslovak Math.J. 43 (1993), 373-382.
- [LM] W.S.Li, J.M^c Carthy, *Reflexivity of isometries*, Studia Math. (to appear).
- [P] M.Ptak, On the reflexivity of multi-generator algebras, preprint.
- [R] W.Rudin, New constructions of functions holomorphic in the unit ball of \mathbb{C}^n , CBMS Regional Conference Series in Mathematics, AMS Providence, Rhode Island, 1986.

VLADIMÍR MÜLLER, INSTITUTE OF MATHEMATICS, ACADEMY OF SCIENCES OF CZECH RE-PUBLIC, ŽITNA 25, 115 67 PRAHA 1, CZECH REPUBLIC *E-mail address:* vmuller@mbox.cesnet.cz

MAREK PTAK, INSTITUTE OF MATHEMATICS, UNIVERSITY OF AGRICULTURE, UL.KRÓLEWSKA 6, 30-045 KRAKÓW, POLAND

E-mail address: rmptak@cyf--kr.edu.pl