On the regular spectrum

Vladimír Müller

Introduction

Let T be a bounded linear operator acting in a Banach space X. Denote by R(T) = TX and $N(T) = \{x \in X, Tx = 0\}$ its range and kernel, respectively.

Continuity properties of the functions $z \mapsto R(T-z)$ and $z \mapsto N(T-z)$ were studied by a number of authors. The investigation was started by Kato [9], [10], who introduced also useful concepts of the reduced minimum modulus and the gap between two closed subspaces.

The spectrum $\sigma_{\gamma}(T)$ was defined for Hilbert space operators by Apostol [3] as the set of all complex λ such that either $R(T - \lambda)$ is not closed or λ is a discontinuity point of the function $z \mapsto R(T - z)$. Properties of this spectrum are analogous to the properties of the ordinary spectrum. It is always a non-empty compact subset of the complex plain, contains the topological boundary of $\sigma(T)$ and satisfies the spectral mapping property.

The results of Apostol were generalized by Mbekhta [14], [15], Mbekhta and Ouahab [16], [17] and Harte [7] for operators in Banach spaces.

In this paper we continue the investigation of σ_{γ} . We define an essential version $\sigma_{\gamma e}$ which exhibits similar properties as σ_{γ} and is closely related to the theory of semi-Fredholm operators. Further we study generalized inverses for $T - \lambda$ and show that it is not possible to extend reasonably σ_{γ} for *n*-tuples of commuting operators.

The author would like to thank to the referee for drawing his attention to the paper of Rakočevič [18] which is closely related to the present paper. Some of the results are already proved in [18], especially Theorem 3.1, equivalence $1 \Leftrightarrow 2$ (see Theorem 2.1 of [18]) or the spectral mapping theorem for $\sigma_{\gamma e}$. We leave the proofs here for the sake of completeness and because they seem to us sometimes more direct. On the other hand the present paper solves some questions posed in [18]. Thus Example 2.2 gives a negative answer to both parts of Question 4 and Theorem 3.5 gives a positive answer to Question 2 of [18].

I. Semi-regular operators and spectrum σ_{γ}

Throughout the paper we shall denote by X a fixed complex Banach space X. Denote by B(X) the algebra of all bounded linear operators in X. For $T \in B(X)$ the reduced minimum modulus of T is defined by

$$\gamma(T) = \inf \{ \|Tx\|, x \in X, \operatorname{dist}\{x, N(T)\} = 1 \}$$

(if T = 0 then we set $\gamma(T) = \infty$).

Let M_1 and M_2 be two closed subspaces of X. Then we denote by

$$\delta(M_1, M_2) = \sup \{ \operatorname{dist}\{x, M_2\}, x \in M_1, \|x\| = 1 \}$$

(if $M_1 = \{0\}$ then $\delta(M_1, M_2) = 0$) and the gap between M_1 and M_2 by

$$\hat{\delta}(M_1, M_2) = \max\{\delta(M_1, M_2), \delta(M_2, M_1)\}.$$

We list the most important properties of the reduced minimum modulus and the gap between two subspaces (see [10], Chapter IV):

Theorem 1.1.

- 1) $\gamma(T) > 0$ if and only if R(T) is closed,
- 2) $\gamma(T) > r > 0$ if and only if for every $y \in R(T)$ there exists $x \in X$ such that Tx = y and

$$||x|| \le r^{-1} ||y||$$

- 3) $\gamma(T^*) = \gamma(T)$,
- 4) the set $\{T \in B(X), \gamma(T) \ge \varepsilon\}$ is norm-closed in B(X) for every ε (see [2]),
- 5) $\delta(M_1, M_2) = \delta(M_2^{\perp}, M_1^{\perp}),$
- 6) if $\hat{\delta}(M_1, M_2) < 1$ then dim $M_1 = \dim M_2$.

For $T \in B(X)$ we have $R(T) \supset R(T^2) \supset R(T^3) \supset \ldots$ and $N(T) \subset N(T^2) \subset \ldots$. Denote shortly $R^{\infty}(T) = \bigcap_{n=0}^{\infty} R(T^n)$ and $N^{\infty}(T) = \bigvee_{n=0}^{\infty} N(T^n)$.

Consider the function $z \mapsto \gamma(T-z)$ defined for complex z. Although this function is not continuous in general, it has good continuity properties. From a great number of equivalent conditions characterizing the continuity points of the function $z \mapsto \gamma(T-z)$ we choose the most important:

Theorem 1.2. Let $T \in B(X)$ be an operator with closed range. The following conditions are equivalent:

- 1) the function $z \mapsto \gamma(T-z)$ is continuous at z = 0,
- 2) the function $z \mapsto \gamma(T-z)$ is bounded from below in a neighbourhood of 0, i.e. there exists $\varepsilon > 0$ such that $\inf_{|z| < \varepsilon} \gamma(T-z) > 0$,
- 3) the function $z \mapsto R(T-z)$ is continuous at 0 in the gap topology, i.e.

$$\lim_{z \to 0} \hat{\delta} \big(R(T), R(T-z) \big) = 0,$$

4) the function $z \mapsto N(T-z)$ is continuous at 0 in the gap topology, i.e.

$$\lim_{z \to 0} \hat{\delta} \big(N(T), N(T-z) \big) = 0,$$

5) $N(T) \subset R^{\infty}(T),$ 6) $N^{\infty}(T) \subset R(T),$ 7) $N^{\infty}(T) \subset R^{\infty}(T).$

The previous theorem was proved in [16]. The equivalence of the first four conditions is true for any continuous operator-valued function $z \mapsto T(z)$; in [19] this result was attributed to Markus, see [13]. **Definition 1.3.** (see [16]) An operator $T \in B(X)$ is called s-regular (semi-regular) if T has closed range and satisfies any of the equivalent conditions of Theorem 1.2.

For s-regular operators the subspaces $R^{\infty}(T)$ and $N^{\infty}(T)$ can be described in another way. We start with two simple lemmas:

Lemma 1.4. Let $T \in B(X)$ be s-regular, $x \in X$ and $Tx \in R^{\infty}(T)$. Then $x \in R^{\infty}(T)$.

Proof. Let n > 1. Then there exists $y \in X$ such that $T^{n+1}y = Tx$, i.e. $x - T^n y \in X$ $N(T) \subset R^{\infty}(T) \subset R(T^n)$. So $x \in R(T^n)$ and as n was arbitrary, $x \in R^{\infty}(T)$.

Lemma 1.5. Let $T \in B(X)$ be an s-regular operator. Denote by $U = \{z \in \mathbf{C}, |z| < z\}$ $\gamma(T)$. Then for every $\lambda \in U$ and $x \in N(T-\lambda)$ there exists an analytic function $f: U \to X$ such that (T-z)f(z) = 0 $(z \in U)$ and $f(\lambda) = x$.

Proof. By [16], Theorem 2.10., T - z is s-regular for $z \in U$. By [19], Theorem 2, there exists a Banach space Y and an analytic operator-valued function $S: U \to B(Y, X)$ such that R(S(z)) = N(T(z)) $(z \in U)$. Choose $y \in Y$ such that $S(\lambda)y = x$ and set f(z) = S(z)y. Clearly f satisfies all conditions of Lemma 1.5.

Theorem 1.6. Let $T \in B(X)$ be s-regular and let r be a positive number, $r \leq \gamma(T)$. Then

- 1) $N^{\infty}(T) = \bigvee_{|\lambda| < r} N(T \lambda),$ 2) $R^{\infty}(T) = \bigcap_{|\lambda| < r} R(T \lambda).$

Proof. 1) Denote by $U = \{z \in \mathbf{C}, |z| < \gamma(T)\}$. Let $\lambda \in U$ and $x \in N(T - \lambda)$. Then there exists an analytic function $f: U \to X$ such that (T-z)f(z) = 0 $(z \in U)$ and $f(\lambda) = x$. Let $f(z) = \sum_{i=0}^{\infty} a_i z^i$ $(z \in U)$, where $a_i \in X$. The equality (T-z)f(z) = 0implies $Ta_0 = 0$ and $Ta_i = a_{i-1}$ (i = 1, 2, ...). Thus $T^n a_n = 0$ and $a_n \in N(T^n) \subset$ $N^{\infty}(T)$, so that

$$x = f(\lambda) = \sum_{i=0}^{\infty} a_i \lambda^i \in N^{\infty}(T).$$

Hence $\bigvee_{|\lambda| < \gamma(T)} N(T - \lambda) \subset N^{\infty}(T)$.

Conversely, let $0 < r \leq \gamma(T)$ and $x \in N(T^n)$, i.e. $T^n x = 0$. Set $a_0 = T^{n-1}x$, $a_1 = T^{n-2}x, \ldots, a_{n-1} = x$. As $x \in N(T^n) \subset R^{\infty}(T)$, we can find $a_n \in X$ such that $Ta_n = x = a_{n-1}$ and $||a_n|| \le 2r^{-1} ||a_{n-1}||$. By Lemma 1.4, $a_n \in R^{\infty}(T)$, so that we can inductively construct elements a_i (i = n + 1, n + 2, ...), such that $Ta_i = a_{i-1}$ and $||a_i|| \le 2r^{-1}||a_{i-1}||$ (i = n, n + 1, ...). Set $f(z) = \sum_{i=0}^{\infty} a_i z^i$. Clearly this series converges for |z| < r/2 and (T-z)f(z) = 0, i.e. $f(z) \in N(T-z)$ (|z| < r/2). Further

$$x = a_{n-1} = \frac{1}{2\pi i} \int_{|z| = r/4} \frac{f(z)}{z^n} dz \in \bigvee_{|z| < r} N(T - z).$$

2) Let $0 < r \le \gamma(T)$ and $x \in \bigcap_{|z| < r} R(T - z)$.

By [19] there exists an analytic function $f(z) = \sum_{i=0}^{\infty} a_i z^i$ such that (T-z)f(z) = x(|z| < r). Hence $Ta_0 = x$ and $Ta_i = a_{i-1}$ (i = 1, 2, ...), so that $x \in R^{\infty}(T)$.

Conversely, let $x \in R^{\infty}(T)$ and $|\lambda| < \gamma(T)$. Choose r, $|\lambda| < r < \gamma(T)$. Similarly as in 1) we can find points $a_i \in X$ such that $a_0 = x$, $Ta_i = a_{i-1}$ and $||a_i|| \le r^{-1} ||a_{i-1}||$ for $i = 1, 2, \ldots$. Set $f(z) = \sum_{i=1}^{\infty} a_i z^{i-1}$. Then f(z) is defined and

$$(T-z)f(z) = x$$
 for $|z| < r$.

Thus $x \in R(T - \lambda)$ and

$$R^{\infty}(T) \subset \bigcap_{|z| < \gamma(T)} R(T-z)$$

We shall need the following lemma (for better use we state it in a little bit more general form):

Lemma 1.7. Let $T \in B(X)$ be an operator with a closed range. Suppose that, for k = 1, 2, ..., there exist a finite dimensional subspace $F_k \subset N(T)$ such that $N(T) \subset \overline{R(T^k)} + F_k$. Then $R(T^k)$ is closed for each k.

In particular, if R(T) is closed and $N(T) \subset \bigcap_{k=0}^{\infty} \overline{R(T^k)}$ then T is s-regular.

Proof. We prove by induction on k that $R(T^k)$ is closed.

Suppose that $k \ge 1$ and $\overline{R(T^k)} = R(T^k)$. Let $u \in \overline{R(T^{k+1})}$. By the induction assumption $u \in R(T^k)$, i.e. $u = T^k v$ for some $v \in X$. Further there are elements $v_j \in X$ (j = 1, 2, ...) such that $T^{k+1}v_j \to u$ $(j \to \infty)$. Thus $T(T^kv_j - T^{k-1}v) \to 0$. Consider the operator $\tilde{T} : X/N(T) \to R(T)$ induced by T. Clearly \tilde{T} is bounded below and $\tilde{T}(T^kv_j - T^{k-1}v + N(T)) \to 0$, so that $T^kv_j - T^{k-1}v + N(T) \to 0$ $(j \to \infty)$ in the quotient space X/N(T). Thus there exist vectors $k_j \in N(T)$ such that $T^kv_j + k_j \to T^{k-1}v$. Since $k_j \in N(T) \subset R(T^k) + F_k$ and $R(T^k) + F_k$ is closed, we have $T^{k-1}v = T^ka + f$ for some $a \in X$ and $f \in F_k \subset N(T)$. Hence $u = T^kv = T^{k+1}a \in R(T^{k+1})$ and $R(T^{k+1})$ is closed.

The following theorem gives another characterization of s-regular operators (cf. [3], Lemma 1.4 and [15], Theorem 2.1).

Theorem 1.8. Let $T \in B(X)$ be an operator with closed range. The following conditions are equivalent:

1) T is *s*-regular,

- 2) $N(T) \subset \bigvee_{z \neq 0} N(T-z),$
- 3) $R(T) \supset \bigcap_{z \neq 0} \overline{R(T-z)}.$

Proof. Implications $1 \Rightarrow 2$ and $1 \Rightarrow 3$ follow from the previous theorem (note that R(T-z) is closed for $|z| < \gamma(T)$ by [16], Theorem 2.10).

 $2 \Rightarrow 1$. Let $\lambda \neq 0$ and $x \in N(T-\lambda)$. Then $Tx = \lambda x$ and $x = \frac{T^n x}{\lambda^n} \in R(T^n)$, so that $x \in R^{\infty}(T)$. Thus $\bigvee_{\lambda \neq 0} N(T-\lambda) \subset \overline{R^{\infty}(T)}$, so that $N(T) \subset \overline{R^{\infty}(T)} \subset \bigcap_{n=0}^{\infty} \overline{R(T^n)}$ and T is s-regular by the previous lemma.

 $3 \Rightarrow 1$. Let $x \in N(T^n)$ and $\lambda \neq 0$. Then

$$(T-\lambda)(T^{n-1}+\lambda T^{n-2}+\ldots+\lambda^{n-1})x=T^nx-\lambda^n x=-\lambda^n x,$$

so that $x \in R(T - \lambda)$. Thus $N(T^n) \subset R(T - \lambda)$. Hence $N^{\infty}(T) \subset \bigcap_{z \neq 0} \overline{R(T - z)} \subset R(T)$ and T is s-regular.

Definition 1.9. Let $T \in B(X)$. Denote by $\sigma_{\gamma}(T) = \{\lambda \in \mathbf{C}, T - \lambda \text{ is not } s - regular\}.$

For properties of $\sigma_{\gamma}(T)$ see [3] and [15]. The spectrum $\sigma_{\gamma}(T)$ is always a non-empty compact subset of **C** and

$$\partial \sigma(T) \subset \sigma_{\gamma}(T) \subset \sigma(T).$$

More precisely, $\sigma_{\gamma}(T) \subset \sigma_{\pi}(T) \cap \sigma_{\delta}(T)$, where $\sigma_{\pi}(T)$ is the approximate point spectrum of T,

$$\sigma_{\pi}(T) = \left\{ \lambda, \inf\{\|(T-\lambda)x\|, x \in X, \|x\| = 1\} = 0 \right\}$$

and $\sigma_{\delta}(T) = \{\lambda, (T - \lambda)X \neq X\}$ is the defect spectrum of T.

The set $\{\lambda \in \sigma_{\gamma}(T), R(T-\lambda) \text{ is closed}\}$ is at most countable and

$$\sigma_{\gamma}(T) = \{\lambda, \lim_{z \to \lambda} \gamma(T - z) = 0\}$$

(this limit always exists).

Further $\sigma_{\gamma}(f(T)) = f(\sigma_{\gamma}(T))$ for every function f analytic in a neighbourhood of $\sigma(T)$ (in particular for every polynomial).

II. Generalized spectra

The axiomatic theory of spectrum was introduced by Żelazko [20]. A generalized spectrum in a Banach algebra A is a set-valued function $\tilde{\sigma}$ which assigns to every *n*-tuple a_1, \ldots, a_n of commuting elements of A a non-empty compact subset of \mathbb{C}^n such that

- 1) $\tilde{\sigma}(a_1,\ldots,a_n) \subset \prod_{i=1}^n \sigma(a_i),$
- 2) $\tilde{\sigma}(p(a_1,\ldots,a_n)) = p(\tilde{\sigma}(a_1,\ldots,a_n))$ for every *m*-tuple $p = (p_1,\ldots,p_m)$ of polynomials in *n* variables.

Sometimes, a generalized spectrum is defined first only for single elements and one is looking for its extension for *n*-tuples of commuting elements, see e.g. [6]. We show that σ_{γ} can not be extended to a generalized spectrum. We start with the following simple criterion:

Theorem 2.1. Let $\tilde{\sigma}$ be a generalized spectrum defined in a Banach algebra A, let $a, b \in A$ and ab = ba. Then $0 \in \tilde{\sigma}(ab)$ if and only if either $0 \in \tilde{\sigma}(a)$ or $0 \in \tilde{\sigma}(b)$.

Proof. If $0 \in \tilde{\sigma}(a)$ then there exists $\lambda \in \mathbb{C}$ such that $(0, \lambda) \in \tilde{\sigma}(a, b)$. Then $0 = 0 \cdot \lambda \in \tilde{\sigma}(ab)$. Similarly $0 \in \tilde{\sigma}(b)$ implies $0 \in \tilde{\sigma}(ab)$.

Conversely, let $0 \notin \tilde{\sigma}(a)$ and $0 \notin \tilde{\sigma}(b)$. Then

$$\begin{split} \tilde{\sigma}(ab) &= \{\lambda\mu, (\lambda, \mu) \in \tilde{\sigma}(a, b)\} \subset \{\lambda\mu, \lambda \in \tilde{\sigma}(a), \mu \in \tilde{\sigma}(b)\} \\ &\subset \{\lambda\mu, \lambda \neq 0, \mu \neq 0\} = \mathbf{C} - \{0\}, \end{split}$$

i.e. $0 \notin \tilde{\sigma}(ab)$.

Example 2.2. We construct two commuting s-regular opertors such that their product is not s-regular.

Let *H* be the Hilbert space with an orthonormal basis $\{e_{i,j}\}$ where *i* and *j* are integers such that $ij \leq 0$. Define operators *T* and $S \in B(H)$ by

$$Te_{i,j} = \begin{cases} 0 & \text{if } i = 0, j > 0, \\ e_{i+1,j} & \text{otherwise} \end{cases}$$

and

$$Se_{i,j} = \begin{cases} 0 & \text{if } j = 0, i > 0, \\ e_{i,j+1} & \text{otherwise.} \end{cases}$$

Then

$$TSe_{ij} = STe_{ij} = \begin{cases} 0 & \text{if } i = 0, j \ge 0 \text{ or } j = 0, i \ge 0, \\ e_{i+1,j+1} & \text{otherwise,} \end{cases}$$

so that T and S commute.

Further $N(T) = \bigvee \{e_{0,j}, j > 0\} \subset R^{\infty}(T), N(S) = \bigvee \{e_{i,0}, i > 0\} \subset R^{\infty}(S)$ and both R(T) and R(S) are closed. Thus T and S are s-regular.

On the other hand $TSe_{0,0} = 0$, i.e. $e_{0,0} \in N(TS)$ and $e_{0,0} \notin R(TS)$, so that TS is not s-regular.

Corollary 2.3. There exists no generalized spectrum $\tilde{\sigma}$ such that $\tilde{\sigma}(T) = \sigma_{\gamma}(T)$ for every $T \in B(X)$.

Remark 2.4. Note that one implication in Theorem 2.1 is true for σ_{γ} :

if TS = ST and either $0 \in \sigma_{\gamma}(T)$ or $0 \in \sigma_{\gamma}(S)$ then $0 \in \sigma_{\gamma}(TS)$ (see [15], Lemma 4.15).

Another drawback of the spectrum σ_{γ} is that it is not upper semicontinuous. For this it is sufficient to show that the set of all s-regular operators is not open.

Example 2.5. Let H be the Hilbert space with an orthonormal basis

$$\{e_{i,j}, i, j \text{ integers}, i \geq 1\}.$$

Let $T \in B(H)$ be defined by

$$Te_{i,j} = \begin{cases} e_{i,j+1} & \text{if } j \neq 0, \\ 0 & \text{if } j = 0. \end{cases}$$

Clearly $N(T) = \lor \{e_{i,0}, i \ge 1\} \subset R^{\infty}(T)$ and R(T) is closed, so that T is s-regular. Let $\varepsilon > 0$. Define $S \in B(H)$ by

$$Se_{i,j} = \begin{cases} \frac{\varepsilon}{i}e_{i,1} & \text{if } j = 0, \\ 0 & \text{if } j \neq 0. \end{cases}$$

Clearly $||S|| = \varepsilon$ and S is an infinite dimensional compact operator so that R(S) is not closed. Denote $M = \bigvee \{e_{i,1}, i \ge 1\}$. We have $R(T) \perp M$ and $R(S) \subset M$, so that

 $(T+S)x \in M$ implies $x \in N(T)$ and (T+S)x = Sx. Thus $R(T+S) \cap M = SN(T) = R(S)$, so that R(T+S) is not closed. Therefore T+S is not s-regular.

III. Essential case

In this section we admit finite dimensional jumps in N(T-z) or R(T-z).

If M_1 and M_2 are subspaces of X then we shall write shorty $M_1 \subset_e M_2$ if there exists a finite dimensional subspace $F \subset X$ such that $M_1 \subset M_2 + F$. In this case we may assume that $F \subset M_1$. Clearly $M_1 \subset_e M_2$ if and only if dim $(M_1|(M_1 \cap M_2)) < \infty$.

Theorem 3.1. Let $T \in B(X)$ be an operator with closed range. Then the following conditions are equivalent:

- 1) $N(T) \subset_e R^{\infty}(T)$,
- 2) $N^{\infty}(T) \subset_e R(T),$
- 3) $N^{\infty}(T) \subset_e R^{\infty}(T)$,
- 4) there exists a decomposition $X = X_1 \oplus X_2$ such that dim $X_1 < \infty$, $TX_1 \subset X_1$, $TX_2 \subset X_2$, $T|X_1$ is nilpotent and $T|X_2$ is an s-regular operator,
- 5) $N(T) \subset_e \bigvee_{z \neq 0} N(T-z),$
- 6) $R(T) \supset_e \bigcap_{z \neq 0} \overline{R(T-z)},$
- 7) $\dim(N(T)|\tilde{N}(T)) < \infty$, where $\tilde{N}(T)$ is the set of all $x \in X$ such that there are complex numbers λ_i (i = 1, 2, ...) tending to 0 and elements $x_i \in N(T \lambda_i)$ such that $x = \lim_{i \to \infty} x_i$ (clearly $\tilde{N}(T) \subset N(T)$),
- 8) $\dim(R(T)|R(T)) < \infty$ where R(T) is the set of all $x \in X$ such that $x = \lim_{i \to \infty} x_i$ for some $x_i \in R(T \lambda_i)$ and some $\lambda_i \to 0$. (Clearly $R(T) \subset \tilde{R}(T)$).

Proof. Implications $4 \Rightarrow 3$, $3 \Rightarrow 1$ and $3 \Rightarrow 2$ are clear.

 $1 \Rightarrow 4$ and $2 \Rightarrow 4$. We prove these two implications simultanously. The proof will be done in several steps.

a) Either 1) or 2) implies $N(T^n) \subset_e R(T^k)$ for every n, k, i.e. there are finite dimensional subspaces $F_{n,k} \subset N(T^n)$ such that

$$N(T^n) \subset R(T^k) + F_{n,k}.$$
(*)

Suppose first $N(T) \subset_e R^{\infty}(T)$. We prove (*) by induction on n.

The statement is clear for n = 1.

Suppose that we have found subspaces $F_{m,k} \subset N(T^m)$ for every $m \leq n-1$ and every k such that (*) holds. Choose a subspace $F'_{n,k} \subset X$ such that $TF'_{n,k} = F_{n-1,k+1} \cap R(T)$ and dim $F'_{n,k} = \dim(F_{n-1,k+1} \cap R(T)) \leq \dim F_{n-1,k+1} < \infty$.

Then

$$N(T^{n}) = T^{-1}N(T^{n-1}) \subset T^{-1}(R(T^{k+1}) + F_{n-1,k+1})$$

$$\subset (R(T^{k}) + N(T)) + (F'_{n,k} + N(T)) \subset R(T^{k}) + F'_{n,k} + R(T^{k}) + F_{1,k} = R(T^{k}) + F_{n,k},$$

where $F_{n,k} = F'_{n,k} + F_{1,k} \subset N(T^n)$.

We prove that 2) implies (*). Suppose $N^{\infty}(T) \subset_{e} R(T)$. We prove (*) by induction on k. The statement is clear for k = 1. Suppose (*) is true for every n and every $l \leq k-1$. Then $N(T^{n+1}) \subset R(T^{k-1}) + F_{n+1,k-1}$, so that

$$TN(T^{n+1}) \subset R(T^k) + TF_{n+1,k-1}$$

Further $TN(T^{n+1}) = N(T^n) \cap R(T)$ and $N(T^n) \subset R(T) + F_{n,1}$ where $F_{n,1} \subset N(T^n)$, so that

$$N(T^{m}) \subset (R(T) \cap N(T^{m})) + F_{n,1} = TN(T^{m+1}) + F_{n,1}$$
$$\subset R(T^{k}) + TF_{n+1,k-1} + F_{n,1} = R(T^{k}) + F_{n,k},$$

where $F_{n,k} = TF_{n+1,k} + F_{n,1} \subset N(T^n)$.

b) Condition (*) implies by Lemma 1.7 that $R(T^k)$ is closed for each k.

c) We construct now the decomposition $X = X_1 \oplus X_2$. Suppose that T satisfies (*).

If $N(T) \subset R^{\infty}(T)$ then T is s-regular and we can take $X_1 = \{0\}, X_2 = X$.

Therefore we may assume that $N(T) \not\subset R(T^k)$ for some k and we take the smallest k with this property, i.e. $N(T) \subset R(T^{k-1})$. Find a subspace L_1 such that

$$N(T) = L_1 \oplus (N(T) \cap R(T^k)).$$

Clearly $1 \leq \dim L_1 = r < \infty$.

As $L_1 \subset N(T) \subset R(T^{k-1})$, we can find a subspace L_k such that dim $L_k = r$ and $T^{k-1}L_k = L_1$. Set $L_i = T^{k-i}L_k$ (i = 1, ..., k). Clearly $L_i \subset R(T^{k-i})$ and $L_i \cap R(T^{k-i+1}) = \{0\}$ for every *i*. Therefore subspaces $L_k, L_{k-1}, ..., L_1$ and $R(T^k)$ are linearly independent in the following sense: if $l_i \in L_i$ $(1 \le i \le k), x \in R(T^k)$ and $x + l_1 + \cdots + l_k = 0$, then $x = l_1 = \ldots = l_k = 0$.

Let x_1, \ldots, x_r be a basis in L_1 . As x_1, \ldots, x_r are linearly independent modulo $R(T^k) + L_2 + \ldots + L_k$, we can find linear functionals $f_1, \ldots, f_r \in (R(T^k) + L_2 + \ldots + L_k)^{\perp}$ such that $\langle x_i, f_j \rangle = \delta_{ij}$ $(1 \leq i, j \leq r)$. Set

$$Y_1 = \bigvee_{i=1}^k L_i$$
 and $Y_2 = \bigcap_{j=0}^{k-1} \bigcap_{i=1}^r \ker(T^{*j}f_i).$

Clearly dim $Y_1 < \infty$, $TY_1 \subset Y_1$ and $(T|Y_1)^k = 0$. Further $TY_2 \subset Y_2$. Indeed, if $x \in Y_2$ then

$$\langle Tx, T^{*j}f_i \rangle = \langle x, T^{*(j+1)}f_i \rangle = 0 \quad \text{for} \quad 0 \le j \le k-2$$

and $\langle Tx, T^{*(k-1)}f_i \rangle = \langle T^kx, f_i \rangle = 0.$

Find $y_1, \ldots, y_r \in L_k$ such that $x_i = T^{k-1}y_i$ $(1 \le i \le r)$. Then

$$\{T^{j}y_{i}, 0 \le j \le k-1, 1 \le i \le r\}$$

form a basis of Y_1 and

$$\{T^{j}y_{i}, 0 \leq j \leq k-1, 1 \leq i \leq r\}$$
 and $\{T^{*j}f_{i}, 0 \leq j \leq k-1, 1 \leq i \leq r\}$

form a biorthogonal system. Thus it is easy to show that $X = Y_1 \oplus Y_2$.

Denote by $T_1 = T|Y_1$ and $T_2 = T|Y_2$. We have $N(T) = N(T_1) \oplus N(T_2) = L_1 \oplus N(T_2)$ and $R^{\infty}(T) = R^{\infty}(T_1) \oplus R^{\infty}(T_2) = R^{\infty}(T_2)$. If T satisfies 1), i.e. $\dim(N(T)|(N(T) \cap R^{\infty}(T))) < \infty$ then

$$\dim (N(T_2)|(N(T_2) \cap R^{\infty}(T_2))) = \dim (N(T)|(N(T) \cap R^{\infty}(T))) - r$$

$$< \dim (N(T)|(N(T) \cap R^{\infty}(T))) < \infty.$$

and we can repeat the same construction for T_2 . After a finite number of steps we obtain a decomposition $X = X_1 \oplus X_2$ such that dim $X_1 < \infty$, $TX_1 \subset X_1$, $TX_2 \subset X_2$, $T|X_1$ is nilpotent and $N(T|X_2) \subset R^{\infty}(T)$, i.e. $T|X_2$ is s-regular.

Similarly, if T satisfies 2), i.e.

$$\dim(N^{\infty}(T)|(N^{\infty}(T)\cap R(T))) = a < \infty,$$

then

$$\dim(N^{\infty}(T_2)|(N^{\infty}(T_2) \cap R(T_2))) = a - \dim(N^{\infty}(T_1)|(N^{\infty}(T_1) \cap R(T_1)))$$
$$= a - \dim(Y_1|\bigvee_{i=1}^{k-1} L_i) = a - r < a,$$

so that after a finite number of steps we obtain the required decomposition $X = X_1 \oplus X_2$.

 $1 \Rightarrow 7$: Since $\tilde{N}(T|X_2) = N(T|X_2)$ by Lemma 1.5, we have $\dim(N(T)|\tilde{N}(T)) = \dim(N(T|X_1)|\tilde{N}(T|X_1) = \dim N(T|X_1) < \infty$.

 $7 \Rightarrow 5$: Clearly $\tilde{N}(T) \subset \bigvee_{z \neq 0} N(T-z)$.

 $5 \Rightarrow 1$: It is easy to see that $N(T-z) \subset R^{\infty}(T)$ for $z \neq 0$. Thus

$$N(T) \subset_e \bigvee_{z \neq 0} N(T-z) \subset \overline{R^{\infty}(T)}.$$

By Lemma 1.7 we have $\overline{R(T^k)} = R(T^k)$ for each k, so that $N(T) \subset_e R^{\infty}(T)$.

 $4 \Rightarrow 8$: By condition 2 of Theorem 1.2 $R(T|X_2) = R(T|X_2)$, so that

$$\dim(R(T)|R(T)) \le \dim X_1 < \infty.$$

 $8 \Rightarrow 6: \text{ Clearly} \bigcap_{z \neq 0} \overline{R(T-z)} \subset \tilde{R}(T).$

 $6 \Rightarrow 2$: This follows from the inclusion $N^{\infty}(T) \subset \bigcap_{z \neq 0} \overline{R(T-z)}$ (see the proof of Theorem 1.7).

Definition 3.2. We say that an operator $T \in B(X)$ is essentially s-regular if R(T) is closed and T satisfies any of the equivalent conditions of Theorem 3.1.

Remark 3.3. Condition 4 of Theorem 3.1 is the Kato decomposition which was proved in [9] for semi-Fredholm operators. Clearly, essentially s-regular operators are a generalization of semi-Fredholm operators.

This notion is closely related to quasi-Fredholm operators, see [11], [12].

Corollary 3.4. (cf. [18]). Let $T \in B(X)$.

- 1) If T is essentially s-regular, then T^n is essentially s-regular for every n.
- 2) T is essentially s-regular if and only if $T^* \in B(X^*)$ is essentially s-regular.

Proof. 1) Let $X = X_1 \oplus X_2$ be the Kato decomposition for T (see condition 4 of Theorem 3.1). Clearly the same decomposition satisfies all conditions for T^n .

2) We have $X^* = X_2^{\perp} \oplus X_1^{\perp}$ where dim $X_2^{\perp} = \operatorname{codim} X_2 = \dim X_1 < \infty, \ T^* X_2^{\perp} \subset X_2^{\perp}, \ T^* X_1^{\perp} \subset X_1^{\perp}, \ T^* | X_2^{\perp}$ is a nilpotent operator and $T^* | X_1^{\perp}$ is isometrically isomorphic to $(T|X_2)^*$, so that $T^* | X_1^{\perp}$ is s-regular and T^* is essentially s-regular.

Conversely, if T^* is essentially s-regular, then R(T) and $R(T^n)$ are closed for every n and $T^{**} \in B(X^{**})$ is essentially s-regular, so that $N(T^{**}) \subset_e R^{\infty}(T^{**})$. Further $N(T) = N(T^{**}) \cap X$ and $R(T^n) = R(T^{**n}) \cap X$ for every n, so that $R^{\infty}(T) = R^{\infty}(T^{**}) \cap X$ and $N(T) \subset_e R^{\infty}(T)$.

Theorem 3.5. Let $A, B \in B(X)$, AB = BA. If AB is essentially s-regular then A and B are essentially s-regular.

Proof. We have $N(A) \subset N(AB) \subset_e R^{\infty}(AB) \subset R^{\infty}(A)$, so that it is sufficient to prove that R(A) is closed.

There exists a finite-dimensional subspace $F \subset X$ such that $N(AB) \subset R(AB) + F$. We prove that R(A) + F is closed. Let $v_j \in X$, $f_j \in F$ and $Av_j + f_j \to u$. Then $BAv_j + Bf_j \to Bu$ and $Bu \in R(AB) + BF$ since R(AB) + BF is closed. Thus Bu = ABv + Bf for some $v \in X$ and $f \in F$, i.e.

$$Av + f - u \in N(B) \subset N(AB) \subset R(AB) + F \subset R(A) + F.$$

Hence $u \in R(A) + F$ and R(A) + F is closed.

The closeness of R(A) follows from the following lemma, which is a particular case of lemma of Neubauer, see [11], Proposition 2.1.1.

Lemma 3.6. Let $T \in B(X)$, let $F \subset X$ be a finite-dimensional subspace. Suppose that R(T) + F is closed. Then R(T) is closed.

Proof. Without loss of generality we can assume $R(T) \cap F = \{0\}$. Let $S: X | \text{Ker } T \oplus F \to X$ be defined by $S((x + \text{Ker } T) \oplus f) = Tx + f \in R(T) + F$. Then S is a bounded injective operator onto R(T) + F. Hence S is bounded below and $R(T) = S(X | \text{Ker } T \oplus \{0\})$ is closed.

Definition 3.7. Let $T \in B(X)$. Denote by

 $\sigma_{\gamma e}(T) = \{\lambda \in \mathbf{C}, T - \lambda \text{ is not essentially } s - regular\}.$

Theorem 3.8. (cf. [18]). Let dim $X = \infty$ and $T \in B(X)$. Then

- 1) $\sigma_{\gamma e}(T) \subset \sigma_{\gamma}(T)$ and $\sigma_{\gamma}(T) \sigma_{\gamma e}(T)$ consists of at most countably many isolated points,
- 2) $\sigma_{\gamma e}(T)$ is a non-empty compact set,
- 3) $\partial \sigma_e(T) \subset \sigma_{\gamma e}(T) \subset \sigma_e(T)$, where $\sigma_e(T)$ denotes the essential spectrum of T. More precisely, $\sigma_{\gamma e}(T) \subset \sigma_{\pi e}(T) \cap \sigma_{\delta e}(T)$, where $\sigma_{\pi e}(T)$ is the essential approximate point spectrum of T,

$$\sigma_{\pi e}(T) = \{\lambda, T - \lambda \text{ is not upper semi} - \text{Fredholm}\}\$$
$$= \{\lambda, R(T - \lambda) \text{ is not closed}\} \cup \{\lambda, \dim N(T - \lambda) = \infty\}\$$

and

$$\sigma_{\delta e}(T) = \left\{\lambda, T - \lambda \text{ is not lower semi - Fredholm}\right\} = \left\{\lambda, \operatorname{codim} R(T - \lambda) = \infty\right\}.$$

Proof. 1) Let $\lambda \in \sigma_{\gamma}(T) - \sigma_{\gamma e}(T)$. Then $T - \lambda$ is essentially s-regular, so that there exists a decomposition $X = X_1 \oplus X_2$ with $TX_1 \subset X_1$, $TX_2 \subset X_2$, dim $X_1 < \infty$, $(T - \lambda)|X_1$ nilpotent and $(T - \lambda)|X_2$ s-regular. Then $(T - z)|X_2$ is s-regular in a certain neighbourhood U of λ and $(T - z)|X_1$ is s-regular (even invertible) for every $z \neq \lambda$. It is easy to see that T - z is s-regular for $z \in U - \{\lambda\}$, i.e. $U \cap \sigma_{\gamma}(T) = \{\lambda\}$. Clearly $\sigma_{\gamma}(T) - \sigma_{\gamma e}(T)$ is at most countable.

2) If $\lambda \notin \sigma_{\gamma e}(T)$ then either $\lambda \notin \sigma_{\gamma}(T)$ or $\lambda \in \sigma_{\gamma}(T) - \sigma_{\gamma e}(T)$. In both cases $U \cap \sigma_{\gamma e}(T) = \emptyset$ for some neighbourhood U od λ . Hence $\sigma_{\gamma e}(T)$ is closed.

The non-emptiness of $\sigma_{\gamma e}(T)$ follows from the inclusion $\partial \sigma_e(T) \subset \sigma_{\gamma e}(T)$ which will be proved next.

3) Suppose $\lambda \in \partial \sigma_e(T)$ and $\lambda \notin \sigma_{\gamma e}(T)$. Then $T - \lambda$ is essentially s-regular so that $R(T-\lambda)$ is closed and there exists a decomposition $X = X_1 \oplus X_2$ such that dim $X_1 < \infty$, $TX_1 \subset X_1, TX_2 \subset X_2, (T-\lambda)|X_1$ is nilpotent and $(T-\lambda)|X_2$ is s-regular. Choose a sequence $\lambda_n \to \lambda$ such that $\lambda_n \notin \sigma_e(T)$, i.e. $T - \lambda_n$ is Fredholm. We have

$$\dim N((T - \lambda_n) | X_2) \le \dim N(T - \lambda_n) < \infty$$

and, from the regularity of $T|X_2$ and property 6 of Theorem 1.1 we conclude that

$$\dim N((T-\lambda)|X_2) < \infty$$

and also dim $N(T - \lambda) < \infty$.

Similarly we can prove codim $R(T - \lambda) < \infty$, so that $T - \lambda$ is a Fredholm operator and $\lambda \notin \sigma_e(T)$, a contradiction.

Thus $\partial \sigma_e(T) \subset \sigma_{\gamma e}(T)$.

If $\lambda \in \sigma_{\gamma e}(T)$, then $T - \lambda$ is not semi-Fredholm by Remark 3.3, so that $\lambda \in \sigma_{\pi e}(T) \cap \sigma_{\delta e}(T)$.

Remark 3.9. In fact we have proved $\partial \sigma_e(T) \subset \sigma_{\pi e}(T)$ and $\partial \sigma_e(T) \subset \sigma_{\delta e}(T)$, which is not so trivial as in the non-essential case (see [8], cf. also [1]).

Theorem 3.10. Let $T \in B(X)$. Then $\sigma_{\gamma e}(f(T)) = f(\sigma_{\gamma e}(T))$ for every function f analytic in a neighbourhood of $\sigma(T)$.

Proof. It is sufficient to prove that $0 \notin \sigma_{\gamma e}(f(T))$ if and only if $T - \lambda$ is essentially s-regular whenever $f(\lambda) = 0$.

Since f has only a finite number of zeros $\lambda_1, \ldots, \lambda_n$ in $\sigma(T)$ we can write $f(z) = (z - \lambda_1)^{m_1} \cdots (z - \lambda_n)^{m_n} h(z)$ where h is analytic in a neighbourhood of $\sigma(T)$ and $f(z) \neq 0$ for $z \in \sigma(T)$.

We have $f(T) = (T - \lambda_1)^{m_1} \cdots (T - \lambda_n)^{m_n} h(T)$. If f(T) is essentially s-regular, then $T - \lambda_1, \ldots, T - \lambda_n$ are essentially s-regular by Theorem 3.5.

Conversely, suppose that $T - \lambda_1, \ldots, T - \lambda_n$ are essentially s-regular. Denote by $q(z) = (z - \lambda_1) \cdots (z - \lambda_n)$ and $p(z) = (z - \lambda_1)^{m_1} \cdots (z - \lambda_m)^{m_n}$. Then

$$N(q(T)) = \bigvee_{i=1}^{n} N(T - \lambda_i)$$

and

$$R(q(T)^m) = \bigcap_{i=1}^n R((T - \lambda_i)^m)$$

for every m (see [15], Lemmas 5.2 and 5.3). Thus R(q(T)) is closed. Further $N(T-\lambda_i) \subset R^{\infty}(T-\lambda_j)$ for $j \neq i$ and $N(T-\lambda_i)) \subset R^{\infty}(T-\lambda_i) + F_i$ for some finite-dimensional subspace $F_i \subset X$. Thus

$$N(T - \lambda_i) \subset \bigcap_{j=1}^n R^\infty(T - \lambda_j) + F_i$$

and

$$N(q(T)) \subset \bigcap_{i=1}^{n} R^{\infty}(T-\lambda_i) + F_1 + \dots + F_n = R^{\infty}(q(T)) + F_1 + \dots + F_n.$$

Hence q(T) is essentially s-regular. If $m = \max\{m_i, 1 \leq i \leq n\}$, then $q(T)^m$ is essentially s-regular by Corollary 3.4 and p(T) is essentially s-regular by Theorem 3.5. Further h(T) is an invertible operator commuting with p(T). Thus N(f(T)) = N(p(T)) and $R(f(T)^n) = R(p(T)^n)$ for every n, so that R(f(T)) is closed and

$$N(f(T)) = N(p(T)) \subset_e R^{\infty}(p(T)) = R^{\infty}(f(T)).$$

Hence f(T) is essentially s-regular.

Problem 3.11. Example 2.5 shows that $\sigma_{\gamma e}(T)$ is not stable under compact perturbations. We do not know if it is stable under finite-dimensional perturbations. Equivalently, taking into account the Kato decomposition, we can reformulate this question as follows:

Let T be s-regular and A a finite-dimensional operator. Is then T + A essentially s-regular?

IV. Generalized inverses

Let $T \in B(X)$. We say that $S \in B(X)$ is a generalized inverse of T if TST = Tand STS = S. In this case TS is a bounded projection onto R(T) and ST is a bounded projection with N(ST) = N(T). Thus it is easy to see that T has a generalized inverse if and only if R(T) is closed and both N(T) and R(T) are ranges of bounded projections.

An operator T is called regular if T is s-regular and has a generalized inverse.

Let T be an operator in a Hilbert space H. Then there is an analytic generalized inverse of T - z defined on the open set $G = \mathbf{C} - \sigma_{\gamma}(T)$ (see [3], Theorem 2.5). More precisely, there exists an analytic operator-valued function $S : G \to B(X)$ such that (T - z)S(z)(T - z) = T - z and S(z)(T - z)S(z) = S(z) for all $z \in G$. One can see easily that $\mathbf{C} - \sigma_{\gamma}(T)$ is the largest open set with this property.

If T is an operator in a Banach space X then another necessary condition for existence of an analytic generalized inverse of T-z is that R(T-z) and N(T-z) are ranges of bounded projections. We show that this is already a sufficient condition.

We start with a local version of this result, which was essentially proved in [14], Theorem 2.6, see also [7], Theorem 9.

Theorem 4.1. Let $T \in B(X)$ be a regular operator. Then there exists an open neighbourhood U of 0 and an analytic function $S: U \to B(X)$ such that (T-z)S(z)(T-z) = T - z and S(z)(T-z)S(z) = S(z) for all $z \in U$.

Proof. Let $S \in B(X)$ be a generalized inverse of T, i.e. TST = T and STS = S. Set $U = \{z \in \mathbf{C}, |z| < ||S||^{-1}\}$. For $z \in U$ define $P(z) = \sum_{i=0}^{\infty} S^i(I - ST)z^i$. Clearly the sum converges for $z \in U$. We have (I - ST)S = 0 = T(I - ST), therefore $P(z)^2 = \sum_{i=0}^{\infty} z^i S^i (I - ST)^2 = P(z)$ and

$$(T-z)P(z) = (T-z)\sum_{i=0}^{\infty} S^{i}(I-ST)z^{i}$$

=T(I-ST) + $\sum_{i=1}^{\infty} z^{i} [TS^{i}(I-ST) - S^{i-1}(I-ST)] = \sum_{i=1}^{\infty} (TS-I)S^{i-1}(I-ST)z^{i}.$

Let $x \in X$. Then T(I - ST)x = 0, so that $(I - ST)x \in N(T) \subset R^{\infty}(T)$.

Further, if $y \in R^{\infty}(T)$, y = Tz then y = Tz = TSTz = TSy and, by Lemma 1.4, $Sy \in R^{\infty}(T)$. Thus $S(R^{\infty}(T)) \subset R^{\infty}(T)$.

Finally, for $u \in R(T)$, u = Tv we have (TS - I)u = (TS - I)Tv = 0. Thus

$$(TS - I)S^{i-1}(I - ST) = 0$$
 $(i \ge 1)$

and (T - z)P(z) = 0.

For $z \in G$ set $S(z) = \sum_{i=0}^{\infty} S^{i+1} z^i$. Then

$$S(z)(T-z) + P(z) = \sum_{i=0}^{\infty} S^{i+1} z^{i}(T-z) + \sum_{i=0}^{\infty} S^{i}(I-ST) z^{i}$$
$$= ST + I - ST + \sum_{i=1}^{\infty} [S^{i+1}T - S^{i} + S^{i}(I-ST)] z^{i} = I,$$

hence S(z)(T-z) = I - P(z). We have (T-z)S(z)(T-z) = (T-z)(I-P(z)) = T-zand S(z)(T-z)S(z) = (I - P(z))S(z) = S(z) since

$$P(z)S(z) = \left(\sum_{i=0}^{\infty} z^i S^i (I - ST)\right) \left(\sum_{i=0}^{\infty} S^{i+1} z^i\right) = 0.$$

Clearly P(z) is a bounded projection onto N(T-z).

Remark 4.2. Let S(z) be the function constructed in the previous theorem and let $\lambda, \mu \in U$. Then

$$S(\lambda) - S(\mu) = \sum_{i=0}^{\infty} (\lambda^i - \mu^i) S^{i+1} = (\lambda - \mu) \sum_{i=1}^{\infty} (\lambda^{i-1} + \lambda^{i-2}\mu + \dots + \mu^{i-1}) S^{i+1}$$
$$= (\lambda - \mu) \left(\sum_{j=0}^{\infty} \lambda^j S^{j+1} \right) \left(\sum_{k=0}^{\infty} \lambda^k S^{k+1} \right) = (\lambda - \mu) S(\lambda) S(\mu).$$

Thus S(z) satisfies the resolvent identity and so it is not only a generalized inverse of T - z but also a generalized resolvent in the sense of [4] or [5].

The next theorem shows that it is possible to find a global analytic general inverse of T-z. It is an open question if there always exists a global analytic general resolvent.

Theorem 4.3. Let $T \in B(X)$. Denote by $G = \{z \in \mathbb{C}, T - z \text{ is regular}\}$. Then G is an open set and there exists an analytic function $S : G \to B(X)$ such that

$$(T-z)S(z)(T-z) = T-z$$

and

$$S(z)(T-z)S(z) = S(z) \qquad (z \in G).$$

Proof. For $z \in G$ define the operator $M(z) : B(X) \to B(X)$ by

$$M(z)A = (T - z)A(T - z) \qquad (A \in B(X)).$$

Clearly $M : G \to B(B(X))$ is an analytic function. Let $\lambda \in G$. By the previous theorem there exists a neighbourhood U of λ and an analytic function $S_1 : U \to B(X)$ such that $(T-z)S_1(z)(T-z) = T-z$ and $S_1(z)(T-z)S_1(z) = S_1(z)$ $(z \in U)$.

Let $\mu \in U$ and $A \in B(X)$. Set $A_1 = S_1(\mu)(T - \mu)A(T - \mu)S_1(\mu)$. Then

$$M(\mu)A_1 = (T - \mu)S_1(\mu)(T - \mu)A(T - \mu)S_1(\mu)(T - \mu) = (T - \mu)A(T - \mu) = M(\mu)A$$

and

$$||A_1|| \le ||S_1(\mu)||^2 ||(T-\mu)A(T-\mu)|| = ||S_1(\mu)||^2 ||M(\mu)A||$$

Thus $\gamma(M(\mu)) \geq ||S_1(\mu)||^{-2}$ so that $\gamma(M(z))$ is bounded from below in a certain neighbourhood of λ . Further function $z \mapsto T - z \in B(X)$ is an analytic vector-valued function and, by the definition of $G, T - z \in R(M(z))$ for every $z \in G$.

By [19], Theorem 2, there exists an analytic function $S_2 : G \to B(X)$ such that $M(z)S_2(z) = T - z$, i.e. $(T - z)S_2(z)(T - z) = T - z$ for $z \in G$. Set

$$S(z) = S_2(z)(T-z)S_2(z)$$
 $(z \in G).$

Then

$$(T-z)S(z)(T-z) = (T-z)S_2(z)(T-z)S_2(z)(T-z) = T-z$$

and

$$S(z)(T-z)S(z) = S_2(z)(T-z)S_2(z)(T-z)S_2(z)(T-z)S_2(z)$$

= $S_2(z)(T-z)S_2(z) = S(z)$

for every $z \in G$.

References

- [1] C. Apostol, On the left essential spectrum and non-cyclic operators in Banach spaces, Rev. Roum. Math. Pures Appl. 17 (1972), 1141–1147.
- C. Apostol, On the closed range points in the spectrum of operators, Rev. Roum. Math. Pures et Appl. 21 (1976), 971–976.
- [3] C. Apostol, The reduced minimum modulus, Michigan Math. J. 32 (1984), 279– 294.
- [4] C. Apostol, K. Clancey, Generalized inverses and spectral theory, Trans. Amer. Math. Soc. 215 (1976), 293–300.
- [5] C. Apostol, K. Clancey, On generalized resolvents, Proc. Amer. Math. Soc. 58 (1976), 163–168.
- [6] R.E. Curto, A.T. Dash, Browder spectral systems, Proc. Amer. Math. Soc. 103 (1988), 407–413.
- [7] R. Harte, Taylor exactness and Kaplansky's lemma, J. Oper. Th. 25 (1991), 399– 416.
- [8] R. Harte, T. Wickstead, Upper and lower Fredholm spectra II., Math. Zeit. 154 (1977), 253–256.
- [9] T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Anal. Math. 6 (1958), 261–322.
- [10] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin, 1966.
- [11] J.P. Labrouse, Les opérateurs quasi-Fredholm: une généralisation des opérateurs semi-Fredholm, Rend. Circ. Math. Palermo 29 (1989), 69–105.
- [12] J.P. Labrouse, Relation entre deux définitions possibles du spectre essentiel d'un opérateur, Rev. Roum. Math. Pures et Appl. 25 (1980), 1391–1394.
- [13] J. Leiterer, The operator of multiplication by a continuous operator function (Russian), Mat. Issled. 5 (1970), 115–135.
- [14] M. Mbekhta, Généralisation de la décomposition de Kato aux opérateurs paranormaux et spectraux, Glasgow Math. J. 29 (1987), 159–175.
- [15] M. Mbekhta, Résolvant généralisé et théorie spectrale, J. Oper. Theory 21 (1989), 69–105.

- [16] M. Mbekhta, A. Ouahab, Opérateur s-régulier dans un espace de Banach et théorie spectrale, Pub. Irma, Lille -1990, Vol. 22, No XII.
- [17] M. Mbekhta, A. Ouahab, Contribution a la théorie spectrale généralisée dans les espaces de Banach, C. R. Acad. Sci. Paris 313 (1991), 833–836.
- [18] V. Rakočevič, Generalized spectrum and commuting compact perturbations, Proc. Edinb. Math. Soc. 36 (1993), 197–209.
- [19] Z. Słodkowski, Operators with closed ranges in spaces of analytic vector-valued functions, J. Func. Anal. 69 (1986), 155–177.
- [20] W. Zelazko, Axiomatic approach to joint spectra I., Studia Math. 64 (1979), 249– 261.

Institute of Mathematics AV ČR Žitná 25, 115 67 Praha 1 Czech Republic