
A continuous semicharacter

V. Kordula and V. Müller

Abstract: We exhibit an example of a continuous proper semicharacter on a
Banach algebra. This gives an answer to the problem posed by Z. S lodkowski and
W. Żelazko.

A semicharacter on a Banach algebra A is a complex-valued function f defined
on A such that, for every commutative subalgebra A0 ⊂ A, the restriction f |A0 is a
multiplicative linear functional (=character) on A0 (we do not assume continuity of f).

Multiplicative linear functionals play an important role in the theory of generalized
spectra (see [3],[6],[2]) in commutative Banach algebras. As generalized spectra in non-
commutative Banach algebras are defined only for commuting systems of elements, it
is natural to replace multiplicative linear functionals in the non-commutative case by
semicharacters.

However, usually it is rather difficult to find a proper semicharacter (i.e. a semichar-
acter which is not a character). Note that a linear semicharacter is clearly continuous
and by [5] it is already multiplicative, so that it is a character. In [4] the problem was
raised whether a continuous semicharacter is already a character.

The aim of this note is to give a negative answer to this question.

Theorem: There exist a Banach algebra B and a continuous semicharacter f :
B → C which is not a multiplicative linear functional.

Proof: Denote by R+ the set of all positive real numbers and by D = {z ∈ C, |z| <
1} the open unit disc in the complex plain. Let A be the disc algebra of all functions
holomorphic in D and continuous in D̄. For a ∈ A denote ‖a‖ = maxz∈D̄ |a(z)|. Set
B = A×A. We define the norm and the algebraic operations in B by

‖(a, b)‖ = ‖a‖+ ‖b‖,
(a, b) + (a′, b′) = (a + a′, b + b′),

α(a, b) = (αa, b),

(a, b) · (a′, b′) = (aa′, ab′) (a, b, a′, b′ ∈ A, α ∈ C).

In this way B becomes a Banach algebra.
Let (a, b), (a′, b′) ∈ B. Then (a, b) · (a′, b′) = (aa′, ab′) and (a′, b′) · (a, b) = (a′a, a′b)

so that (a, b) and (a′, b′) ∈ B commute if and only if ab′ = a′b. Thus B has only few
commutative subalgebras which are easy to describe.

For n ∈ N, λ = (λ1, . . . , λn) ∈ Dn, r = (r1, . . . , rn) ∈ Rn
+ and s > 0 we denote

Fλ,r,s = {z ∈ D, |z| ≤ 1− s, |z − λi| ≥ ri (i = 1, . . . , n)}.
Clearly Fλ,r,s is a closed subset of D. Let k > 0 and 0 < s < 1/2. Denote by Mk,s

the set of all pairs (a, b) ∈ B for which there exist n ∈ N,λ = (λ1, . . . , λn) ∈ Dn and
r = (r1, . . . , rn) ∈ Rn

+ such that
∑n

i=1 ri < s and

z ∈ Fλ,r,s ⇒ a(z) 6= 0 and

∣∣∣∣
b(z)
a(z)

∣∣∣∣ < k.

1



Clearly, if
∑n

i=1 ri < s < 1/2 then Fλ,r,s is a non-empty subset of D so that
(a, b) ∈ Mk,s implies a 6= 0. On the other hand, if a 6= 0 then (a, 0) ∈ Mk,s for every
k > 0 and 0 < s < 1/2. Indeed, a has only a finite number of zeros λ1, . . . , λn in the
disc {z ∈ C, |z| ≤ 1 − s} so that for any positive numbers r1, . . . , rn with

∑n
i=1 ri < s

we have z ∈ Fλ,r,s ⇒ a(z) 6= 0.
Further, Mk,s ⊂ Mk′,s′ if k < k′ and s < s′.

1) If k > 0 and 0 < s < 1/2 then Mk,s is an open subset of B.
Proof: Let (a, b) ∈ Mk,s. Let λ = (λ1, . . . , λn) ∈ Dn and r = (r1, . . . , rn) ∈ Rn

+

satisfy
∑n

i=1 ri < s and z ∈ Fλ,r,s ⇒ a(z) 6= 0 and
∣∣∣ b(z)
a(z)

∣∣∣ < k. Denote by

k0 = max
z∈Fλ,r,s

∣∣∣∣
b(z)
a(z)

∣∣∣∣ < k,

k1 = max{‖a‖, ‖b‖} and

k2 = min
z∈Fλ,r,s

|a(z)| > 0.

Set δ = min{k2/2, (k − k0)k2
2/2k1} > 0. Let (a′, b′) ∈ B, ‖(a, b) − (a′, b′)‖ < δ, i.e.

‖a− a′‖+ ‖b− b′‖ < δ. Then, for z ∈ Fλ,r,s, we have

|a′(z)| ≥ |a(z)| − δ ≥ k2 − k2

2
=

k2

2
> 0

and
∣∣∣∣
b′(z)
a′(z)

∣∣∣∣ ≤
∣∣∣∣
b(z)
a(z)

∣∣∣∣ +

∣∣∣∣
b′(z)
a′(z)

− b(z)
a(z)

∣∣∣∣ ≤ k0 +

∣∣∣∣
a(z)(b′(z)− b(z)) + b(z)(a(z)− a′(z))

a′(z)a(z)

∣∣∣∣ <

< k0 +
k1δ

k2(k2 − δ)
≤ k0 +

2k1δ

k2
2
≤ k.

Thus (a′, b′) ∈ Mk,s and Mk,s is an open subset of B.

2) Let (a, b) ∈ Mk,s and let (a′, b′) ∈ B satisfy a′ 6= 0 and a′b = b′a. Then
(a′, b′) ∈ Mk,s.

Proof: Let λ = (λ1, . . . , λn) ∈ Dn and r = (r1, . . . , rn) ∈ Rn
+ satisfy

∑n
i=1 ri < s

and

z ∈ Fλ,r,s ⇒ a(z) 6= 0 and

∣∣∣∣
b(z)
a(z)

∣∣∣∣ < k.

The function a′ has only a finite number of zeros λ′1, . . . , λ
′
m in the disc {z ∈ C, |z| ≤

1− s}. Choose positive numbers r′1, . . . , r
′
m such that

∑m
j=1 r′j < s−∑n

i=1 ri. Consider
the set

F = {z ∈ D, |z| ≤ 1− s, |z − λi| ≥ ri (i = 1, . . . , n), |z − λ′j | ≥ r′j (j = 1, . . . , m)}.

Then
∑n

i=1 ri +
∑m

j=1 r′j < s and

z ∈ F ⇒ a′(z) 6= 0 and

∣∣∣∣
b′(z)
a′(z)

∣∣∣∣ =

∣∣∣∣
b(z)
a(z)

∣∣∣∣ < k.
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Hence (a′, b′) ∈ Mk,s.

3) Let k, k′, s, s′ be positive numbers such that k < k′ and s < s′ < 1/2. Then
Mk,s ∩ {(a, b) ∈ B, a 6= 0} ⊂ Mk′,s′ .

Proof: Let (a, b) ∈ Mk,s and a 6= 0. The function a has only a finite number of
zeros λ′1, . . . , λ

′
m in the disc {z ∈ C, |z| ≤ 1 − s′}. Choose positive numbers r′1, . . . , r

′
m

such that
∑n

j=1 r′j < s′ − s. Consider the set

Fλ′,r′,s′ = {z ∈ D, |z| ≤ 1− s′, |z − λ′j | ≥ r′j (j = 1, . . . ,m)}.

Denote
k1 = max{‖a‖, ‖b‖} and

k2 = min
z∈Fλ′,r′,s′

|a(z)| > 0.

Let δ = min{k2/2, (k′ − k)k2
2/2k1} > 0. Then there exists (a′, b′) ∈ Mk,s such that

‖(a′, b′) − (a, b)‖ = ‖a − a′‖ + ‖b − b′‖ < δ. This means that there exist n ∈ N,
λ = (λ1, . . . , λn) ∈ Dn and r = (r1, . . . , rn) ∈ Rn

+ such that
∑n

i=1 ri < s and

z ∈ Fλ,r,s ⇒ a′(z) 6= 0 and

∣∣∣∣
b′(z)
a′(z)

∣∣∣∣ < k.

Then for z ∈ Fλ,r,s ∩ Fλ′,r′,s′ we have a(z) 6= 0 and

∣∣∣∣
b(z)
a(z)

∣∣∣∣ ≤
∣∣∣∣
b′(z)
a′(z)

∣∣∣∣ +

∣∣∣∣
b(z)
a(z)

− b′(z)
a′(z)

∣∣∣∣ < k +

∣∣∣∣
b(z)(a′(z)− a(z)) + a(z)((b(z)− b′(z))

a(z)a′(z)

∣∣∣∣ <

< k +
k1δ

k2(k2 − δ)
≤ k +

2k1δ

k2
2
≤ k′.

Hence (a, b) ∈ Mk′,s′ .

Denote B0 = {(a, b) ∈ B, a 6= 0}.

4) There exists a non-constant continuous function ϕ : B0 → 〈0, 1/2〉 such that

(a, b), (a′, b′) ∈ B0, ab′ = ba′ ⇒ ϕ(a, b) = ϕ(a′, b′).

Proof: For (a, b) ∈ B0 define

ϕ(a, b) =

{
1
2 if (a, b) 6∈ ∪0<s<1/2Ms,s

inf{s, (a, b) ∈ Ms,s} otherwise.

Clearly, by 2), ϕ(a, b) = ϕ(a′, b′) if ab′ = a′b. The function ϕ is non-constant since
ϕ(1, 0) = 0 and ϕ(1, 1) = 1/2. The proof of continuity of ϕ is standard. Let s0 ∈
(0, 1/2〉. Then

{(a, b) ∈ B0, ϕ(a, b) < s0} =
⋃

s<s0

Ms,s,
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which is an open subset of B0. If s0 ∈ 〈0, 1/2) then

{(a, b) ∈ B0, ϕ(a, b) ≤ s0} =
⋂

s>s0

Ms,s =
⋂

s>s0

(
Ms,s ∩B0

)
,

which is a closed subset of B0. Thus ϕ is a continuous function.

Define a function f : B → C by

f(a, b) =

{
0 if a = 0

a(ϕ(a, b)) if a 6= 0.

We show that f is a proper continuous semicharacter.

5) Let x = (a, b) ∈ B and α ∈ C. Then f(αx) = αf(x).
Proof: This is clear if α = 0 or a = 0. If a 6= 0 and α 6= 0, then ϕ(x) = ϕ(αx) = t0

so that f(αx) = f(αa, αb) = α · a(t0) = αf(x).

6) Let x = (a, b), x′ = (a′, b′) ∈ B be commuting elements. Then f(x + x′) =
f(x) + f(x′) and f(xx′) = f(x) · f(x′).

Proof: We have ab′ = a′b. We distinguish several cases:
a) If a = 0 and b = 0, then f(x) = 0 = f(xx′) so that the statement is clear.
b) If a = 0 and b 6= 0, then a′ = 0 so that f(x) = f(x′) = f(x + x′) = f(xx′) = 0.
c) If a′ = 0, then the statement can be proved analogously.
d) The remaining case is a 6= 0, a′ 6= 0. Then

ϕ(a, b) = ϕ(a′, b′) = ϕ(aa′, ab′) = t0,

so that
f(xx′) = (aa′)(t0) = a(t0)a′(t0) = f(x) · f(x′).

Further either a = −a′ so that b = −b′ and f(x + x′) = f(x) + f(x′) = 0, or
a + a′ 6= 0 so that ϕ(a + a′, b + b′) = t0 and

f(x + x′) = (a + a′)(t0) = a(t0) + a′(t0) = f(x) + f(x′).

Hence f is a semicharacter.

7) f is a continuous semicharacter.
Proof: Let x = (0, b). Then f(x) = 0. If x′ = (a′, b′) ∈ B then either a′ = 0 so

that f(x′) = 0, or a′ 6= 0 so that |f(x′)| = |a′(ϕ(x′))| ≤ ‖a′‖. In both cases we have
|f(x′)− f(x)| ≤ ‖x′ − x‖, hence f is continuous at x = (0, b).

Let x = (a, b) where a 6= 0 and let ε > 0. Find δ > 0 such that |t − ϕ(x)| < δ ⇒
|a(t)− a(ϕ(x))| < ε/2. From the continuity of ϕ it is possible to find a positive number
δ1 < ε/2 such that

‖x′ − x‖ < δ1 ⇒ x′ ∈ B0 and |ϕ(x′)− ϕ(x)| < δ.
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For x′ = (a′, b′) ∈ B, ‖x′ − x‖ < δ1 we have

|f(x′)− f(x)| = |a′(ϕ(x′))− a(ϕ(x))| ≤ |a′(ϕ(x′))− a(ϕ(x′))|+ |a(ϕ(x′))− a(ϕ(x))| ≤

≤ ‖a′ − a‖+ ε/2 ≤ ‖x′ − x‖+ ε/2 < ε.

Hence f is a continuous semicharacter.

It remains to show that f is not a multiplicative linear functional.To this end
consider x = (1, 0) and x′ = (z, z). Then x′x = (z, 0), ϕ(x) = 0, ϕ(x′) = 1/2 and
ϕ(x′x) = 0 so that f(x) = 1, f(x′) = 1/2 and f(x′x) = 0 6= f(x) · f(x′).

Remark 1: The above constructed algebra B has no unit element. If we consider
its unital extension B1 = B ⊕ {Ce} then f : B → C can be extended to a proper
continuous semicharacter f1 : B1 → C by f1(x + λe) = f(x) + λ (x ∈ B, λ ∈ C).

Problem: Suppose that f is a uniformly continuous semicharacter on a Banach
algebra A, i.e., for some constant k we have |f(x)− f(x′)| ≤ k · ‖x− x′‖ (x, x′ ∈ A).
Does it follow that f is a multiplicative linear functional?

Remark 2: If f is a semicharacter on a Banach algebra A such that z → f(a+bz)
is a holomorphic function for every a, b ∈ A, then f is already a multiplicative linear
functional. Indeed, function ϕ : z → f(a + bz) − f(a) − z · f(b) is holomorphic and
ϕ(0) = 0 so that

ϕ1 : z → ϕ(z)
z

= f
(
b +

a

z

)
− f(a)

z
− f(b) (z 6= 0)

extends to an entire function and limz→∞ ϕ1(z) = 0. Thus ϕ1(z) = 0 for every z ∈ C.
In particular,

0 = ϕ1(1) = f(a + b)− f(a)− f(b)

so that f is a linear functional, i.e. a semicharacter.

Remark 3: A notion analogous to semicharacters is that of a quasilinear functional
on a Banach algebra A ( = a bounded function which is linear on each commutative
subalgebra of A). This notion, which is motivated by quantum physics, has been studied
intensively in the context of C∗−algebras, see [1].
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