On the regular spectrum

Vladimír Müller

Introduction

Let T be a bounded linear operator acting in a Banach space X. Denote by $R(T)=T X$ and $N(T)=\{x \in X, T x=0\}$ its range and kernel, respectively.

Continuity properties of the functions $z \mapsto R(T-z)$ and $z \mapsto N(T-z)$ were studied by a number of authors. The investigation was started by Kato [9], [10], who introduced also useful concepts of the reduced minimum modulus and the gap between two closed subspaces.

The spectrum $\sigma_{\gamma}(T)$ was defined for Hilbert space operators by Apostol [3] as the set of all complex λ such that either $R(T-\lambda)$ is not closed or λ is a discontinuity point of the function $z \mapsto R(T-z)$. Properties of this spectrum are analogous to the properties of the ordinary spectrum. It is always a non-empty compact subset of the complex plain, contains the topological boundary of $\sigma(T)$ and satisfies the spectral mapping property.

The results of Apostol were generalized by Mbekhta [14], [15], Mbekhta and Ouahab [16], [17] and Harte [7] for operators in Banach spaces.

In this paper we continue the investigation of σ_{γ}. We define an essential version $\sigma_{\gamma e}$ which exhibits similar properties as σ_{γ} and is closely related to the theory of semiFredholm operators. Further we study generalized inverses for $T-\lambda$ and show that it is not possible to extend reasonably σ_{γ} for n-tuples of commuting operators.

The author would like to thank to the referee for drawing his attention to the paper of Rakočevič [18] which is closely related to the present paper. Some of the results are already proved in [18], especially Theorem 3.1, equivalence $1 \Leftrightarrow 2$ (see Theorem 2.1 of [18]) or the spectral mapping theorem for $\sigma_{\gamma e}$. We leave the proofs here for the sake of completeness and because they seem to us sometimes more direct. On the other hand the present paper solves some questions posed in [18]. Thus Example 2.2 gives a negative answer to both parts of Question 4 and Theorem 3.5 gives a positive answer to Question 2 of [18].

I. Semi-regular operators and spectrum σ_{γ}

Throughout the paper we shall denote by X a fixed complex Banach space X. Denote by $B(X)$ the algebra of all bounded linear operators in X. For $T \in B(X)$ the reduced minimum modulus of T is defined by

$$
\gamma(T)=\inf \{\|T x\|, x \in X, \operatorname{dist}\{x, N(T)\}=1\}
$$

(if $T=0$ then we set $\gamma(T)=\infty$).
Let M_{1} and M_{2} be two closed subspaces of X. Then we denote by

$$
\delta\left(M_{1}, M_{2}\right)=\sup \left\{\operatorname{dist}\left\{x, M_{2}\right\}, x \in M_{1},\|x\|=1\right\}
$$

(if $M_{1}=\{0\}$ then $\delta\left(M_{1}, M_{2}\right)=0$) and the gap between M_{1} and M_{2} by

$$
\hat{\delta}\left(M_{1}, M_{2}\right)=\max \left\{\delta\left(M_{1}, M_{2}\right), \delta\left(M_{2}, M_{1}\right)\right\} .
$$

We list the most important properties of the reduced minimum modulus and the gap between two subspaces (see [10], Chapter IV):

Theorem 1.1.

1) $\gamma(T)>0$ if and only if $R(T)$ is closed,
2) $\gamma(T)>r>0$ if and only if for every $y \in R(T)$ there exists $x \in X$ such that $T x=y$ and

$$
\|x\| \leq r^{-1}\|y\|,
$$

3) $\gamma\left(T^{*}\right)=\gamma(T)$,
4) the set $\{T \in B(X), \gamma(T) \geq \varepsilon\}$ is norm-closed in $B(X)$ for every ε (see [2]),
5) $\delta\left(M_{1}, M_{2}\right)=\delta\left(M_{2}^{\perp}, M_{1}^{\perp}\right)$,
6) if $\hat{\delta}\left(M_{1}, M_{2}\right)<1$ then $\operatorname{dim} M_{1}=\operatorname{dim} M_{2}$.

For $T \in B(X)$ we have $R(T) \supset R\left(T^{2}\right) \supset R\left(T^{3}\right) \supset \ldots$ and $N(T) \subset N\left(T^{2}\right) \subset \ldots$. Denote shortly $R^{\infty}(T)=\bigcap_{n=0}^{\infty} R\left(T^{n}\right)$ and $N^{\infty}(T)=\bigvee_{n=0}^{\infty} N\left(T^{n}\right)$.

Consider the function $z \mapsto \gamma(T-z)$ defined for complex z. Although this function is not continuous in general, it has good continuity properties. From a great number of equivalent conditions characterizing the continuity points of the function $z \mapsto \gamma(T-z)$ we choose the most important:

Theorem 1.2. Let $T \in B(X)$ be an operator with closed range. The following conditions are equivalent:

1) the function $z \mapsto \gamma(T-z)$ is continuous at $z=0$,
2) the function $z \mapsto \gamma(T-z)$ is bounded from below in a neighbourhood of 0 , i.e. there exists $\varepsilon>0$ such that $\inf _{|z|<\varepsilon} \gamma(T-z)>0$,
3) the function $z \mapsto R(T-z)$ is continuous at 0 in the gap topology, i.e.

$$
\lim _{z \rightarrow 0} \hat{\delta}(R(T), R(T-z))=0
$$

4) the function $z \mapsto N(T-z)$ is continuous at 0 in the gap topology, i.e.

$$
\lim _{z \rightarrow 0} \hat{\delta}(N(T), N(T-z))=0
$$

5) $N(T) \subset R^{\infty}(T)$,
6) $N^{\infty}(T) \subset R(T)$,
7) $N^{\infty}(T) \subset R^{\infty}(T)$.

The previous theorem was proved in [16]. The equivalence of the first four conditions is true for any continuous operator-valued function $z \mapsto T(z)$; in [19] this result was attributed to Markus, see [13].

Definition 1.3. (see [16]) An operator $T \in B(X)$ is called s-regular (semi-regular) if T has closed range and satisfies any of the equivalent conditions of Theorem 1.2.

For s-regular operators the subspaces $R^{\infty}(T)$ and $N^{\infty}(T)$ can be described in another way. We start with two simple lemmas:

Lemma 1.4. Let $T \in B(X)$ be s-regular, $x \in X$ and $T x \in R^{\infty}(T)$. Then $x \in R^{\infty}(T)$.
Proof. Let $n \geq 1$. Then there exists $y \in X$ such that $T^{n+1} y=T x$, i.e. $x-T^{n} y \in$ $N(T) \subset R^{\infty}(T) \subset R\left(T^{n}\right)$. So $x \in R\left(T^{n}\right)$ and as n was arbitrary, $x \in R^{\infty}(T)$.

Lemma 1.5. Let $T \in B(X)$ be an s-regular operator. Denote by $U=\{z \in \mathbf{C},|z|<$ $\gamma(T)\}$. Then for every $\lambda \in U$ and $x \in N(T-\lambda)$ there exists an analytic function $f: U \rightarrow X$ such that $(T-z) f(z)=0 \quad(z \in U)$ and $f(\lambda)=x$.

Proof. By [16], Theorem 2.10., $T-z$ is s-regular for $z \in U$. By [19], Theorem 2, there exists a Banach space Y and an analytic operator-valued function $S: U \rightarrow B(Y, X)$ such that $R(S(z))=N(T(z)) \quad(z \in U)$. Choose $y \in Y$ such that $S(\lambda) y=x$ and set $f(z)=S(z) y$. Clearly f satisfies all conditions of Lemma 1.5.

Theorem 1.6. Let $T \in B(X)$ be s-regular and let r be a positive number, $r \leq \gamma(T)$. Then

1) $N^{\infty}(T)=\bigvee_{|\lambda|<r} N(T-\lambda)$,
2) $R^{\infty}(T)=\bigcap_{|\lambda|<r} R(T-\lambda)$.

Proof. 1) Denote by $U=\{z \in \mathbf{C},|z|<\gamma(T)\}$. Let $\lambda \in U$ and $x \in N(T-\lambda)$. Then there exists an analytic function $f: U \rightarrow X$ such that $(T-z) f(z)=0 \quad(z \in U)$ and $f(\lambda)=x$. Let $f(z)=\sum_{i=0}^{\infty} a_{i} z^{i} \quad(z \in U)$, where $a_{i} \in X$. The equality $(T-z) f(z)=0$ implies $T a_{0}=0$ and $T a_{i}=a_{i-1} \quad(i=1,2, \ldots)$. Thus $T^{n} a_{n}=0$ and $a_{n} \in N\left(T^{n}\right) \subset$ $N^{\infty}(T)$, so that

$$
x=f(\lambda)=\sum_{i=0}^{\infty} a_{i} \lambda^{i} \in N^{\infty}(T) .
$$

Hence $\bigvee_{|\lambda|<\gamma(T)} N(T-\lambda) \subset N^{\infty}(T)$.
Conversely, let $0<r \leq \gamma(T)$ and $x \in N\left(T^{n}\right)$, i.e. $T^{n} x=0$. Set $a_{0}=T^{n-1} x$, $a_{1}=T^{n-2} x, \ldots, a_{n-1}=x$. As $x \in N\left(T^{n}\right) \subset R^{\infty}(T)$, we can find $a_{n} \in X$ such that $T a_{n}=x=a_{n-1}$ and $\left\|a_{n}\right\| \leq 2 r^{-1}\left\|a_{n-1}\right\|$. By Lemma 1.4, $a_{n} \in R^{\infty}(T)$, so that we can inductively construct elements $a_{i} \quad(i=n+1, n+2, \ldots)$, such that $T a_{i}=a_{i-1}$ and $\left\|a_{i}\right\| \leq 2 r^{-1}\left\|a_{i-1}\right\| \quad(i=n, n+1, \ldots)$. Set $f(z)=\sum_{i=0}^{\infty} a_{i} z^{i}$. Clearly this series converges for $|z|<r / 2$ and $(T-z) f(z)=0$, i.e. $f(z) \in N(T-z) \quad(|z|<r / 2)$. Further

$$
x=a_{n-1}=\frac{1}{2 \pi i} \int_{|z|=r / 4} \frac{f(z)}{z^{n}} d z \in \bigvee_{|z|<r} N(T-z)
$$

2) Let $0<r \leq \gamma(T)$ and $x \in \bigcap_{|z|<r} R(T-z)$.

By [19] there exists an analytic function $f(z)=\sum_{i=0}^{\infty} a_{i} z^{i}$ such that $(T-z) f(z)=x$ $(|z|<r)$. Hence $T a_{0}=x$ and $T a_{i}=a_{i-1} \quad(i=1,2, \ldots)$, so that $x \in R^{\infty}(T)$.

Conversely, let $x \in R^{\infty}(T)$ and $|\lambda|<\gamma(T)$. Choose $r,|\lambda|<r<\gamma(T)$. Similarly as in 1) we can find points $a_{i} \in X$ such that $a_{0}=x, T a_{i}=a_{i-1}$ and $\left\|a_{i}\right\| \leq r^{-1}\left\|a_{i-1}\right\|$ for $i=1,2, \ldots$. Set $f(z)=\sum_{i=1}^{\infty} a_{i} z^{i-1}$. Then $f(z)$ is defined and

$$
(T-z) f(z)=x \quad \text { for } \quad|z|<r .
$$

Thus $x \in R(T-\lambda)$ and

$$
R^{\infty}(T) \subset \bigcap_{|z|<\gamma(T)} R(T-z)
$$

We shall need the following lemma (for better use we state it in a little bit more general form):

Lemma 1.7. Let $T \in B(X)$ be an operator with a closed range. Suppose that, for $k=1,2, \ldots$, there exist a finite dimensional subspace $F_{k} \subset N(T)$ such that $N(T) \subset$ $\overline{R\left(T^{k}\right)}+F_{k}$. Then $R\left(T^{k}\right)$ is closed for each k.

In particular, if $R(T)$ is closed and $N(T) \subset \bigcap_{k=0}^{\infty} \overline{R\left(T^{k}\right)}$ then T is s-regular.
Proof. We prove by induction on k that $R\left(T^{k}\right)$ is closed.
Suppose that $k \geq 1$ and $\overline{R\left(T^{k}\right)}=R\left(T^{k}\right)$. Let $u \in \overline{R\left(T^{k+1}\right)}$. By the induction assumption $u \in R\left(T^{k}\right)$, i.e. $u=T^{k} v$ for some $v \in X$. Further there are elements $v_{j} \in$ $X \quad(j=1,2, \ldots)$ such that $T^{k+1} v_{j} \rightarrow u \quad(j \rightarrow \infty)$. Thus $T\left(T^{k} v_{j}-T^{k-1} v\right) \rightarrow 0$. Consider the operator $\tilde{T}: X / N(T) \rightarrow R(T)$ induced by T. Clearly \tilde{T} is bounded below and $\tilde{T}\left(T^{k} v_{j}-T^{k-1} v+N(T)\right) \rightarrow 0$, so that $T^{k} v_{j}-T^{k-1} v+N(T) \rightarrow 0 \quad(j \rightarrow \infty)$ in the quotient space $X / N(T)$. Thus there exist vectors $k_{j} \in N(T)$ such that $T^{k} v_{j}+k_{j} \rightarrow$ $T^{k-1} v$. Since $k_{j} \in N(T) \subset R\left(T^{k}\right)+F_{k}$ and $R\left(T^{k}\right)+F_{k}$ is closed, we have $T^{k-1} v=$ $T^{k} a+f$ for some $a \in X$ and $f \in F_{k} \subset N(T)$. Hence $u=T^{k} v=T^{k+1} a \in R\left(T^{k+1}\right)$ and $R\left(T^{k+1}\right)$ is closed.

The following theorem gives another characterization of s-regular operators (cf. [3], Lemma 1.4 and [15], Theorem 2.1).

Theorem 1.8. Let $T \in B(X)$ be an operator with closed range. The following conditions are equivalent:

1) T is s-regular,
2) $N(T) \subset \bigvee_{z \neq 0} N(T-z)$,
3) $R(T) \supset \bigcap_{z \neq 0} \overline{R(T-z)}$.

Proof. Implications $1 \Rightarrow 2$ and $1 \Rightarrow 3$ follow from the previous theorem (note that $R(T-z)$ is closed for $|z|<\gamma(T)$ by [16], Theorem 2.10).
$2 \Rightarrow 1$. Let $\lambda \neq 0$ and $x \in N(T-\lambda)$. Then $T x=\lambda x$ and $x=\frac{T^{n} x}{\lambda^{n}} \in R\left(T^{n}\right)$, so that $x \in R^{\infty}(T)$. Thus $\bigvee_{\lambda \neq 0} N(T-\lambda) \subset \overline{R^{\infty}(T)}$, so that $N(T) \subset \overline{R^{\infty}(T)} \subset \bigcap_{n=0}^{\infty} \overline{R\left(T^{n}\right)}$ and T is s-regular by the previous lemma.
$3 \Rightarrow 1$. Let $x \in N\left(T^{n}\right)$ and $\lambda \neq 0$. Then

$$
(T-\lambda)\left(T^{n-1}+\lambda T^{n-2}+\ldots+\lambda^{n-1}\right) x=T^{n} x-\lambda^{n} x=-\lambda^{n} x,
$$

so that $x \in R(T-\lambda)$. Thus $N\left(T^{n}\right) \subset R(T-\lambda)$. Hence $N^{\infty}(T) \subset \bigcap_{z \neq 0} \overline{R(T-z)} \subset$ $R(T)$ and T is s-regular.

Definition 1.9. Let $T \in B(X)$. Denote by $\sigma_{\gamma}(T)=\{\lambda \in \mathbf{C}, T-\lambda$ is not $\mathrm{s}-$ regular $\}$.
For properties of $\sigma_{\gamma}(T)$ see [3] and [15]. The spectrum $\sigma_{\gamma}(T)$ is always a non-empty compact subset of \mathbf{C} and

$$
\partial \sigma(T) \subset \sigma_{\gamma}(T) \subset \sigma(T)
$$

More precisely, $\sigma_{\gamma}(T) \subset \sigma_{\pi}(T) \cap \sigma_{\delta}(T)$, where $\sigma_{\pi}(T)$ is the approximate point spectrum of T,

$$
\sigma_{\pi}(T)=\{\lambda, \inf \{\|(T-\lambda) x\|, x \in X,\|x\|=1\}=0\}
$$

and $\sigma_{\delta}(T)=\{\lambda,(T-\lambda) X \neq X\}$ is the defect spectrum of T.
The set $\left\{\lambda \in \sigma_{\gamma}(T), R(T-\lambda)\right.$ is closed $\}$ is at most countable and

$$
\sigma_{\gamma}(T)=\left\{\lambda, \lim _{z \rightarrow \lambda} \gamma(T-z)=0\right\}
$$

(this limit always exists).
Further $\sigma_{\gamma}(f(T))=f\left(\sigma_{\gamma}(T)\right)$ for every function f analytic in a neighbourhood of $\sigma(T)$ (in particular for every polynomial).

II. Generalized spectra

The axiomatic theory of spectrum was introduced by Żelazko [20]. A generalized spectrum in a Banach algebra A is a set-valued function $\tilde{\sigma}$ which assigns to every n tuple a_{1}, \ldots, a_{n} of commuting elements of A a non-empty compact subset of \mathbf{C}^{n} such that

1) $\tilde{\sigma}\left(a_{1}, \ldots, a_{n}\right) \subset \prod_{i=1}^{n} \sigma\left(a_{i}\right)$,
2) $\tilde{\sigma}\left(p\left(a_{1}, \ldots, a_{n}\right)\right)=p\left(\tilde{\sigma}\left(a_{1}, \ldots, a_{n}\right)\right)$ for every m-tuple $p=\left(p_{1}, \ldots, p_{m}\right)$ of polynomials in n variables.
Sometimes, a generalized spectrum is defined first only for single elements and one is looking for its extension for n-tuples of commuting elements, see e.g. [6]. We show that σ_{γ} can not be extended to a generalized spectrum. We start with the following simple criterion:

Theorem 2.1. Let $\tilde{\sigma}$ be a generalized spectrum defined in a Banach algebra A, let $a, b \in A$ and $a b=b a$. Then $0 \in \tilde{\sigma}(a b)$ if and only if either $0 \in \tilde{\sigma}(a)$ or $0 \in \tilde{\sigma}(b)$.

Proof. If $0 \in \tilde{\sigma}(a)$ then there exists $\lambda \in \mathbf{C}$ such that $(0, \lambda) \in \tilde{\sigma}(a, b)$. Then $0=0 \cdot \lambda \in$ $\tilde{\sigma}(a b)$. Similarly $0 \in \tilde{\sigma}(b)$ implies $0 \in \tilde{\sigma}(a b)$.

Conversely, let $0 \notin \tilde{\sigma}(a)$ and $0 \notin \tilde{\sigma}(b)$. Then

$$
\begin{aligned}
\tilde{\sigma}(a b) & =\{\lambda \mu,(\lambda, \mu) \in \tilde{\sigma}(a, b)\} \subset\{\lambda \mu, \lambda \in \tilde{\sigma}(a), \mu \in \tilde{\sigma}(b)\} \\
& \subset\{\lambda \mu, \lambda \neq 0, \mu \neq 0\}=\mathbf{C}-\{0\},
\end{aligned}
$$

i.e. $0 \notin \tilde{\sigma}(a b)$.

Example 2.2. We construct two commuting s-regular opertors such that their product is not s-regular.

Let H be the Hilbert space with an orthonormal basis $\left\{e_{i, j}\right\}$ where i and j are integers such that $i j \leq 0$. Define opertors T and $S \in B(H)$ by

$$
T e_{i, j}= \begin{cases}0 & \text { if } i=0, j>0 \\ e_{i+1, j} & \text { otherwise }\end{cases}
$$

and

$$
S e_{i, j}= \begin{cases}0 & \text { if } j=0, i>0 \\ e_{i, j+1} & \text { otherwise }\end{cases}
$$

Then

$$
T S e_{i j}=S T e_{i j}= \begin{cases}0 & \text { if } i=0, j \geq 0 \text { or } j=0, i \geq 0 \\ e_{i+1, j+1} & \text { otherwise },\end{cases}
$$

so that T and S commute.
Further $N(T)=\bigvee\left\{e_{0, j}, j>0\right\} \subset R^{\infty}(T), N(S)=\bigvee\left\{e_{i, 0}, i>0\right\} \subset R^{\infty}(S)$ and both $R(T)$ and $R(S)$ are closed. Thus T and S are s-regular.

On the other hand $T S e_{0,0}=0$, i.e. $e_{0,0} \in N(T S)$ and $e_{0,0} \notin R(T S)$, so that $T S$ is not s-regular.

Corollary 2.3. There exists no generalized spectrum $\tilde{\sigma}$ such that $\tilde{\sigma}(T)=\sigma_{\gamma}(T)$ for every $T \in B(X)$.

Remark 2.4. Note that one implication in Theorem 2.1 is true for σ_{γ} :
if $T S=S T$ and either $0 \in \sigma_{\gamma}(T)$ or $0 \in \sigma_{\gamma}(S)$ then $0 \in \sigma_{\gamma}(T S)$ (see [15], Lemma 4.15).

Another drawback of the spectrum σ_{γ} is that it is not upper semicontinuous. For this it is sufficient to show that the set of all s-regular operators is not open.

Example 2.5. Let H be the Hilbert space with an orthonormal basis

$$
\left\{e_{i, j}, i, j \text { integers }, i \geq 1\right\} .
$$

Let $T \in B(H)$ be defined by

$$
T e_{i, j}= \begin{cases}e_{i, j+1} & \text { if } j \neq 0 \\ 0 & \text { if } j=0\end{cases}
$$

Clearly $N(T)=\vee\left\{e_{i, 0}, i \geq 1\right\} \subset R^{\infty}(T)$ and $R(T)$ is closed, so that T is s-regular.
Let $\varepsilon>0$. Define $S \in B(H)$ by

$$
S e_{i, j}= \begin{cases}\frac{\varepsilon}{i} e_{i, 1} & \text { if } j=0, \\ 0 & \text { if } j \neq 0 .\end{cases}
$$

Clearly $\|S\|=\varepsilon$ and S is an infinite dimensional compact operator so that $R(S)$ is not closed. Denote $M=\vee\left\{e_{i, 1}, i \geq 1\right\}$. We have $R(T) \perp M$ and $R(S) \subset M$, so that
$(T+S) x \in M$ implies $x \in N(T)$ and $(T+S) x=S x$. Thus $R(T+S) \cap M=S N(T)=$ $R(S)$, so that $R(T+S)$ is not closed. Therefore $T+S$ is not s-regular.

III. Essential case

In this section we admit finite dimensional jumps in $N(T-z)$ or $R(T-z)$.
If M_{1} and M_{2} are subspaces of X then we shall write shorty $M_{1} \subset_{e} M_{2}$ if there exists a finite dimensional subspace $F \subset X$ such that $M_{1} \subset M_{2}+F$. In this case we may assume that $F \subset M_{1}$. Clearly $M_{1} \subset_{e} M_{2}$ if and only if $\operatorname{dim}\left(M_{1} \mid\left(M_{1} \cap M_{2}\right)\right)<\infty$.

Theorem 3.1. Let $T \in B(X)$ be an operator with closed range. Then the following conditions are equivalent:

1) $N(T) \subset_{e} R^{\infty}(T)$,
2) $N^{\infty}(T) \subset_{e} R(T)$,
3) $N^{\infty}(T) \subset_{e} R^{\infty}(T)$,
4) there exists a decomposition $X=X_{1} \oplus X_{2}$ such that $\operatorname{dim} X_{1}<\infty, T X_{1} \subset X_{1}$, $T X_{2} \subset X_{2}, T \mid X_{1}$ is nilpotent and $T \mid X_{2}$ is an s-regular operator,
5) $N(T) \subset_{e} \bigvee_{z \neq 0} N(T-z)$,
6) $R(T) \supset_{e} \bigcap_{z \neq 0} \overline{R(T-z)}$,
7) $\operatorname{dim}(N(T) \mid \tilde{N}(T))<\infty$, where $\tilde{N}(T)$ is the set of all $x \in X$ such that there are complex numbers $\lambda_{i}(i=1,2, \ldots)$ tending to 0 and elements $x_{i} \in N\left(T-\lambda_{i}\right)$ such that $x=\lim _{i \rightarrow \infty} x_{i} \quad($ clearly $\tilde{N}(T) \subset N(T))$,
8) $\operatorname{dim}(\tilde{R}(T) \mid R(T))<\infty$ where $\tilde{R}(T)$ is the set of all $x \in X$ such that $x=\lim _{i \rightarrow \infty} x_{i}$ for some $x_{i} \in R\left(T-\lambda_{i}\right)$ and some $\lambda_{i} \rightarrow 0$. (Clearly $\left.R(T) \subset \tilde{R}(T)\right)$.

Proof. Implications $4 \Rightarrow 3,3 \Rightarrow 1$ and $3 \Rightarrow 2$ are clear.
$1 \Rightarrow 4$ and $2 \Rightarrow 4$. We prove these two implications simultanously. The proof will be done in several steps.
a) Either 1) or 2) implies $N\left(T^{n}\right) \subset_{e} R\left(T^{k}\right)$ for every n, k, i.e. there are finite dimensional subspaces $F_{n, k} \subset N\left(T^{n}\right)$ such that

$$
\begin{equation*}
N\left(T^{n}\right) \subset R\left(T^{k}\right)+F_{n, k} . \tag{*}
\end{equation*}
$$

Suppose first $N(T) \subset_{e} R^{\infty}(T)$. We prove (*) by induction on n.
The statement is clear for $n=1$.
Suppose that we have found subspaces $F_{m, k} \subset N\left(T^{m}\right)$ for every $m \leq n-1$ and every k such that $(*)$ holds. Choose a subspace $F_{n, k}^{\prime} \subset X$ such that $T F_{n, k}^{\prime}=F_{n-1, k+1} \cap$ $R(T)$ and $\operatorname{dim} F_{n, k}^{\prime}=\operatorname{dim}\left(F_{n-1, k+1} \cap R(T)\right) \leq \operatorname{dim} F_{n-1, k+1}<\infty$.

Then

$$
\begin{aligned}
& \quad N\left(T^{n}\right)=T^{-1} N\left(T^{n-1}\right) \subset T^{-1}\left(R\left(T^{k+1}\right)+F_{n-1, k+1}\right) \\
& \subset\left(R\left(T^{k}\right)+N(T)\right)+\left(F_{n, k}^{\prime}+N(T)\right) \subset R\left(T^{k}\right)+F_{n, k}^{\prime}+R\left(T^{k}\right)+F_{1, k}=R\left(T^{k}\right)+F_{n, k},
\end{aligned}
$$

where $F_{n, k}=F_{n, k}^{\prime}+F_{1, k} \subset N\left(T^{n}\right)$.

We prove that 2) implies (*). Suppose $N^{\infty}(T) \subset_{e} R(T)$. We prove ($*$) by induction on k. The statement is clear for $k=1$. Suppose $(*)$ is true for every n and every $l \leq k-1$. Then $N\left(T^{n+1}\right) \subset R\left(T^{k-1}\right)+F_{n+1, k-1}$, so that

$$
T N\left(T^{n+1}\right) \subset R\left(T^{k}\right)+T F_{n+1, k-1} .
$$

Further $T N\left(T^{n+1}\right)=N\left(T^{n}\right) \cap R(T)$ and $N\left(T^{n}\right) \subset R(T)+F_{n, 1}$ where $F_{n, 1} \subset N\left(T^{n}\right)$, so that

$$
\begin{aligned}
N\left(T^{n}\right) & \subset\left(R(T) \cap N\left(T^{n}\right)\right)+F_{n, 1}=T N\left(T^{n+1}\right)+F_{n, 1} \\
& \subset R\left(T^{k}\right)+T F_{n+1, k-1}+F_{n, 1}=R\left(T^{k}\right)+F_{n, k},
\end{aligned}
$$

where $F_{n, k}=T F_{n+1, k}+F_{n, 1} \subset N\left(T^{n}\right)$.
b) Condition ($*$) implies by Lemma 1.7 that $R\left(T^{k}\right)$ is closed for each k.
c) We construct now the decomposition $X=X_{1} \oplus X_{2}$. Suppose that T satisfies (*).

If $N(T) \subset R^{\infty}(T)$ then T is s-regular and we can take $X_{1}=\{0\}, X_{2}=X$.
Therefore we may assume that $N(T) \not \subset R\left(T^{k}\right)$ for some k and we take the smallest k with this property, i.e. $N(T) \subset R\left(T^{k-1}\right)$. Find a subspace L_{1} such that

$$
N(T)=L_{1} \oplus\left(N(T) \cap R\left(T^{k}\right)\right) .
$$

Clearly $1 \leq \operatorname{dim} L_{1}=r<\infty$.
As $L_{1} \subset N(T) \subset R\left(T^{k-1}\right)$, we can find a subspace L_{k} such that $\operatorname{dim} L_{k}=r$ and $T^{k-1} L_{k}=L_{1}$. Set $L_{i}=T^{k-i} L_{k} \quad(i=1, \ldots, k)$. Clearly $L_{i} \subset R\left(T^{k-i}\right)$ and $L_{i} \cap R\left(T^{k-i+1}\right)=\{0\}$ for every i. Therefore subspaces $L_{k}, L_{k-1}, \ldots, L_{1}$ and $R\left(T^{k}\right)$ are linearly independent in the following sense: if $l_{i} \in L_{i}(1 \leq i \leq k), x \in R\left(T^{k}\right)$ and $x+l_{1}+\cdots+l_{k}=0$, then $x=l_{1}=\ldots=l_{k}=0$.

Let x_{1}, \ldots, x_{r} be a basis in L_{1}. As x_{1}, \ldots, x_{r} are linearly independent modulo $R\left(T^{k}\right)+L_{2}+\ldots+L_{k}$, we can find linear functionals $f_{1}, \ldots, f_{r} \in\left(R\left(T^{k}\right)+L_{2}+\ldots L_{k}\right)^{\perp}$ such that $\left\langle x_{i}, f_{j}\right\rangle=\delta_{i j} \quad(1 \leq i, j \leq r)$. Set

$$
Y_{1}=\bigvee_{i=1}^{k} L_{i} \quad \text { and } \quad Y_{2}=\bigcap_{j=0}^{k-1} \bigcap_{i=1}^{r} \operatorname{ker}\left(T^{* j} f_{i}\right)
$$

Clearly $\operatorname{dim} Y_{1}<\infty, T Y_{1} \subset Y_{1}$ and $\left(T \mid Y_{1}\right)^{k}=0$. Further $T Y_{2} \subset Y_{2}$. Indeed, if $x \in Y_{2}$ then

$$
\left\langle T x, T^{* j} f_{i}\right\rangle=\left\langle x, T^{*(j+1)} f_{i}\right\rangle=0 \quad \text { for } \quad 0 \leq j \leq k-2
$$

and $\left\langle T x, T^{*(k-1)} f_{i}\right\rangle=\left\langle T^{k} x, f_{i}\right\rangle=0$.
Find $y_{1}, \ldots, y_{r} \in L_{k}$ such that $x_{i}=T^{k-1} y_{i} \quad(1 \leq i \leq r)$. Then

$$
\left\{T^{j} y_{i}, 0 \leq j \leq k-1,1 \leq i \leq r\right\}
$$

form a basis of Y_{1} and

$$
\left\{T^{j} y_{i}, 0 \leq j \leq k-1,1 \leq i \leq r\right\} \quad \text { and } \quad\left\{T^{* j} f_{i}, 0 \leq j \leq k-1,1 \leq i \leq r\right\}
$$

form a biorthogonal system. Thus it is easy to show that $X=Y_{1} \oplus Y_{2}$.

Denote by $T_{1}=T \mid Y_{1}$ and $T_{2}=T \mid Y_{2}$. We have $N(T)=N\left(T_{1}\right) \oplus N\left(T_{2}\right)=$ $L_{1} \oplus N\left(T_{2}\right)$ and $R^{\infty}(T)=R^{\infty}\left(T_{1}\right) \oplus R^{\infty}\left(T_{2}\right)=R^{\infty}\left(T_{2}\right)$.

If T satisfies 1), i.e. $\operatorname{dim}\left(N(T) \mid\left(N(T) \cap R^{\infty}(T)\right)\right)<\infty$ then

$$
\begin{aligned}
\operatorname{dim}\left(N\left(T_{2}\right) \mid\left(N\left(T_{2}\right) \cap R^{\infty}\left(T_{2}\right)\right)\right) & =\operatorname{dim}\left(N(T) \mid\left(N(T) \cap R^{\infty}(T)\right)\right)-r \\
& <\operatorname{dim}\left(N(T) \mid\left(N(T) \cap R^{\infty}(T)\right)\right)<\infty .
\end{aligned}
$$

and we can repeat the same construction for T_{2}. After a finite number of steps we obtain a decomposition $X=X_{1} \oplus X_{2}$ such that $\operatorname{dim} X_{1}<\infty, T X_{1} \subset X_{1}, T X_{2} \subset X_{2}$, $T \mid X_{1}$ is nilpotent and $N\left(T \mid X_{2}\right) \subset R^{\infty}(T)$, i.e. $T \mid X_{2}$ is s-regular.

Similarly, if T satisfies 2), i.e.

$$
\operatorname{dim}\left(N^{\infty}(T) \mid\left(N^{\infty}(T) \cap R(T)\right)\right)=a<\infty,
$$

then

$$
\begin{aligned}
\operatorname{dim}\left(N^{\infty}\left(T_{2}\right) \mid\left(N^{\infty}\left(T_{2}\right) \cap R\left(T_{2}\right)\right)\right) & =a-\operatorname{dim}\left(N^{\infty}\left(T_{1}\right) \mid\left(N^{\infty}\left(T_{1}\right) \cap R\left(T_{1}\right)\right)\right) \\
& =a-\operatorname{dim}\left(Y_{1} \mid \bigvee_{i=1}^{k-1} L_{i}\right)=a-r<a,
\end{aligned}
$$

so that after a finite number of steps we obtain the required decomposition $X=X_{1} \oplus X_{2}$.
$1 \Rightarrow 7:$ Since $\tilde{N}\left(T \mid X_{2}\right)=N\left(T \mid X_{2}\right)$ by Lemma 1.5, we have $\operatorname{dim}(N(T) \mid \tilde{N}(T))=$ $\operatorname{dim}\left(N\left(T \mid X_{1}\right) \mid \tilde{N}\left(T \mid X_{1}\right)=\operatorname{dim} N\left(T \mid X_{1}\right)<\infty\right.$.
$7 \Rightarrow$ 5: Clearly $\tilde{N}(T) \subset \bigvee_{z \neq 0} N(T-z)$.
$5 \Rightarrow 1$: It is easy to see that $N(T-z) \subset R^{\infty}(T)$ for $z \neq 0$. Thus

$$
N(T) \subset_{e} \bigvee_{z \neq 0} N(T-z) \subset \overline{R^{\infty}(T)}
$$

By Lemma 1.7 we have $\overline{R\left(T^{k}\right)}=R\left(T^{k}\right)$ for each k, so that $N(T) \subset_{e} R^{\infty}(T)$.
$4 \Rightarrow 8$: By condition 2 of Theorem $1.2 \tilde{R}\left(T \mid X_{2}\right)=R\left(T \mid X_{2}\right)$, so that

$$
\operatorname{dim}(\tilde{R}(T) \mid R(T)) \leq \operatorname{dim} X_{1}<\infty
$$

$8 \Rightarrow 6:$ Clearly $\bigcap_{z \neq 0} \overline{R(T-z)} \subset \tilde{R}(T)$.
$6 \Rightarrow 2$: This follows from the inclusion $N^{\infty}(T) \subset \bigcap_{z \neq 0} \overline{R(T-z)}$ (see the proof of Theorem 1.7).

Definition 3.2. We say that an operator $T \in B(X)$ is essentially s-regular if $R(T)$ is closed and T satisfies any of the equivalent conditions of Theorem 3.1.

Remark 3.3. Condition 4 of Theorem 3.1 is the Kato decomposition which was proved in [9] for semi-Fredholm operators. Clearly, essentially s-regular operators are a generalization of semi-Fredholm operators.

This notion is closely related to quasi-Fredholm operators, see [11], [12].
Corollary 3.4. (cf. [18]). Let $T \in B(X)$.

1) If T is essentially s-regular, then T^{n} is essentially s-regular for every n.
2) T is essentially s-regular if and only if $T^{*} \in B\left(X^{*}\right)$ is essentially s-regular.

Proof. 1) Let $X=X_{1} \oplus X_{2}$ be the Kato decomposition for T (see condition 4 of Theorem 3.1). Clearly the same decomposition satisfies all conditions for T^{n}.
2) We have $X^{*}=X_{2}^{\perp} \oplus X_{1}^{\perp}$ where $\operatorname{dim} X_{2}^{\perp}=\operatorname{codim} X_{2}=\operatorname{dim} X_{1}<\infty, T^{*} X_{2}^{\perp} \subset$ $X_{2}^{\perp}, T^{*} X_{1}^{\perp} \subset X_{1}^{\perp}, T^{*} \mid X_{2}^{\perp}$ is a nilpotent operator and $T^{*} \mid X_{1}^{\perp}$ is isometrically isomorphic to $\left(T \mid X_{2}\right)^{*}$, so that $T^{*} \mid X_{1}^{\perp}$ is s-regular and T^{*} is essentially s-regular.

Conversely, if T^{*} is essentially s-regular, then $R(T)$ and $R\left(T^{n}\right)$ are closed for every n and $T^{* *} \in B\left(X^{* *}\right)$ is essentially s-regular, so that $N\left(T^{* *}\right) \subset_{e} R^{\infty}\left(T^{* *}\right)$. Further $N(T)=N\left(T^{* *}\right) \cap X$ and $R\left(T^{n}\right)=R\left(T^{* * n}\right) \cap X$ for every n, so that $R^{\infty}(T)=R^{\infty}\left(T^{* *}\right) \cap$ X and $N(T) \subset_{e} R^{\infty}(T)$.

Theorem 3.5. Let $A, B \in B(X), A B=B A$. If $A B$ is essentially s-regular then A and B are essentially s-regular.

Proof. We have $N(A) \subset N(A B) \subset_{e} R^{\infty}(A B) \subset R^{\infty}(A)$, so that it is sufficient to prove that $R(A)$ is closed.

There exists a finite-dimensional subspace $F \subset X$ such that $N(A B) \subset R(A B)+F$. We prove that $R(A)+F$ is closed. Let $v_{j} \in X, f_{j} \in F$ and $A v_{j}+f_{j} \rightarrow u$. Then $B A v_{j}+B f_{j} \rightarrow B u$ and $B u \in R(A B)+B F$ since $R(A B)+B F$ is closed. Thus $B u=A B v+B f$ for some $v \in X$ and $f \in F$, i.e.

$$
A v+f-u \in N(B) \subset N(A B) \subset R(A B)+F \subset R(A)+F
$$

Hence $u \in R(A)+F$ and $R(A)+F$ is closed.
The closeness of $R(A)$ follows from the following lemma, which is a particular case of lemma of Neubauer, see [11], Proposition 2.1.1.

Lemma 3.6. Let $T \in B(X)$, let $F \subset X$ be a finite-dimensional subspace. Suppose that $R(T)+F$ is closed. Then $R(T)$ is closed.

Proof. Without loss of generality we can assume $R(T) \cap F=\{0\}$. Let $S: X \mid \operatorname{Ker} T \oplus$ $F \rightarrow X$ be defined by $S((x+\operatorname{Ker} T) \oplus f)=T x+f \in R(T)+F$. Then S is a bounded injective operator onto $R(T)+F$. Hence S is bounded below and $R(T)=$ $S(X \mid \operatorname{Ker} T \oplus\{0\})$ is closed.

Definition 3.7. Let $T \in B(X)$. Denote by

$$
\sigma_{\gamma e}(T)=\{\lambda \in \mathbf{C}, T-\lambda \text { is not essentially } \mathrm{s}-\text { regular }\}
$$

Theorem 3.8. (cf. [18]). Let $\operatorname{dim} X=\infty$ and $T \in B(X)$. Then

1) $\sigma_{\gamma e}(T) \subset \sigma_{\gamma}(T)$ and $\sigma_{\gamma}(T)-\sigma_{\gamma e}(T)$ consists of at most countably many isolated points,
2) $\sigma_{\gamma e}(T)$ is a non-empty compact set,
3) $\partial \sigma_{e}(T) \subset \sigma_{\gamma e}(T) \subset \sigma_{e}(T)$, where $\sigma_{e}(T)$ denotes the essential spectrum of T. More precisely, $\sigma_{\gamma e}(T) \subset \sigma_{\pi e}(T) \cap \sigma_{\delta e}(T)$, where $\sigma_{\pi e}(T)$ is the essential approximate point spectrum of T,

$$
\begin{aligned}
\sigma_{\pi e}(T) & =\{\lambda, T-\lambda \text { is not upper semi }- \text { Fredholm }\} \\
& =\{\lambda, R(T-\lambda) \text { is not closed }\} \cup\{\lambda, \operatorname{dim} N(T-\lambda)=\infty\}
\end{aligned}
$$

and

$$
\sigma_{\delta e}(T)=\{\lambda, T-\lambda \text { is not lower semi }- \text { Fredholm }\}=\{\lambda, \operatorname{codim} R(T-\lambda)=\infty\} .
$$

Proof. 1) Let $\lambda \in \sigma_{\gamma}(T)-\sigma_{\gamma e}(T)$. Then $T-\lambda$ is essentially s-regular, so that there exists a decomposition $X=X_{1} \oplus X_{2}$ with $T X_{1} \subset X_{1}, T X_{2} \subset X_{2}, \operatorname{dim} X_{1}<\infty$, $(T-\lambda) \mid X_{1}$ nilpotent and $(T-\lambda) \mid X_{2} \quad$ s-regular. Then $(T-z) \mid X_{2}$ is s-regular in a certain neighbourhood U of λ and $(T-z) \mid X_{1}$ is s-regular (even invertible) for every $z \neq \lambda$. It is easy to see that $T-z$ is s-regular for $z \in U-\{\lambda\}$, i.e. $U \cap \sigma_{\gamma}(T)=\{\lambda\}$. Clearly $\sigma_{\gamma}(T)-\sigma_{\gamma e}(T)$ is at most countable.
2) If $\lambda \notin \sigma_{\gamma e}(T)$ then either $\lambda \notin \sigma_{\gamma}(T)$ or $\lambda \in \sigma_{\gamma}(T)-\sigma_{\gamma e}(T)$. In both cases $U \cap \sigma_{\gamma e}(T)=\emptyset$ for some neighbourhood U od λ. Hence $\sigma_{\gamma e}(T)$ is closed.

The non-emptiness of $\sigma_{\gamma e}(T)$ follows from the inclusion $\partial \sigma_{e}(T) \subset \sigma_{\gamma e}(T)$ which will be proved next.
3) Suppose $\lambda \in \partial \sigma_{e}(T)$ and $\lambda \notin \sigma_{\gamma e}(T)$. Then $T-\lambda$ is essentially s-regular so that $R(T-\lambda)$ is closed and there exists a decomposition $X=X_{1} \oplus X_{2}$ such that $\operatorname{dim} X_{1}<\infty$, $T X_{1} \subset X_{1}, T X_{2} \subset X_{2},(T-\lambda) \mid X_{1}$ is nilpotent and $(T-\lambda) \mid X_{2}$ is s-regular. Choose a sequence $\lambda_{n} \rightarrow \lambda$ such that $\lambda_{n} \notin \sigma_{e}(T)$, i.e. $T-\lambda_{n}$ is Fredholm. We have

$$
\operatorname{dim} N\left(\left(T-\lambda_{n}\right) \mid X_{2}\right) \leq \operatorname{dim} N\left(T-\lambda_{n}\right)<\infty
$$

and, from the regularity of $T \mid X_{2}$ and property 6 of Theorem 1.1 we conclude that

$$
\operatorname{dim} N\left((T-\lambda) \mid X_{2}\right)<\infty
$$

and also $\operatorname{dim} N(T-\lambda)<\infty$.
Similarly we can prove codim $R(T-\lambda)<\infty$, so that $T-\lambda$ is a Fredholm operator and $\lambda \notin \sigma_{e}(T)$, a contradiction.

Thus $\partial \sigma_{e}(T) \subset \sigma_{\gamma e}(T)$.
If $\lambda \in \sigma_{\gamma e}(T)$, then $T-\lambda$ is not semi-Fredholm by Remark 3.3, so that $\lambda \in$ $\sigma_{\pi e}(T) \cap \sigma_{\delta e}(T)$.

Remark 3.9. In fact we have proved $\partial \sigma_{e}(T) \subset \sigma_{\pi e}(T)$ and $\partial \sigma_{e}(T) \subset \sigma_{\delta e}(T)$, which is not so trivial as in the non-essential case (see [8], cf. also [1]).

Theorem 3.10. Let $T \in B(X)$. Then $\sigma_{\gamma e}(f(T))=f\left(\sigma_{\gamma e}(T)\right)$ for every function f analytic in a neighbourhood of $\sigma(T)$.

Proof. It is sufficient to prove that $0 \notin \sigma_{\gamma e}(f(T))$ if and only if $T-\lambda$ is essentially s-regular whenever $f(\lambda)=0$.

Since f has only a finite number of zeros $\lambda_{1}, \ldots, \lambda_{n}$ in $\sigma(T)$ we can write $f(z)=$ $\left(z-\lambda_{1}\right)^{m_{1}} \cdots\left(z-\lambda_{n}\right)^{m_{n}} h(z)$ where h is analytic in a neighbourhood of $\sigma(T)$ and $f(z) \neq 0$ for $z \in \sigma(T)$.

We have $f(T)=\left(T-\lambda_{1}\right)^{m_{1}} \cdots\left(T-\lambda_{n}\right)^{m_{n}} h(T)$. If $f(T)$ is essentially s-regular, then $T-\lambda_{1}, \ldots, T-\lambda_{n}$ are essentially s-regular by Theorem 3.5.

Conversely, suppose that $T-\lambda_{1}, \ldots, T-\lambda_{n}$ are essentially s-regular. Denote by $q(z)=\left(z-\lambda_{1}\right) \cdots\left(z-\lambda_{n}\right)$ and $p(z)=\left(z-\lambda_{1}\right)^{m_{1}} \cdots\left(z-\lambda_{m}\right)^{m_{n}}$. Then

$$
N(q(T))=\bigvee_{i=1}^{n} N\left(T-\lambda_{i}\right)
$$

and

$$
R\left(q(T)^{m}\right)=\bigcap_{i=1}^{n} R\left(\left(T-\lambda_{i}\right)^{m}\right)
$$

for every m (see [15], Lemmas 5.2 and 5.3). Thus $R(q(T))$ is closed. Further $N\left(T-\lambda_{i}\right) \subset$ $R^{\infty}\left(T-\lambda_{j}\right)$ for $j \neq i$ and $\left.N\left(T-\lambda_{i}\right)\right) \subset R^{\infty}\left(T-\lambda_{i}\right)+F_{i}$ for some finite-dimensional subspace $F_{i} \subset X$. Thus

$$
N\left(T-\lambda_{i}\right) \subset \bigcap_{j=1}^{n} R^{\infty}\left(T-\lambda_{j}\right)+F_{i}
$$

and

$$
N(q(T)) \subset \bigcap_{i=1}^{n} R^{\infty}\left(T-\lambda_{i}\right)+F_{1}+\cdots+F_{n}=R^{\infty}(q(T))+F_{1}+\cdots+F_{n} .
$$

Hence $q(T)$ is essentially s-regular. If $m=\max \left\{m_{i}, 1 \leq i \leq n\right\}$, then $q(T)^{m}$ is essentially s-regular by Corollary 3.4 and $p(T)$ is essentially s-regular by Theorem 3.5. Further $h(T)$ is an invertible operator commuting with $p(T)$. Thus $N(f(T))=N(p(T))$ and $R\left(f(T)^{n}\right)=R\left(p(T)^{n}\right)$ for every n, so that $R(f(T))$ is closed and

$$
N(f(T))=N(p(T)) \subset_{e} R^{\infty}(p(T))=R^{\infty}(f(T))
$$

Hence $f(T)$ is essentially s-regular.
Problem 3.11. Example 2.5 shows that $\sigma_{\gamma e}(T)$ is not stable under compact perturbations. We do not know if it is stable under finite-dimensional perturbations. Equivalently, taking into account the Kato decomposition, we can reformulate this question as follows:

Let T be s-regular and A a finite-dimensional operator. Is then $T+A$ essentially s-regular?

IV. Generalized inverses

Let $T \in B(X)$. We say that $S \in B(X)$ is a generalized inverse of T if $T S T=T$ and $S T S=S$. In this case $T S$ is a bounded projection onto $R(T)$ and $S T$ is a bounded projection with $N(S T)=N(T)$. Thus it is easy to see that T has a generalized inverse if and only if $R(T)$ is closed and both $N(T)$ and $R(T)$ are ranges of bounded projections.

An operator T is called regular if T is s-regular and has a generalized inverse.
Let T be an operator in a Hilbert space H. Then there is an analytic generalized inverse of $T-z$ defined on the open set $G=\mathbf{C}-\sigma_{\gamma}(T)$ (see [3], Theorem 2.5). More precisely, there exists an analytic operator-valued function $S: G \rightarrow B(X)$ such that $(T-z) S(z)(T-z)=T-z$ and $S(z)(T-z) S(z)=S(z)$ for all $z \in G$. One can see easily that $\mathbf{C}-\sigma_{\gamma}(T)$ is the largest open set with this property.

If T is an operator in a Banach space X then another necessary condition for existence of an analytic generalized inverse of $T-z$ is that $R(T-z)$ and $N(T-z)$ are ranges of bounded projections. We show that this is already a sufficient condition.

We start with a local version of this result, which was essentially proved in [14], Theorem 2.6, see also [7], Theorem 9.

Theorem 4.1. Let $T \in B(X)$ be a regular operator. Then there exists an open neighbourhood U of 0 and an analytic function $S: U \rightarrow B(X)$ such that $(T-z) S(z)(T-$ $z)=T-z$ and $S(z)(T-z) S(z)=S(z)$ for all $z \in U$.

Proof. Let $S \in B(X)$ be a generalized inverse of T, i.e. $T S T=T$ and $S T S=S$. Set $U=\left\{z \in \mathbf{C},|z|<\|S\|^{-1}\right\}$. For $z \in U$ define $P(z)=\sum_{i=0}^{\infty} S^{i}(I-S T) z^{i}$. Clearly the sum converges for $z \in U$. We have $(I-S T) S=0=T(I-S T)$, therefore $P(z)^{2}=\sum_{i=0}^{\infty} z^{i} S^{i}(I-S T)^{2}=P(z)$ and

$$
\begin{aligned}
& (T-z) P(z)=(T-z) \sum_{i=0}^{\infty} S^{i}(I-S T) z^{i} \\
= & T(I-S T)+\sum_{i=1}^{\infty} z^{i}\left[T S^{i}(I-S T)-S^{i-1}(I-S T)\right]=\sum_{i=1}^{\infty}(T S-I) S^{i-1}(I-S T) z^{i} .
\end{aligned}
$$

Let $x \in X$. Then $T(I-S T) x=0$, so that $(I-S T) x \in N(T) \subset R^{\infty}(T)$.
Further, if $y \in R^{\infty}(T), y=T z$ then $y=T z=T S T z=T S y$ and, by Lemma 1.4, $S y \in R^{\infty}(T)$. Thus $S\left(R^{\infty}(T)\right) \subset R^{\infty}(T)$.

Finally, for $u \in R(T), u=T v$ we have $(T S-I) u=(T S-I) T v=0$. Thus

$$
(T S-I) S^{i-1}(I-S T)=0 \quad(i \geq 1)
$$

and $(T-z) P(z)=0$.
For $z \in G$ set $S(z)=\sum_{i=0}^{\infty} S^{i+1} z^{i}$. Then

$$
\begin{aligned}
S(z)(T-z)+P(z) & =\sum_{i=0}^{\infty} S^{i+1} z^{i}(T-z)+\sum_{i=0}^{\infty} S^{i}(I-S T) z^{i} \\
& =S T+I-S T+\sum_{i=1}^{\infty}\left[S^{i+1} T-S^{i}+S^{i}(I-S T)\right] z^{i}=I
\end{aligned}
$$

hence $S(z)(T-z)=I-P(z)$. We have $(T-z) S(z)(T-z)=(T-z)(I-P(z))=T-z$ and $S(z)(T-z) S(z)=(I-P(z)) S(z)=S(z)$ since

$$
P(z) S(z)=\left(\sum_{i=0}^{\infty} z^{i} S^{i}(I-S T)\right)\left(\sum_{i=0}^{\infty} S^{i+1} z^{i}\right)=0
$$

Clearly $P(z)$ is a bounded projection onto $N(T-z)$.
Remark 4.2. Let $S(z)$ be the function constructed in the previous theorem and let $\lambda, \mu \in U$. Then

$$
\begin{aligned}
S(\lambda)-S(\mu) & =\sum_{i=0}^{\infty}\left(\lambda^{i}-\mu^{i}\right) S^{i+1}=(\lambda-\mu) \sum_{i=1}^{\infty}\left(\lambda^{i-1}+\lambda^{i-2} \mu+\cdots+\mu^{i-1}\right) S^{i+1} \\
& =(\lambda-\mu)\left(\sum_{j=0}^{\infty} \lambda^{j} S^{j+1}\right)\left(\sum_{k=0}^{\infty} \lambda^{k} S^{k+1}\right)=(\lambda-\mu) S(\lambda) S(\mu)
\end{aligned}
$$

Thus $S(z)$ satisfies the resolvent identity and so it is not only a generalized inverse of $T-z$ but also a generalized resolvent in the sense of [4] or [5].

The next theorem shows that it is possible to find a global analytic general inverse of $T-z$. It is an open question if there always exists a global analytic general resolvent.

Theorem 4.3. Let $T \in B(X)$. Denote by $G=\{z \in \mathbf{C}, T-z$ is regular $\}$. Then G is an open set and there exists an analytic function $S: G \rightarrow B(X)$ such that

$$
(T-z) S(z)(T-z)=T-z
$$

and

$$
S(z)(T-z) S(z)=S(z) \quad(z \in G)
$$

Proof. For $z \in G$ define the operator $M(z): B(X) \rightarrow B(X)$ by

$$
M(z) A=(T-z) A(T-z) \quad(A \in B(X))
$$

Clearly $M: G \rightarrow B(B(X))$ is an analytic function. Let $\lambda \in G$. By the previous theorem there exists a neighbourhood U of λ and an analytic function $S_{1}: U \rightarrow B(X)$ such that $(T-z) S_{1}(z)(T-z)=T-z$ and $S_{1}(z)(T-z) S_{1}(z)=S_{1}(z) \quad(z \in U)$.

Let $\mu \in U$ and $A \in B(X)$. Set $A_{1}=S_{1}(\mu)(T-\mu) A(T-\mu) S_{1}(\mu)$. Then

$$
M(\mu) A_{1}=(T-\mu) S_{1}(\mu)(T-\mu) A(T-\mu) S_{1}(\mu)(T-\mu)=(T-\mu) A(T-\mu)=M(\mu) A
$$

and

$$
\left\|A_{1}\right\| \leq\left\|S_{1}(\mu)\right\|^{2}\|(T-\mu) A(T-\mu)\|=\left\|S_{1}(\mu)\right\|^{2}\|M(\mu) A\|
$$

Thus $\gamma(M(\mu)) \geq\left\|S_{1}(\mu)\right\|^{-2}$ so that $\gamma(M(z))$ is bounded from below in a certain neighbourhood of λ. Further function $z \mapsto T-z \in B(X)$ is an analytic vector-valued function and, by the definition of $G, T-z \in R(M(z))$ for every $z \in G$.

By [19], Theorem 2, there exists an analytic function $S_{2}: G \rightarrow B(X)$ such that $M(z) S_{2}(z)=T-z$, i.e. $(T-z) S_{2}(z)(T-z)=T-z$ for $z \in G$. Set

$$
S(z)=S_{2}(z)(T-z) S_{2}(z) \quad(z \in G)
$$

Then

$$
(T-z) S(z)(T-z)=(T-z) S_{2}(z)(T-z) S_{2}(z)(T-z)=T-z
$$

and

$$
\begin{aligned}
S(z)(T-z) S(z) & =S_{2}(z)(T-z) S_{2}(z)(T-z) S_{2}(z)(T-z) S_{2}(z) \\
& =S_{2}(z)(T-z) S_{2}(z)=S(z)
\end{aligned}
$$

for every $z \in G$.

References

[1] C. Apostol, On the left essential spectrum and non-cyclic operators in Banach spaces, Rev. Roum. Math. Pures Appl. 17 (1972), 1141-1147.
[2] C. Apostol, On the closed range points in the spectrum of operators, Rev. Roum. Math. Pures et Appl. 21 (1976), 971-976.
[3] C. Apostol, The reduced minimum modulus, Michigan Math. J. 32 (1984), 279294.
[4] C. Apostol, K. Clancey, Generalized inverses and spectral theory, Trans. Amer. Math. Soc. 215 (1976), 293-300.
[5] C. Apostol, K. Clancey, On generalized resolvents, Proc. Amer. Math. Soc. 58 (1976), 163-168.
[6] R.E. Curto, A.T. Dash, Browder spectral systems, Proc. Amer. Math. Soc. 103 (1988), 407-413.
[7] R. Harte, Taylor exactness and Kaplansky's lemma, J. Oper. Th. 25 (1991), 399416.
[8] R. Harte, T. Wickstead, Upper and lower Fredholm spectra II., Math. Zeit. 154 (1977), 253-256.
[9] T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Anal. Math. 6 (1958), 261-322.
[10] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin, 1966.
[11] J.P. Labrouse, Les opérateurs quasi-Fredholm: une généralisation des opérateurs semi-Fredholm, Rend. Circ. Math. Palermo 29 (1989), 69-105.
[12] J.P. Labrouse, Relation entre deux définitions possibles du spectre essentiel d'un opérateur, Rev. Roum. Math. Pures et Appl. 25 (1980), 1391-1394.
[13] J. Leiterer, The operator of multiplication by a continuous operator function (Russian), Mat. Issled. 5 (1970), 115-135.
[14] M. Mbekhta, Généralisation de la décomposition de Kato aux opérateurs paranormaux et spectraux, Glasgow Math. J. 29 (1987), 159-175.
[15] M. Mbekhta, Résolvant généralisé et théorie spectrale, J. Oper. Theory 21 (1989), 69-105.
[16] M. Mbekhta, A. Ouahab, Opérateur s-régulier dans un espace de Banach et théorie spectrale, Pub. Irma, Lille -1990, Vol. 22, No XII.
[17] M. Mbekhta, A. Ouahab, Contribution a la théorie spectrale généralisée dans les espaces de Banach, C. R. Acad. Sci. Paris 313 (1991), 833-836.
[18] V. Rakočevič, Generalized spectrum and commuting compact perturbations, Proc. Edinb. Math. Soc. 36 (1993), 197-209.
[19] Z. Słodkowski, Operators with closed ranges in spaces of analytic vector-valued functions, J. Func. Anal. 69 (1986), 155-177.
[20] W. Żelazko, Axiomatic approach to joint spectra I., Studia Math. 64 (1979), 249261.

Institute of Mathematics AV ČR
Žitná 25, 11567 Praha 1
Czech Republic

