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Abstract. We characterize the spaces of all local intertwiners I(A, B; e) that are reflexive (hy-

perreflexive). We show that if e is not an eigenvector of A, then the reflexivity (hyperreflexivity)

of I(A, B; e) depends only on B and is independent of A and e. This has consequences concerning

the reflexivity of the space of intertwiners I(A, B) and of the commutant of an operator.

1. Introduction

For complex Banach spaces X and Y, let B(X, Y) be the Banach space of all bounded linear

operators from X to Y; similarly, let B(X) be the Banach algebra of all bounded linear operators

on X. The topological dual of X is denoted by X∗.
Let A ∈ B(X), B ∈ B(Y), and e ∈ X be given. An operator S ∈ B(X, Y) intertwines A and

B at e, if SAe = BSe. The set of all operators that intertwine A and B at e is denoted by

I(A,B; e). In particular, if X = Y and A = B, then C(A, e) := I(A,A; e) is the local commutant

of A at e. Local commutants were introduced and studied by Larson [8], see also [3].

It is obvious that I(A,B; e) is a linear space of operators and it is not hard to see that I(A,B; e)
is closed in the strong operator topology, which means, by convexity, that it is closed in the weak

operator topology as well.

For a linear subspace S ⊆ B(X, Y), the reflexive closure of S is given by

Ref S = {T ∈ B(X, Y); Tx ∈ [Sx] for all x ∈ X},
where Sx = {Sx; S ∈ S} is the orbit of S at x and [Sx] is its closure. It is obvious that Ref S ⊇ S.

If Ref S = S, then the space S is said to be reflexive.

In Section 2 we give a complete description of subspaces I(A,B; e) that are reflexive. It is easy

to see that this space is reflexive if e is an eigenvector of A. If e and Ae are linearly independent

then the space I(A,B; e) is reflexive if and only if
⋂

λ∈C[im (B − λ)] = {0}. It is interesting that

this condition depends only on B and is independent of A and e. This has applications for the

reflexivity of the space of intertwiners between A and B.

Section 3 is devoted to the hyperreflexivity (for the definition see that section). It is well-

known that any hyperreflexive subspace of operators is reflexive and that the converse does not

hold, see [7], Theorem 6. We shall show that spaces of locally intertwining operators provide

natural examples of spaces of operators that are reflexive but not hyperreflexive.

In the last section we discuss the k-reflexivity and k-hyperreflexivity of spaces of local inter-

twiners.

Key words and phrases. Commutant, local commutant, reflexivity, hyperreflexivity.
1



2 BRAČIČ, MÜLLER, AND ZAJAC

2. Reflexivity of the space of locally intertwining operators

In this section we shall characterize those spaces I(A,B; e) that are reflexive. The following

proposition describes the orbits of spaces of local intertwiners.

Proposition 2.1. Let A ∈ B(X), B ∈ B(Y), and e, x ∈ X \ {0} be arbitrary.

(i) If x is not in the linear span of the vectors e and Ae, i.e. x /∈ ∨{e, Ae}, then I(A,B; e)x =
Y.

(ii) If Ae = λe for some λ ∈ C and x is a scalar multiple of e, then I(A,B; e)x = ker (B−λ).
(iii) If e and Ae are linearly independent, α, β ∈ C and x = αAe + βe, then I(A,B; e)x =

im (αB + β).

Proof. (i) Since x /∈ ∨{e,Ae} there exists ξ ∈ X∗ that annihilates ∨{e,Ae}, that is ξ ∈(∨{e, Ae})⊥ such that 〈x, ξ〉 = 1. Let y ∈ Y be artitrary. The operator y ⊗ ξ, which is given by

(y⊗ξ)z = 〈z, ξ〉y (z ∈ X), maps x to y and it is in I(A,B; e) because (y⊗ξ)Ae = 0 = B(y⊗ξ)e.
(ii) Let µ ∈ C\{0} be such that x = µe. If S ∈ I(A,B; e), then (B−λ)Sx = µS(Ae−λe) = 0.

Thus, I(A,B; e)x ⊆ ker (B − λ). For the opposite inclusion, let y ∈ ker (B − λ) be arbitrary.

Then there exists S ∈ B(X,Y) such that Sx = y. Since (B − λ)Se = µ−1(B − λ)y = 0 we have

BSe = λSe = SAe and S ∈ I(A,B; e).
(iii) If S ∈ I(A, B; e), then Sx = S(αAe + βe) = (αB + β)Se, which shows that I(A,B; e)x ⊆

im (αB + β). On the other hand, let y = (αB + β)w, where w ∈ Y, be an arbitrary vector in

the range im (αB + β). Since e and Ae are linearly independent there exist ξ, η ∈ X∗ such that

〈e, ξ〉 = 1 = 〈Ae, η〉 and 〈Ae, ξ〉 = 0 = 〈e, η〉. Set S := w ⊗ ξ + Bw ⊗ η. Then it is easily seen

that S ∈ I(A,B; e) and Sx = y. ¤

Let σp(T ) be the point spectrum (the set of eigenvalues) of a given linear operator T ∈ B(X).
It is well-known that a number λ is in σp(T ∗) if and only if the range im (T − λ) is not dense in

X. Recall that a nonempty set S ⊆ B(X) is transitive if, for any x 6= 0, the orbit Sx is dense in

X.

Corollary 2.2. Let A,B ∈ B(X) and e ∈ X. Assume that e and Ae are linearly independent.

Then it is an immediate consequence of Proposition 2.1 that I(A,B; e) is transitive if and only

if the point spectrum of B∗ is empty. In particular, the local commutant C(A, e) is transitive if

and only if σp(A∗) = ∅.

Now we describe the reflexive closure of the space of local intertwiners.

Proposition 2.3. Let A ∈ B(X), B ∈ B(Y), and e ∈ X be arbitrary. If e and Ae are linearly

independent, then

Ref I(A,B; e) = {T ∈ B(X, Y); T (A− λ)e ∈ [im (B − λ)] for all λ ∈ C}.

Proof. Let T ∈ Ref I(A,B; e) be arbitrary. Choose λ ∈ C and set xλ = Ae− λe. By Proposition

2.1 (iii), I(A,B; e)xλ ∈ im (B−λ). Since Tx ∈ [I(A,B; e)x] for any x ∈ X we conclude T (A−λ)e =
Txλ ∈ [I(A,B; e)xλ] = [im (B − λ)].
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Now, assume that T ∈ B(X, Y) satisfies T (A − λ)e ∈ [im (B − λ)] for all λ ∈ C. Let x ∈ X

be arbitrary. It is obvious that Tx ∈ [I(A,B; e)x] for x = 0. Suppose therefore that x 6= 0.

If x /∈ [{e,Ae}], then, by Proposition 2.1 (i), I(A,B; e)x = Y which gives Tx ∈ [I(A, B; e)x].
If x is a scalar multiple of e, say x = βe for some β 6= 0, then I(A,B; e)x = im (βI) = Y,

by Proposition 2.1 (iii), and again Tx ∈ [I(A,B; e)x]. Finally, assume that x = αAe + βe

with α 6= 0. Then Tx = αT (A + β/α)e ∈ [im (B + β/α)]. Since, by Proposition 2.1 (iii),

im (B + β/α) = I(A, B; e)(A + β/α)e we conclude that Tx ∈ [I(A,B; e)x]. ¤

Corollary 2.4. If e and Ae are linearly independent, then Ref I(A,B; e) = B(X, Y) if and only

if σp(B∗) = ∅.
Proof. If σp(B∗) = ∅, then [im (B − λ)] = Y for all λ ∈ C. Thus, every T ∈ B(X, Y) satisfies the

condition T (A−λ)e ∈ [im (B−λ)] (λ ∈ C), which means, by Proposition 2.3, that T ∈ I(A,B; e).
On the other hand, if there exists λ ∈ σp(B∗), then [im (B − λ)] 6= Y. Since (A − λ)e is a

nonzero vector there exists T ∈ B(X,Y) such that T (A− λ)e /∈ [im (B − λ)]. ¤

It follows from Proposition 2.1 that I(A,B; e) is reflexive whenever e is an eigenvector of A.

Proposition 2.5. Let A ∈ B(X) and B ∈ B(Y). If e ∈ X is an eigenvector of A, then I(A,B; e)
is reflexive.

Proof. Let Ae = λe and assume that T ∈ Ref I(A,B; e). Then, by Proposition 2.1, we have

Te ∈ ker (B − λ). It follows that BTe = λTe = TAe, i.e., T ∈ I(A, B; e). ¤

For an operator T ∈ B(X) such that σp(T ∗) 6= ∅, let Eig(T ∗) be the weak-∗ closure of the

subspace of X∗ that is spanned by the eigenvectors of T ∗. If σp(T ∗) is empty, then we set

Eig(T ∗) = {0}.
Theorem 2.6. Let A ∈ B(X), B ∈ B(Y), and e ∈ X be arbitrary. If e and Ae are linearly

independent, then the following is equivalent:

(i) I(A,B; e) is reflexive;

(ii) Eig(B∗) = Y∗;
(iii)

⋂
λ∈C[im (B − λ)] = {0}.

Proof. First we shall prove the equivalence of (i) and (ii). If Eig(B∗) is a proper subspace of

Y∗, then there exists a non-zero vector y ∈ Eig(B∗)⊥. Let ξ ∈ X∗ be such that 〈e, ξ〉 = 0 and

〈Ae, ξ〉 = 1. Then T := y ⊗ ξ is not in I(A,B; e), since TAe = y 6= 0 = BTe. However, for an

arbitrary number λ0, we have

T (A− λ0)e = y ∈ Eig(B∗)⊥ =
⋂

λ∈C
[im (B − λ)] ⊆ [im (B − λ0)],

which gives T ∈ Ref I(A,B; e), by Proposition 2.3.

For the opposite implication, assume that Eig(B∗) = Y∗. Let T ∈ Ref I(A,B; e) be arbitary.

By Proposition 2.3, we have T (A−λ)e ∈ [im (B−λ)] for all λ ∈ C. Choose and fix λ0 ∈ σp(B∗).
Then 〈T (A− λ0)e, η〉 = 0 for each η ∈ ker (B∗ − λ0). It follows that

〈TAe, η〉 = λ0〈Te, η〉 = 〈Te, B∗η〉 = 〈BTe, η〉.
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Thus, 〈(BT − TA)e, η〉 = 0 for all η ∈ ker (B∗ − λ0). Since λ0 ∈ σp(B∗) is arbitrary and since

Eig(B∗) = Y∗ we conclude that (BT − TA)e = 0, i.e. operator T is in I(A,B; e).
Now about the equivalence of (ii) and (iii). It is well known that [im (B−λ)] = ker (B∗−λ)⊥.

Thus, if x ∈ [im (B − λ)], for all λ ∈ C, then 〈ξ, x〉 = 0, for any eigenvector ξ of B∗. It follows

that x ∈ Eig(B∗)⊥. On the other hand, if x ∈ X is not in the intersection ∩λ∈C[im (B − λ)],
then there exists a number λ0 such that x /∈ [im (B − λ0)] = ker (B∗ − λ0)⊥. Thus, there exists

an eigenvector ξ of B∗ such that 〈ξ, x〉 6= 0, which means x /∈ Eig(B∗)⊥. ¤

Note that conditions (ii) and (iii) do not depend on vector e. Thus, the following assertion

holds.

Corollary 2.7. If I(A,B; e) is reflexive for e ∈ X \ {0} that is not an eigenvector for A, then

I(A,B; f) is reflexive for any f ∈ X. ¤

Clearly ⋂

e∈X

I(A, B; e) = I(A,B) := {S ∈ B(X, Y); SA = BS}.

Since an arbitary intersection of reflexive spaces is a reflexive space we have the following corol-

lary, which extends Lemma 1 [9].

Corollary 2.8. Let A ∈ B(X) and B ∈ B(Y). If Eig(B∗) = Y∗, then I(A,B) is reflexive. ¤

Note however that the condition Eig(B∗) = Y∗ is not necessary for reflexivity of I(A,B). For

instance, let N be a normal operator without eigenvalues on a complex Hilbert space H. Then,

of course, Eig(N∗) = {0}. On the other hand, the commutant {N}′ is reflexive since it is a von

Neumann algebra ([2], Proposition 56.6).

Corollary 2.9. Let A ∈ B(X) be an arbitrary operator and let B ∈ B(Y) be a non-zero nilpotent

operator. If I(A,B; e) is reflexive for some non-zero e ∈ X, then e is an eigenvector of A.

Proof. Since B is non-zero nilpotent the adjoint operator B∗ is a non-zero nilpotent as well.

It follows that Eig(B∗) 6= Y∗. By Theorem 2.6, I(A,B; e) cannot be reflexive if e is not an

eigenvector of A. ¤

Proposition 2.10. Let T ∈ B(X) and S ∈ B(Y) be operators such that there exists an injective

operator V ∈ I(T, S). If S satisfies condition (iii) of Theorem 2.6, then T satisfies this condition

as well.

Proof. Assume that T does not satisfy the conditions. Then there exists a non-zero vector

x ∈ ⋂
λ∈C[im (T − λ)]. The intertwiner V is injective, therefore V x ∈ Y is also a non-zero

vector. Let λ ∈ C be an arbitary number. Since x ∈ [im (T − λ)], there exists a sequence

(xn) in X such that limn→∞ ‖(T − λ)xn − x‖ = 0. It follows limn→∞ ‖(S − λ)V xn − V x‖ ≤
‖V ‖ limn→∞ ‖(T − λ)xn − x‖ = 0, which gives V x ∈ [im (S − λ)]. We conclude that S does not

satisfy condition (iii) of Theorem 2.6. ¤
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Note that the condition in Proposition 2.10 is satisfied if T is a quasi-affine transform of S.

In particular, it is weaker than the quasi-similarity of operators T and S.

Now we shall give a description of operators that satisfy the equivalent conditions (ii) and

(iii) of Theorem 2.6. Our description is based on the idea presented in [5], Solution 69.

Let Ω be a non-empty set and let X(Ω) be a Banach space of complex-valued functions on Ω
satisfying the following two conditions:

for each ω ∈ Ω, there exists f ∈ X(Ω) such that f(ω) 6= 0;

|f(ω)| ≤ ‖f‖, for f ∈ X(Ω) and ω ∈ Ω.
(1)

An operator M ∈ B(X(Ω)) is a multiplication operator if there exists a complex-valued function

ϕ on Ω such that (Mf)(ω) = ϕ(ω)f(ω) for all ω ∈ Ω. If M is a multiplication operator, then the

corresponding function ϕ is uniquely determined. In the sequel we shall write Mϕ to indicate

the connection between a multiplication operator and the corresponding function.

For each ω ∈ Ω, define the point evaluation ξω on X(Ω) by 〈f, ξω〉 = f(ω) (f ∈ X(Ω)). Since

|〈f, ξω〉| = |f(ω)| ≤ ‖f‖ (f ∈ X(Ω))

each ξω is a linear functional with norm at most 1. By the first condition in (1), each ξω is

non-zero and it is not hard to see that the linear span of {ξω; ω ∈ Ω} is weak-∗ dense in X(Ω)∗.
Let Mϕ ∈ B(X(Ω)) be an arbitrary multiplication operator. Then

〈f,
(
Mϕ

)∗
ξω〉 = 〈Mϕf, ξω〉 = ϕ(ω)f(ω) = 〈f, ϕ(ω)ξω〉 (f ∈ X(Ω))

holds for any ω ∈ Ω. Thus, each ξω is an eigenvector for
(
Mϕ

)∗
(with ϕ(ω) as the corresponding

eigenvalue) and consequently Eig
((

Mϕ

)∗) = X(Ω)∗.
Now, let X be a Banach space that is isometrically isomorphic to X(Ω), i.e. there exists a

(bijective) linear isometry U : X → X(Ω). Assume that T ∈ B(X) is equivalent to a multipli-

cation operator Mϕ ∈ B(X(Ω)), which means T = U−1MϕU. It is easily seen that the linear

span of {U∗ξω; ω ∈ Ω} is weak-∗ dense in X∗ and that T ∗U∗ξω = ϕ(ω)U∗ξω (ω ∈ Ω). Thus,

Eig(T ∗) = X∗. We have proved one implication in the following theorem.

Theorem 2.11. Let X be a Banach space. An operator T ∈ B(X) satisfies Eig(T ∗) = X∗ if and

only if T is equivalent to a multiplication operator Mϕ on a Banach space X(Ω) satisfying (1).

Proof. Let Ω be the set of all eigenvectors of T ∗ of norm 1. For each x ∈ X, let Ux be the

complex function on Ω defined by
(
Ux

)
(ω) = 〈x, ω〉. Of course X(Ω) := {Ux; x ∈ X} is a linear

space of complex-valued functions on Ω and U : x 7→ Ux is a linear surjection from X to X(Ω).
The map U is also injective since the weak-∗ closed linear span of Ω is Eig(T ∗) = X∗. If we

equip X(Ω) with the norm ‖Ux‖ := ‖x‖ (x ∈ X), then X(Ω) becomes a Banach space satisfying

(1) and U becomes an isometry, which means that X and X(Ω) are isometrically isomorphic

Banach spaces. Define ϕ : Ω → C through T ∗ω = ϕ(ω)ω and let Mϕ : X(Ω) → X(Ω) be given

by
(
MϕUx

)
(ω) = ϕ(ω)

(
Ux

)
(ω). Then

(
MϕUx

)
(ω) = ϕ(ω)〈x, ω〉 = 〈x, T ∗ω〉 =

(
UTx

)
(ω),
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which gives Mϕ = UTU−1. Thus, Mϕ is bounded and it is a multiplication operator equivalent

to T . ¤

Corollary 2.12. Let A ∈ B(X), B ∈ B(Y), and e ∈ X be arbitrary. If e and Ae are linearly

independent, then I(A,B; e) is reflexive if and only if B is equivalent to a multiplication operator

Mϕ on a Banach space X(Ω) satisfying (1).

Assume that a multiplication operator Mϕ on X(Ω) (satisfying (1)) is also an algebraic oper-

ator. Let m(z) = (z − λ1)r1 · · · (z − λk)rk be the minimal polynomial. It is easily seen that the

condition m
(
Mϕ

)
= 0 is equivalent to the condition

(
ϕ(ω)− λ1

)r1 · · · (ϕ(ω)− λk

)rk = 0 for all ω ∈ Ω.

However,
(
ϕ(ω) − λ1

)r1 · · · (ϕ(ω) − λk

)rk = 0 if and only if
(
ϕ(ω) − λ1

) · · · (ϕ(ω) − λk

)
= 0.

Thus, if Mϕ is an algebraic operator, then each zero of its minimal polynomial is simple. On

the other hand, if ϕ(Ω) = {λ1, . . . , λk}, then Mϕ is an algebraic multiplication operator with

the minimal polynomial m(z) = (z − λ1) · · · (z − λk).

Corollary 2.13 (Cf. [1], Section 3). If B ∈ B(Y) is an algebraic operator such that its minimal

polynomial has only simple zeroes, then I(A,B; e) is reflexive for any A ∈ B(X) and any e ∈ X.

On the other hand, if B is algebraic and I(A,B; e) is reflexive for an operator A ∈ B(X) and a

vector e ∈ X that is not an eigenvector for A, then the minimal polynomial of B has only simple

zeroes.

Proof. Let m(z) = (z− λ1) · · · (z− λk) be the minimal polynomial of B (thus, λi 6= λj if i 6= j).

For each 1 ≤ i ≤ k, let qi(z) := m(z)/(z−λi). Since m(B) = 0 we have [im (B−λi)] ⊆ ker qi(B)
and consequently

⋂

λ∈C
[im (B − λ)] ⊆

k⋂

i=1

[im (B − λi)] ⊆
k⋂

i=1

ker qi(B).

However, the intersection
⋂k

i=1 ker qi(B) is trivial since the greatest common divisor of the

polynomials qi is equal to 1.

Conversely, suppose that I(A,B; e) is reflexive for some A and e, such that e is not an

eigenvector of A. Then B is equivalent to a multiplication operator Mϕ, by Theorems 2.6 and

2.11. Of course, Mϕ is an algebraic operator with the same minimal polynomial as B. By the

observation above, we conclude that the minimal polynomial has only simple zeroes. ¤

Example 2.14. (1) An operator B ∈ B(Y) will be called semi-shift if it is bounded below and⋂∞
n=1 im Bn = {0}. Any semi-shift satisfies the equivalent conditions of Theorem 2.6. Indeed,

there is an open neighbourhood U of 0 such that B − z is bounded below for z ∈ U . Then⋂
z∈U im (B − z) =

⋂∞
n=1 im Bn = {0}. Hence the spaces of intertwiners I(A,B; e) are reflexive

for all A ∈ B(X) and e ∈ X, which gives the reflexivity of I(A,B) for any A ∈ B(X).
(2) In particular, let B ∈ B(H) be a unilateral weighted shift on a Hilbert space H. Thus,

Bei = wiei+1 (i = 0, 1, . . .), where e0, e1, . . . is an orthonormal basis for H and wi ∈ C form a
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bounded sequence. Suppose that im B is closed, i.e. infi |wi| > 0. Then B is a semi-shift and

therefore it satisfies the conditions of Theorem 2.6.

Assumption that imB is closed is necessary. For example, let B be the weighted shift with

weights wi = 1
i+1 . Then ‖Bn‖ = 1

n! and so B is quasinilpotent. Hence
⋂

z∈C[im (B − z)] =
[im B] = ∨{ei; i ≥ 1} and B does not satisfy the conditions of Theorem 2.6.

(3) Let V be an isometry acting in a Hilbert space H. Let V = U ⊕ S be the Wold decom-

position of V , where U is unitary and S is a unilateral shift (of some multiplicity). Clearly,

the commutant {U}′ is reflexive since it is a von Neumann algebra and {S}′ is reflexive by (1).

However, in general {V }′ is not reflexive. For example, let U be the bilateral shift and S the

unilateral shift. Then V = U ⊕ S may be represented as the operator of multiplication by z in

L2 ⊕ H2, where L2 is considered with respect to Lebesgue measure on the unit circle and H2

is the Hardy space. For f1, f2 ∈ L∞, f3 ∈ H∞ the operator of multiplication by the matrix[
f1 f2

0 f3

]
belongs to {V }′. For g ∈ H2, g 6= 0, we have {V }′(0⊕ g) ⊃ gL∞ ⊕ 0 = L2 ⊕ 0. Hence

for any X ∈ B(H2, L2) the operator

[
0 X

0 0

]
∈ Ref{V }′ and {V }′ is not reflexive.

3. Hyperreflexivity of the space of locally intertwining operators

Let S ⊆ B(X, Y) be a closed subspace. For an operator T ∈ B(X,Y), define

α(T, S) = sup{dist(Tx, Sx); x ∈ X, ‖x‖ = 1}.

The space S is said to be hyperreflexive if there is a constant c > 0 such that the inequality

dist(T, S) ≤ c α(T, S) holds for all T ∈ B(X, Y). It is well known that the hyperreflexivity is

stronger condition than reflexivity, that is, each hyperreflexive space is reflexive. In this section

we shall show that some spaces of local intertwiners can serve as natural examples of spaces that

are reflexive but not hyperreflexive.

First we give a characterisation of hyperreflexive spaces of local intertwiners.

Proposition 3.1. Let A ∈ B(X) and B ∈ B(Y) be arbitary operators and assume that Ae = λe

for some λ ∈ C. Then I(A,B; e) is hyperreflexive.

Proof. Without loss of generality we may assume that ‖e‖ = 1. Let S ∈ B(X,Y). By Proposition

2.1, we have α
(
S, I(A,B; e)

)
= dist

(
Se, ker (B − λ)

)
.

We shall prove that dist
(
S, I(A, B; e)

)
= dist

(
Se, ker (B−λ)

)
. Let ε > 0 and let y ∈ ker (B−λ)

satisfy ‖Se− y‖ < dist
(
Se, ker (B − λ)

)
+ ε. Let y∗ ∈ Y∗ satisfy 〈e, y∗〉 = 1 = ‖y∗‖. Define S0 ∈

B(X, Y) by S0e = Se−y and S0|ker y∗ = 0. Then S−S0 ∈ I(A,B; e) and dist
(
S, I(A,B; e)

) ≤ ‖S0‖.
Let x ∈ X have norm 1. Write x = αe + x0 with α ∈ C and x0 ∈ ker y∗. Then

‖(S0)x‖ = ‖α(S0)e‖ = |〈x, y∗〉| · ‖Se− y‖
≤ ‖Se− y‖ ≤ dist

(
Se, ker (B − λ)

)
+ ε.

Hence dist
(
S, I(A, B; e)

) ≤ dist
(
Se, ker (B − λ)

)
. ¤
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Lemma 3.2. Let A ∈ B(X) and B ∈ B(Y) be arbitary operators. Let e ∈ X and Ae be linearly

independent. Then there exists a constant k > 0 such that for any S ∈ B(X, Y) it is possible to

find S0 ∈ B(X,Y) with the properties

S0e = 0, S − S0 ∈ I(A,B; e) and ‖S0‖ ≤ k‖SAe−BSe‖.
Consequently, dist

(
S, I(A,B; e)

) ≤ k‖SAe−BSe‖.

Proof. Since e and Ae are linearly independent there exists k > 0 such that |β| ≤ k
2‖αe + βAe‖

for arbitrary α, β ∈ C. Choose and fix a projection P ∈ B(X) whose image is ∨{e,Ae} and

‖P‖ ≤ 2. Let S ∈ B(X,Y) be arbitrary. Now let S0 ∈ B(X, Y) be defined by conditions

S0e = 0, S0Ae = SAe−BSe and S0|ker P = 0.

Since (S − S0)Ae = SAe− SAe + BSe = B(S − S0)e, the operator S − S0 is in I(A,B; e). Let

x ∈ X be an arbitrary vector of norm 1 and let x = αe + βAe + x0 with x0 ∈ kerP . Then

‖S0x‖ = ‖βS0Ae‖ = |β| · ‖SAe−BSe‖ ≤ k

2
‖αe + βAe‖ · ‖SAe−BSe‖

=
k

2
‖Px‖ · ‖SAe−BSe‖ ≤ k‖SAe−BSe‖.

It follows now that dist
(
S, I(A,B; e)

) ≤ ‖S0‖ ≤ k‖SAe−BSe‖. ¤

Theorem 3.3. Let A ∈ B(X) and B ∈ B(Y) be arbitary operators and assume that e ∈ X

and Ae are linearly independent. Then I(A,B; e) is hyperreflexive if and only if there exists a

number ε > 0 such that sup{dist
(
y, im (B − λ)

)
; λ ∈ C} > ε, for all y ∈ Y, ‖y‖ = 1.

Proof. Withot loss of generality we assume that ‖e‖ = 1, ‖A‖ ≤ 1, and ‖B‖ ≤ 1.

Suppose that for any ε > 0 there exists a vector yε ∈ Y of norm one such that

(2) sup{dist
(
yε, im (B − λ)

)
; λ ∈ C} < ε.

Since e and Ae are linearly independent, there exists ξ ∈ X∗ such that 〈ξ, e〉 = 0 and 〈ξ, Ae〉 = 1.

Let Fε := yε ⊗ ξ. Thus Fε is a rank-one operator that maps e to 0 and Ae to yε. We show

that dist
(
Fε, I(A,B; e)

) ≥ 1/2. Towards contradiction suppose that there exists an operator

S ∈ I(A,B; e) such that ‖Fε − S‖ < 1/2. Then ‖Se‖ = ‖Fεe − Se‖ ≤ ‖Fε − S‖ < 1/2 and

therefore ‖SAe‖ = ‖BSe‖ ≤ ‖B‖ · ‖Se‖ < 1/2. It follows that

‖(Fε − S)Ae‖ = ‖yε − SAe‖ ≥ ‖yε‖ − ‖SAe‖ > 1− 1/2 = 1/2.

Since ‖Ae‖ ≤ 1 we conclude that ‖Fε − S‖ > 1/2, which contradicts to the assumption.

We have seen that for any ε > 0 there exists a rank-one operator Fε such that dist
(
Fε, I(A,B; e)

) ≥
1/2. Now we shall estimate α

(
Fε, I(A,B; e)

)
.

If a vector x ∈ X is not in [{e,Ae}], then I(A,B; e)x = Y, by Proposition 2.1. Thus,

dist
(
Fεx, I(A,B; e)x

)
= 0 in this case.

Assume that x = αAe + βe, for some α, β ∈ C, and ‖x‖ = 1. Of course, there is a number

M > 0 such that M ≥ |α| for all α ∈ C that satisfy condition ‖αAe + βe‖ = 1 for some β ∈ C.

Note that M does not depend on ε. By Proposition 2.1, if x = αAe + βe, then I(A,B; e)x =
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im (αB + β). Thus, dist
(
Fεx, I(A,B; e)x

)
= dist

(
αyε, im (αB + β)

) ≤ Mdist
(
yε, im (αB + β)

)

and therefore, by (2), dist
(
Fεx, I(A,B; e)x

)
< Mε. We conclude that α

(
Fε, I(A,B; e)

)
< Mε.

Now, since limε→0 α
(
Fε, I(A,B; e)

)
= 0 and dist

(
Fε, I(A,B; e)

) ≥ 1/2 for any ε > 0, the space

I(A,B; e) is not hyperreflexive.

For the opposite implication, let S ∈ B(X, Y) be arbitrary and let S0 ∈ B(X, Y) be an operator

that satisfies the conditions from Lemma 3.2, so dist
(
S, I(A,B; e)

) ≤ ‖S0‖ ≤ k‖SAe − BSe‖.
Since S−S0 ∈ I(A,B; e) we have α

(
S, I(A,B; e)

)
= α

(
S0, I(A,B; e)

)
. By the assumption, there

exists λ ∈ C such that dist
(
S0Ae, im (B − λ)

) ≥ ε‖S0Ae‖. Clearly λ ∈ σ(B), and so |λ| ≤ ‖B‖.
Note also that I

(
A,B; e

)
(Ae− λe) = im (B − λ), by Proposition 2.1. So we have

α
(
S, I(A,B; e)

)
= α

(
S0, I(A,B; e)

) ≥ ‖Ae− λe‖−1dist
(
S0(Ae− λe), I(A,B; e)(Ae− λe)

)

≥ dist
(
S0Ae, im (B − λ)

)

(‖A‖+ ‖B‖)‖e‖ ≥ ε‖S0Ae‖
(‖A‖+ ‖B‖)‖e‖ .

Recall that S0Ae = SAe−BSe (see proof of the claim) and so α
(
S, I(A,B; e)

) ≥ c‖SAe−BSe‖,
where c = ε

(‖A‖+‖B‖)‖e‖ . ¤

Example 3.4. Let Y = `2 and let B ∈ B(`2) be given by

B : (x1, x2, x3, . . .) 7→
(
x1,

1
2
x2,

1
3
x3, . . .

)
.

It is easily seen that im (B− 1
n) = {(xi) ∈ `2; xn = 0}, for any n ∈ N, and that im (B−λ) = `2 if

λ 6= 1
n (∀n ∈ N). Thus B satisfies condition (iii) of Theorem 2.6 and we conclude that I(A,B; e)

is reflexive for any Banach space X and arbitary A ∈ B(X) and e ∈ X. On the other hand, these

spaces are hyperreflexive if and only if e is eigenvector of A or e = 0. Namely, we shall see that

B does not satisfy condition (ii) of Theorem 3.3.

For a positive integer k, let f (k) = (f (k)
j ) ∈ `2 be given by

f
(k)
j =

{
1
k ; 1 ≤ j ≤ k2

0; k2 < j.

Then ‖f (k)‖ = 1 and f (k) ∈ im (B − λ) if λ /∈ {1, 1
2 , . . . , 1

k2 }. Thus dist
(
f (k), im (B − λ)

)
= 0

if λ /∈ {1, 1
2 , . . . , 1

k2 }. For 1 ≤ n ≤ k2 we have

dist
(
f (k), im (B − 1

n

)
= min{‖f (k) − (xj)‖; xn = 0} =

1
k
.

We conclude that

sup{dist
(
f (k), im (B − λ)

)
; λ ∈ C} =

1
k
,

which means that condition (ii) of Theorem 3.3 is not fulfilled.

4. k-reflexivity and k-hyperreflexivity of the space of locally intertwining

operators

Let X and Y be complex Banach spaces and let F (Y, X) be the space of all operators of finite

rank from Y to X, that is the linear span of all operators of finite rank. Thus, an operator

F ∈ B(Y, X) is of finite rank if and only if there exist a positive integer n and x1, . . . , xn ∈ X,
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η1, . . . , ηn ∈ Y∗ such that F = x1⊗ η1 + · · ·+xn⊗ ηn. The pair
(
B(X, Y), F (Y, X)

)
is a dual pair

via the pairing

〈T, F 〉 = 〈Tx1, η1〉+ · · ·+ 〈Txn, ηn〉,
where T ∈ B(X, Y) and F = x1 ⊗ η1 + · · · + xn ⊗ ηn ∈ F (Y,X) are arbitrary. If U ⊆ B(X, Y),
then let U⊥ := {F ∈ F (Y, X); 〈S, F 〉 = 0 for all S ∈ U} and, similarly, for W ⊆ F (Y, X),
let W⊥ := {S ∈ B(X, Y); 〈S, F 〉 = 0 for all F ∈ W}.

For a positive integer k, let Fk(Y,X) ⊆ F (Y, X) be the subset of all operators from Y to X

whose rank is at most k. Since Fk(Y, X)⊥ = {0} and Fk(Y, X) is closed under multiplication by

the scalars,
(
B(X,Y), F (Y, X), Fk(Y,X)

)
satisfies the conditions of a reflexive triple (over C) in

the sense of [4]. Thus, for a linear subspace S ⊆ B(X, Y) we define the k-reflexive cover of S as

RefkS :=
(
S⊥ ∩ Fk(Y, X)

)
⊥. The sets RefkS are linear subspaces of B(X, Y) closed in the weak

operator topology. Of course, S ⊆ RefkS and S is said to be k-reflexive if S = RefkS. Clearly,

the 1-reflexivity coincides with the notion of reflexivity. The reader is referred to [4] for details;

especially for the relation to the classical notion of a reflexive algebra.

Let S ⊆ B(X, Y) be a weakly closed subspace such that S = W⊥ with W ⊆ Fk(Y, X). Then

S⊥ ∩ F (Y, X) = (W⊥)⊥ ∩ F (Y,X) ⊇ W and consequently RefkS =
(
S⊥ ∩ F (Y, X)

)
⊥ ⊆ W⊥ = S.

It follows that S is k-reflexive. On the other hand, if S is k-reflexive, then S = W⊥ with

W = S⊥∩Fk(Y, X) ⊆ Fk(Y, X). Thus, S is k-reflexive if and only if there is a subset W ⊆ Fk(Y, X)
such that S = W⊥.

Proposition 4.1. For arbitrary A ∈ B(X), B ∈ B(Y), and e ∈ X, the subspace I(A,B; e) ⊆
B(X, Y) is 2-reflexive.

Proof. It is obvious that an operator S ∈ B(X, Y) satisfies SAe = BSe if and only if 〈S,Ae ⊗
η − e ⊗ B∗η〉 = 0 holds for all η ∈ Y∗. Thus, I(A,B; e) = G(A,B; e)⊥, where G(A,B; e) :=
{Ae⊗ η − e⊗B∗η; η ∈ Y∗} ⊆ F2(Y, X). ¤

Let S ⊆ B(X, Y) be a subspace and T ∈ B(X, Y). For a positive integer k, define

αk(T, S) = sup{ inf
A∈S

k∑

i=1

‖Txi −Axi‖; x1, . . . , xk ∈ X, ‖x1‖+ · · ·+ ‖xk‖ = 1}.

In particular, for k = 1, we have α1(T, S) = α(T, S). The space S is said to be k-hyperreflexive

if the seminorms dist(·, S) and αk(·, S) are equivalent.

Again, the notion of 1-hyperreflexivity coincides with that of hyperreflexivity.

Denote by dist1 the distance in the space Yk (the `1-direct sum of k copies of Y). We have

αk(T, S) = sup
x1,...,xk∈X

‖x1‖+···+‖xk‖=1

dist1
(
(Tx1, . . . , Txk), {(Ax1, . . . , Axk); A ∈ S})

= sup
x1,...,xk∈X

‖x1‖+···+‖xk‖=1

sup
y∗1 ,...,y∗

k
∈Y∗

‖y∗1‖≤1,...,‖y∗
k
‖≤1

{∣∣∣∣∣
k∑

i=1

〈Txi, y
∗
i 〉

∣∣∣∣∣ ;
k∑

i=1

〈Axi, y
∗
i 〉 = 0 for all A ∈ S

}

= sup
F∈Fk(Y,X)

‖F‖1≤1

|〈T, F 〉|.
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Thus, this definition agrees with that given by Klís and Ptak in [6] for Hilbert spaces.

Theorem 4.2. For arbitrary A ∈ B(X), B ∈ B(Y), and e ∈ X, the subspace I(A,B; e) ⊆ B(X, Y)
is 2-hyperreflexive.

Proof. If e is an eigenvector of A, then the space I(A,B; e) is even hyperreflexive, by Proposition

3.1.

Assume that the vectors e and Ae are linearly independent and let T ∈ B(X, Y) be arbitrary.

By Lemma 3.2, there is a constant k > 0 such that dist
(
T, I(A,B; e)

) ≤ k‖TAe−BTe‖. On the

other hand, let y∗ ∈ Y∗ satisfy ‖y∗‖ = 1 and 〈TAe−BTe, y∗〉 = ‖TAe−BTe‖. We have

α2

(
T, I(A,B, e)

) ≥ ‖Ae⊗ y∗ − e⊗B∗y∗‖−1
1 |〈T, Ae⊗ y∗ − e⊗B∗y∗〉|

≥ (
(‖A‖+ ‖B‖)‖e‖)−1|〈TAe−BTe, y∗〉| = (

(‖A‖+ ‖B‖)‖e‖)−1‖TAe−BTe‖.
Hence I(A,B; e) is 2-hyperreflexive. ¤
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