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Abstract. We construct a power bounded operator on a Hilbert space
which is not quasisimilar to a contraction. To this aim, we solve an open
problem from operator ergodic theory showing that there are power
bounded Hilbert space operators without the Blum-Hanson property.
We also find an example of a power bounded operator quasisimilar to a
unitary operator which is not similar to a contraction, thus answering
negatively open questions raised by Kérchy and Cassier. On the positive
side, we prove that contractions on `p spaces (1 ≤ p < ∞) possess the
Blum-Hanson property.

1. Introduction

One of the most challenging problems in operator theory was to decide
whether every polynomially bounded operator on a Hilbert space is similar
to a contraction. The problem was posed by Halmos in 1970 as a refined
version of a B. Sz.-Nagy question (1959) on similarity to contractions of
power bounded operators on Hilbert spaces. While the B. Sz.-Nagy problem
was answered in the negative quite soon by S. R. Foguel [F], see also [H],
the Halmos problem remained open for a long time. It was solved in the
negative by G. Pisier in 1996 [P], following substantial contributions in [Pe],
[Bo] and [AP], see also [DP].

The present paper deals with the following refined version of the Sz.-Nagy
problem.

Quasisimilarity Problem Is every power bounded operator on a Hilbert
space quasisimilar to a contraction?

The problem was implicitly considered in a number of papers.
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Note that by [BP] each polynomially bounded operator T on H is ”al-
most” quasisimilar to a contraction in the following sense: there exist Hilbert
spaces H1, H2, contractions T1 ∈ B(H1), T2 ∈ B(H2) and injective lin-
ear operators X1 : H1 → H, X2 : H → H2 with dense ranges such that
X1T1 = TX1 and T2X2 = X2T . It is still unknown whether one can choose
T1 = T2 so that to make T quasisimilar to a contraction.

In the present paper we show that the quasisimilarity problem has a
negative solution. Moreover, we construct a power bounded operator T on
a Hilbert space H such that Tnx 6→ 0 for every nonzero vector x ∈ H and
such that even no contraction is a quasiaffine transform of T . To this aim
we solve another open problem from operator ergodic theory concerning also
power bounded operators.

The well-known mean ergodic theorem asserts that if T is a power bounded
operator on a reflexive Banach space X, then Mn(T ) := 1

N

∑N
n=1 Tn con-

verge in the strong operator topology. From the point of view of ergodic
theory, it is natural to ask which property of T would guarantee the con-
vergence not only of the conventional Cesáro averages Mn(T ), but also the
convergence of Cesáro averages along any subsequence of (Tn).

The following theorem proved in [AS2], [JK] and [Li] answers the question
in the case when T is a Hilbert space contraction.

Theorem 1.1. Let T be a contraction acting on a Hilbert space H. Then
the following two properties are equivalent:

(i) the sequence (Tnx) converges weakly for every x ∈ H;
(ii) for each x ∈ H and every increasing sequence (kn) of positive inte-

gers, the limit

lim
N→∞

1
N

N∑

n=1

T knx

exists in the norm topology.

The equivalence of the properties (i) and (ii) was first noted by Blum and
Hanson [BH] for unitary operators induced by measure preserving transfor-
mations.

Let now T be a bounded linear operator (not necessarily a contraction)
on a Banach space.

Definition 1.2. We say that T has the Blum-Hanson property if T satisfies
the condition (ii) of Theorem 1.1.

Note that the Blum-Hanson property implies condition (i) (convergence
of the sequence (Tn) in the weak operator topology), see e.g. [Kr, p. 253],
which in turns implies that T is power bounded. It is also worth to note
that the limits in (i) and (ii) are equal for each x. Furthermore, condition
(i) is equivalent to the Blum-Hanson property for all subsequences (kn) of
positive lower density, see [J2].
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The Blum-Hanson property was thoroughly studied in the 60’th and 70’s
in relation with mixing in ergodic theory. Apart from the class of Hilbert
space contractions, the equivalence of (i) and (ii) in Theorem 1.1 was proved

a) for contractions on L1-spaces [AS2],
b) for positive contractions on Lp-spaces, 1 < p < ∞ [AS1], see also

[Bel],
c) for a class of positive power bounded operators on L1 [M],
d) for some power bounded operators on Hilbert spaces [K].

The proofs relied either on some dilation theorems or on certain specific
inequalities in Lp spaces. The Blum-Hanson property for sequences of ele-
ments in Hilbert spaces was treated in [BB], see also [Z].

On the other hand, it was shown in [AHR] that Theorem 1.1 does not hold
for a certain positive contraction on a space C(K), where K is a compact
Hausdorff space. As far as we know, this was the only known example of
an operator such that the sequence (Tn) is converging in the weak operator
topology but T has not the Blum-Hanson property.

The problem whether Theorem 1.1 holds for all power bounded operators
on Hilbert spaces was left open.

Ergodic Problem Does every Hilbert space operator T such that the
sequence (Tn) is convergent in the weak operator topology possess the Blum-
Hanson property?

We give a negative answer to this problem. On the other hand, we prove
that contractions on `p spaces, 1 ≤ p < ∞, do possess the Blum-Hanson
property. On `2 the result is known but our proof seems to be new.

Our approach to the Quasimilarity Problem is to link it to the Ergodic
Problem stated above. Note that the Blum-Hanson property is preserved
under quasisimilarity, see Lemma 3.3. Since Theorem 1.1 holds for contrac-
tions, a power bounded operator for which Theorem 1.1 is not true cannot be
quasisimilar to a contraction. This fact is exploited in Section 3 to produce
a negative answer to the Quasimilarity problem.

Another main result of the paper deals with similarity to a contraction of
special classes of power bounded operators. Recall that, by classical result
due to B. Sz.-Nagy and C. Foia̧s, a power bounded operator T on a Hilbert
space such that Tnx 6→ 0 and T ∗nx 6→ 0 for every x ∈ H is quasisimilar
to a unitary operator [NF]. (It is also not difficult to show that the class
of such power bounded operators is exactly the class of quasisimilarities of
unitary operators.) Thus it is natural to ask whether such operators are,
in fact, similar to contractions [Ke1, Question 1], [Ke2, Question 3]. This
problem was studied intensively in the last years, see e.g. [C], [CF], [Ke2],
[Ke1], [Ku]. Using technique developed in the present paper, we show that
the answer to this question is also negative.
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2. Blum-Hanson property

Let T be a power bounded operator on a Hilbert space H. We say that T
is of class C1,· if infn ‖Tnx‖ > 0 for each nonzero x ∈ H. We say that T is
of class C·,1 if T ∗ is of class C1,·. We say that T is of class C1,1 if it is both
of class C1,· and C·,1.

Example 2.1. There exists a bounded linear operator T of class C1· acting
on a Hilbert space H, x ∈ H and an increasing sequence (kn) of positive
integers such that Tn → 0 in the weak operator topology and 1

N

∑N
n=1 T knx

does not converge as N →∞.

Construction. Let H be the Hilbert space with an orthonormal basis
formed by the vectors ei (i ≥ 0) and fi,j (i ≥ 1, j ∈ Z).

Define function r : N → N by r(k) = [log2 k] + 1, where [·] denotes the
integer part, i.e., r(k) = s whenever 2s−1 ≤ k < 2s (k ≥ 1, s ≥ 1).

Define T ∈ B(H) by

Tfi,j = fi,j−1 (i ≥ 1, j 6= 0),
T fi,0 = 4−ifi,−1 (i ≥ 1),
T ej = ej+1 (j /∈ {3k : k = 1, 2, . . . }),

T e3k = e3k+1 + fr(k),3k (k = 1, 2, . . . ).

Let H0 =
∨{ej : j ≥ 0}. For i = 1, 2, . . . let Hi =

∨{fi,j : j ∈ Z}. Then
H =

⊕∞
i=0 Hi. In this decomposition T can be written in the matrix form

as

T =




S0 0 0 . . .
Q1 S1 0 . . .
Q2 0 S2 . . .
...

...
...

. . .




where S0 is the unilateral isometrical shift and Si (i ≥ 1) is a bilateral
weighted shift. Note that all weights of Si (i ≥ 1) but one are equal to
1. Note also that S0 is a ”forward” shift and Si (i ≥ 1) are ”backward”
shifts.

We show first that T is power bounded. Fix n ∈ N. We have

Tn =




Sn
0 0 0 . . .

Q′
1 Sn

1 0 . . .
Q′

2 0 Sn
2 . . .

...
...

...
. . .




Clearly the diagonal part of Tn,

D =




Sn
0 0 0 . . .
0 Sn

1 0 . . .
0 0 Sn

2 . . .
...

...
...

. . .






QUASISIMILARITY OF OPERATORS AND BLUM-HANSON PROPERTY 5

is a contraction.
Let H+ =

∨{fi,j : i ≥ 1, j ≥ 0} ∨ H0 and let P+ be the orthogonal
projection onto H+.

Let Q′ : H0 →
⊕∞

i=1 Hi be defined by Q′ej =
∑∞

i=1 Q′
iej . For j ≥ 0 we

have

Q′ej =
∞∑

i=1

∑

0≤a≤n−1

Sn−a−1
i QiS

a
0ej =

∞∑

i=1

∑

k:j≤3k<j+n

Sn−3k+j−1
i QiS

3k−j
0 ej

=
∞∑

i=1

∑

k:j≤3k<j+n

Sn−3k+j−1
i Qie3k =

∑

k:j≤3k<j+n

Sn−3k+j−1
r(k) fr(k),3k .

Clearly P+Sn−3k+j−1
r(k) fr(k),3k 6= 0 if and only if n − 3k + j − 1 ≤ 3k, i.e.,

if n + j − 1 ≤ 2 · 3k. Note that this happens for at most one k satisfying
j ≤ 3k < j + n. Indeed, suppose on the contrary that there are k < k′

satisfying these conditions. Then n + j − 1 ≥ 3k′ > 2 · 3k, a contradiction.
Moreover, if j 6= j′ then P+Q′ej ⊥ P+Q′ej′ . Suppose on the contrary that

there are j 6= j′ and k, k′ ∈ N such that n + j − 1 ≤ 2 · 3k, j ≤ 3k < j + n,
n+ j′−1 ≤ 2 ·3k′ , j′ ≤ 3k′ < j′+n and 2 ·3k−n− j +1 = 2 ·3k′−n− j′+1,
i.e., 2 ·3k−j = 2 ·3k′−j′. Since j 6= j′ we have k 6= k′. Suppose without loss
of generality that k < k′. Then j′− j = 2 · 3k′ − 2 · 3k > 3k′ , a contradiction
with the assumption that j′ ≤ 3k′ .

Hence P+Q′ is a partial isometry and ‖P+Q′‖ ≤ 1.
It remains to estimate ‖(I − P+)Q′‖. We have

(I − P+)Q′ej =
∑

k

Sn−3k+j−1
r(k) fr(k),3k =

∑

k

4−r(k)fr(k),2·3k−n−j+1,

where the sums are taken over all k satisfying j ≤ 3k < j + n and 2 · 3k −
n− j + 1 < 0. Thus (I − P+)Q′ =

∑∞
k=1 Vk, where

Vkej = 4−r(k)fr(k),2·3k−n−j+1

if j ≤ 3k < j + n and 2 · 3k − n− j + 1 < 0 and Vkej = 0 otherwise. Clearly
every Vk is a scalar multiple of a partial isometry and ‖Vk‖ ≤ 4−r(k).

Hence
∥∥∥
∞∑

k=1

Vk

∥∥∥ ≤
∞∑

k=1

4−r(k) =
∞∑

s=1

4−s · card {k ∈ N : r(k) = s}

=
∞∑

s=1

4−s2s−1 =
∞∑

s=1

2−s−1 = 1/2.

Hence ‖Tn‖ =
∥∥D + P+Q′ +

∑∞
k=1 Vk

∥∥ ≤ 5/2 for all n and T is power
bounded.

We show now that Tne0 → 0 weakly. Let t ≥ 1. For n sufficiently large
(n > 2 · 32t−1

+ t + 1) we have

Tne0 ⊥
∨
{fi,j : 1 ≤ i ≤ t, j ≥ −t} ∨

∨
{e0, . . . , en−1}.
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Since T is power bounded, this implies that Tne0 → 0 weakly.
Let M = {x ∈ H : Tnx → 0 weakly}. Since T is power bounded, M is

a closed T -invariant subspace. Clearly fi,j ∈ M for all i ≥ 1, j ∈ Z. Hence
M ⊃ ⊕∞

i=1 Hi. Also, we have e0 ∈ M . By induction we show that ej ∈ M
for each j. Indeed, if ej ∈ M , then Tej ∈ M and also P0Tej ∈ M , where P0

is the orthogonal projection onto H0 =
(⊕∞

i=1 Hi

)⊥
. Since P0Tej = ej+1,

we have ej+1 ∈ M . Thus H0 ⊂ M . Hence M = H and Tn → 0 in the weak
operator topology.

We show that T is of class C1·. Let x ∈ H be a nonzero vector. Write
x =

⊕∞
i=0 xi where xi ∈ Hi. If x0 6= 0 then infn ‖Tnx‖ ≥ infn ‖Sn

0 xn‖ =
‖x0‖ > 0.

Suppose that x0 = 0. Then there exists i ≥ 1 with xi 6= 0. We have

inf
n
‖Tnx‖ ≥ inf

n
‖Sn

i xi‖ ≥ 4−i‖xi‖ > 0.

Hence T is of class C1·.
Let kn = 2 · 3n + 1 (n = 1, 2, . . . ). Then

T kne0 = ekn + fr(n),0 +
n−1∑

j=1

4−r(j)fr(j),2·3j−2·3k .

Thus

1
2s − 1

∥∥∥
2s−1∑

n=1

T kne0

∥∥∥ ≥ 1
2s − 1

∣∣∣
2s−1∑

n=1

〈T kne0, fs,0〉
∣∣∣ =

2s−1

2s − 1
≥ 1

2

for each s ∈ N. Hence the sequence 1
N

∥∥∥∑N
n=1 T kne0

∥∥∥ does not converge

to 0 as N → ∞. Since the 1
N

∑N
n=1 T kne0 → 0 weakly, the sequence

1
N

∑N
n=1 T kne0 does not converge in the norm topology.

Remark 2.2. The construction becomes simpler if we do not require the
property C1·. Indeed, then it is sufficient to consider the operator P+T |H+

acting in the Hilbert space H+. The proof of the power boundedness of this
operator becomes simpler.

Remark 2.3. Let T ∈ B(H) be the operator constructed in Example 2.1.
We can introduce on H a new norm ||| · ||| by |||x||| = supn ‖Tnx‖ (x ∈ H).
Then ||| · ||| is equivalent to the original norm, and so the space (H, ||| · |||)
is reflexive (even superreflexive). Furthermore, T becomes a contraction on
this space which does not satisfy Theorem 1.1.

Remark 2.4. Example 2.1 can be also used to produce a positive contraction
on the space C(K), where K is a compact Hausdorff space, not having the
Blum-Hanson property. This provides an alternative construction to that in
[AHR].

As in the previous remark we can assume that T is a contraction on a
reflexive Banach space X such that Tn → 0 in the weak operator topology
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(for short Tn → 0 (WOT )) and such that T has not the Blum-Hanson
property. Note that in this case, T ∗n → 0 (WOT ). Let B∗ be the unit ball
in X∗. Then B∗ with the w∗ topology is a compact Hausdorff space. Define
a linear operator U on the Banach space C(B∗) by

(Uf)(x∗) = f(T ∗x∗) (f ∈ C(B∗), x∗ ∈ B∗).

Observe that U is a positive contraction on C(B∗). Let

X0 := {f ∈ C(B∗) : (Unf)(x∗) → 0 for all x∗ ∈ B∗}.
Clearly X0 is a closed subspace of C(B∗). For all x ∈ X the functions
fx(x∗) := 〈x, x∗〉 belong to X0 and separate points in B. Moreover, if f, g ∈
X0 then fg ∈ X0. Indeed, we have

(Un(fg))(x∗) = (fg)(T ∗nx∗) = f(T ∗nx∗) · g(T ∗nx∗),

where g(T ∗nx∗) → 0 and supn |f(T ∗nx∗)| ≤ ‖f‖C(B∗) < ∞. Hence fg ∈
X0. Furthermore, if f ∈ X0, then its complex conjugate f̄ also belongs to
X0. Thus, X0 is a closed selfadjoint algebra and by the Stone-Weierstrass
theorem, X0⊕{constants} = C(B∗). By the Lebesgue bounded convergence
theorem, Un converges in the weak operator topology on C(B∗).

On the other hand, there exist (kn) and x ∈ X such that the limit
limN→∞ 1

N

∑N
n=1 T knx does not exist. Since

1
N

∥∥∥
N∑

n=1

T knx
∥∥∥ = sup

x∗∈B∗

∣∣∣∣∣x
∗
(

1
N

N∑

n=1

T knx

)∣∣∣∣∣

=

∥∥∥∥∥
1
N

N∑

n=1

Uknfx

∥∥∥∥∥
C(B∗)

and Unfx → 0 weakly we conclude that limN→∞ 1
N

∑N
n=1 Uknfx does not

exist.

On the other hand, we prove that contractions on `p spaces have the
Blum-Hanson property.

Theorem 2.5. Let 1 ≤ p < ∞, T : `p → `p a contraction and x ∈ `p.
Suppose that the sequence (Tnx) is weakly convergent and let (ni) be an
increasing sequence. Then the limit

lim
N→∞

1
N

N∑

i=1

Tnix

exists in the norm topology.

Proof. Let x̄ be the weak limit of Tnx. Clearly T x̄ = x̄. Replacing x by
x− x̄ if necessary, we may assume without loss of generality that Tnx → 0
weakly.

The statement is clear for p = 1 since the weak convergence in `1 implies
the convergence in the norm.
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Let 1 < p < ∞. Let e1, e2, . . . be the standard basis in `p. Denote by Pr

the canonical projection onto the span of e1, . . . , er.
Since T is a contraction, the limit limn→∞ ‖Tnx‖ exists. Since the state-

ment is clear if this limit is equal to 0, we may assume without loss of
generality that limn→∞ ‖Tnx‖ = 1.

Let δ > 0. Find a positive integer t such that t
1
p
−1

< δ/2. Since 1+2ps <
2p(s + 1) for all s, there exists ε ∈ (0, 1) such that

((1 + ε)p + 2ps)1/p < 2(s + 1)1/p − (s + 1)ε

for s = 1, . . . , t− 1.
Find k such that ‖T kx‖ < 1 + ε. Find r such that ‖(I − Pr)T kx‖ < ε.

Find d such that ‖PrT
k+j‖ < ε for all j ≥ d.

We show that ∥∥Tm1x + · · ·+ Tmsx
∥∥ ≤ 2s1/p (1)

whenever k ≤ m1 < m2 < · · · < ms, s ≤ t and mi+1 −mi ≥ d for all i.
We prove (1) by induction on s. Clearly (1) is true for s = 1. Suppose that

(1) is true for s < t and that m1, . . . , ms+1 satisfy the required conditions.
We have∥∥Tm1x + · · ·+ Tms+1x

∥∥ ≤ ∥∥T kx + Tm2−m1+kx + · · ·+ Tms+1−m1+kx
∥∥

≤ ∥∥PrT
kx + (I − Pr)(Tm2−m1+kx + · · ·+ Tms+1x−m1+kx)

∥∥
+‖(I − Pr)T kx‖+

∥∥Pr(Tm2−m1+kx + · · ·+ Tms+1−m1+kx)
∥∥

≤
(
‖PrT

kx‖p +
∥∥(I − Pr)(Tm2−m1+kx + · · ·+ Tms+1−m1+kx)

∥∥p
)1/p

+(s + 1)ε
≤ ((1 + ε)p + 2ps)1/p + (s + 1)ε < 2(s + 1)1/p.

This proves (1) for s ≤ t.
Let (ni) be an increasing sequence and let N be large enough. Write

N = k + mt + r, where 1 ≤ r ≤ t and m is a positive integer, m ≥ d. Then

∥∥∥
N∑

i=1

Tnix
∥∥∥ ≤

∥∥∥
k+r∑

i=1

Tnix
∥∥∥ +

m∑

s=1

∥∥∥
t−1∑

i=0

Tnk+r+s+imx
∥∥∥ ≤ (k + r)‖x‖+ m · 2t1/p.

Thus

1
N

∥∥∥
N∑

i=1

Tnix
∥∥∥ ≤ (k + r)‖x‖

N
+

2mt1/p

tm
=

(k + r)‖x‖
N

+ 2t−1+1/p,

and

lim sup
N→∞

1
N

∥∥∥
N∑

i=1

Tnix
∥∥∥ ≤ 2t−1+1/p < δ.

Since δ > 0 was arbitrary, we have

lim
N→∞

1
N

∥∥∥
N∑

i=1

Tnix
∥∥∥ = 0.
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Hence T has the Blum-Hanson property. ¤

Problem 2.6. It is an interesting open problem whether Theorem 2.5 re-
mains valid for contractions in Lp spaces (1 < p < ∞), or more generally,
in uniformly smooth spaces.

It was claimed in [Br] that Theorem 1.1 holds for invertible isometries on
uniformly convex Banach spaces. However, the proof given there seems to
be false.

3. Quasisimilarity

Definition 3.1. Let T ∈ B(H) and S ∈ B(K) be Hilbert space operators.
We write T ≺ S if there exists an injective operator A : H → K with dense
range such that AT = SA. In this case, T is called a quasiaffine transform
of S. We say that T is quasisimilar to S if both T ≺ S and S ≺ T .

The following two simple lemmas allow us to transfer the weak conver-
gence and Blum-Hanson property via intertwinning relations.

Lemma 3.2. Let H, K be Hilbert spaces, let T ∈ B(H) and S ∈ B(K) be
power bounded operators. Suppose that T ≺ S. Then

(i) Tn → 0 (WOT ) if and only if Sn → 0 (WOT );
(ii) (Tnh) is weakly convergent for each h ∈ H if and only if (Snk) is

weakly convergent for each k ∈ K.

Proof. (i) Let A : H → K be an operator with dense range satisfying
AT = SA.

We have 〈Tnh, h′〉 → 0 for all h, h′ ∈ H. Thus for all h ∈ H, k ∈ K we
have

〈SnAh, k〉 = 〈ATnh, k〉 = 〈Tnh,A∗k〉 → 0

as n → ∞. Hence Snx → 0 weakly for all x ∈ AH. Since S is power
bounded and AH is dense in K, we have Sn → 0 (WOT ).

Conversely, suppose that Sn → 0 (WOT ). Then S∗n → 0 (WOT ) and
S∗ ≺ T ∗. Hence T ∗n → 0 (WOT ) and so Tn → 0 (WOT ).

(ii) Let h ∈ H. Note first that the sequence (Tnh) converges weakly
if and only if 〈Tnh, h′〉 is convergent for each h′ ∈ H. Indeed, suppose
that this condition is satisfied and define f(h′) = limn→∞〈Tnh, h′〉. Then
f is a bounded antilinear functional, and so there is an h̄ ∈ H such that
〈h̄, h′〉 = f(h′) for all h′ ∈ H. Hence Tnh → h̄ weakly.

¿From this it follows easily, that (Tnh) is weakly convergent for each h ∈
H if and only if (T ∗nh) is weakly convergent for each h ∈ H. Furthermore,
{h ∈ H : (Tnh) converges weakly} is a closed subspace of H.

Suppose now that (Tnh) converges weakly for each h ∈ H, and let A :
H → K be an injective operator with dense range such that AT = SA.

Let h ∈ H and Tnh → h̄ weakly. Then T h̄ = h̄ and Tn(h−h̄) → 0 weakly.
Thus H = ker(I − T ) + H0, where H0 = {h ∈ H : Tnh → 0 weakly}. It is
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easy to see that A ker(I − T ) ⊂ ker(I − S) and

AH0 ⊂ {k ∈ K : Snk → 0 weakly}.
Thus (Snk) converges weakly for each k ∈ AH, and therefore for each k ∈ K.

Conversely, suppose that (Snk) converges weakly for each k ∈ K. Then
S∗ ≺ T ∗ and (S∗nk) converges weakly for each k ∈ K. By the previous case,
(T ∗nh) converges weakly for each h ∈ H, and so (Tnh) converges weakly for
each h ∈ H. ¤
Lemma 3.3. Let H, K be Hilbert spaces, let T ∈ B(H) and S ∈ B(K) be
power bounded operators. Suppose that T ≺ S and that T has the Blum-
Hanson property. Then S has the Blum-Hanson property.

Proof. Let A : H → K be an injective operator with dense range satisfying
AT = SA.

Since T has the Blum-Hanson property, for each increasing subsequence
of positive integers (nj) and every h ∈ H the limit

lim
N→∞

1
N

N∑

j=1

Tnjh

exists (in the norm topology). Thus

lim
N→∞

1
N

N∑

j=1

SnjAh = lim
N→∞

1
N

N∑

j=1

ATnjh

exists for each h ∈ H. Since AH is dense in K and the sequence 1
N

∑N
j=1 Tnj

is bounded, the limit

lim
N→∞

1
N

N∑

j=1

Snjk

exists for all k ∈ K. Hence S has the Blum-Hanson property. ¤

Our main result is now a direct consequence of Example 2.1.

Theorem 3.4. Let T ∈ B(H) be the operator of class C1,· which was
constructed in Example 2.1. Then there is no Hilbert space contraction
C ∈ B(K) such that C ≺ T .

Proof. Suppose on the contrary that there are a Hilbert space contraction
C ∈ B(K) and an injective operator A : K → H with dense range satisfying
AC = TA.

Since Tn → 0 (WOT ) we have Cn → 0 (WOT ) by Lemma 3.2. By
Theorem 1.1, C has the Blum-Hanson property. Then Lemma 3.3 implies
that T has the Blum-Hanson property, a contradiction. ¤

The operator without the Blum-Hanson property constructed in Example
2.1 was of class C1,·. It is interesting to note that a similar example of class
C·,1 is not possible.
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Corollary 3.5. Let T be a power bounded operator of class C·,1 acting in
a Hilbert space H. Then the following two properties are equivalent:

(i) the sequence (Tnx) converges weakly for every x ∈ H;
(ii) for every x ∈ H and an increasing sequence (kn) of positive integers,

the limit

lim
N→∞

1
N

N∑

n=1

T knx

exists in the norm topology.

Proof. Let T ∈ B(H) be a power bounded operator of class C·,1. It is well
known that there exist a Hilbert space K and an isometry V ∈ B(K) such
that T ∗ ≺ V , see e.g. [Ke1, p. 174]. Then V ∗ ≺ T .

Suppose that Tn is convergent in the weak operator topology. Then V ∗n
is convergent in the weak operator topology by Lemma 3.2, and since V ∗
is a contraction, it has the Blum-Hanson property. Consequently T has the
Blum-Hanson property. ¤

Remark 3.6. Let T ∈ B(H) be the operator of class C1,· without the Blum-
Hanson property constructed in Example 2.1. Then T ∗ is of class C·,1 and by
the previous theorem, it has the Blum-Hanson property. Hence the Blum-
Hanson property is not preserved by taking adjoints.

Corollary 3.7. There exists a power bounded operator S such that

(i) there is no contraction C with C ≺ S;
(ii) there is no contraction C ′ with S ≺ C ′.

Proof. Let T be the operator constructed in Example 2.1. Let S = T⊕T ∗ ∈
B(H⊕H). Suppose that there is a contraction C ′ ∈ B(K) such that S ≺ C ′.
Then there is an injective operator A : H ⊕H → K with A(T ⊕T ∗) = C ′A.
Consider the restriction of A to the subspace {0}⊕H. Thus there exists an
injective operator A0 : H → K such that A0T

∗ = C ′A0. Let K0 = A0H.
Clearly K0 is invariant for C ′. Thus T ∗ ≺ C ′

0 where C ′
0 is the restriction

C ′|K0. Hence C
′∗
0 ≺ T , a contradiction with Lemma 3.4.

If C is a contraction and C ≺ (T⊕T ∗) then (T ∗⊕T ) ≺ C∗, a contradiction
with the previous case.

4. Similarity and final remarks

We prove that there are power bounded operators of class C1,1 which
are not similar to contractions, thus answering negatively Kerchy’s question
from [Ke1, Question 1] (see also [Ke2, Question 3]). It is instructive to
recall from Introduction that each power bounded operator of class C1,1 is
quasisimilar to a contraction.

Example 4.1. There exists a power bounded operator of class C1,1 which
is not similar to a contraction.
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Proof. Recall the operator constructed in [F], see also [H]. Let ei, fi (i ≥
0) be an orthonormal basis in a Hilbert space K. Define T ∈ B(K) by
Tfj = fj−1 (j ≥ 1), Tf0 = 0, Tej = ej+1 (j 6= 3k), Te3k = e3k+1 + f3k .
It is known that T is power bounded but not polynomially bounded, see [L].
Thus there exists a sequence of polynomials pn such that ‖pn‖ = 1 for all n
and ‖pn(T )‖ > n.

Let n ∈ N. There exists x ∈ K such that ‖x‖ = 1 and ‖pn(T )xn‖ >
n. Without loss of generality we may assume that xn is a finite linear
combination of the basis vectors ej , fj , i.e., there is an N ∈ N such that
deg pn ≤ 3N and xn ∈

∨{ej , fj : 0 ≤ j ≤ 3N}.
Fix n ∈ N and consider xn, pn and N as above. We construct an operator

Vn of class C1,1 acting in a Hilbert space Hn ⊃ K such that supk ‖V k
n ‖ ≤ 3

and ‖pn(Vn)xn‖ > n. The required non-polynomially bounded operator of
class C1,1 will be then the direct sum

⊕∞
n=1 Vn.

Let Hn be the Hilbert space with an orthonormal basis ej , fj (j ∈ Z).
Thus Hn ⊃ K.

Define Vn ∈ B(Hn) by

Vnfj = fj−1 (j 6= 0);

Vnf0 =
1
N

f−1;

Vnej = ej+1 (j 6= −1, j 6= 3k with 1 ≤ k ≤ N);

Vne−1 =
1
N

e0;

Vne3k = e3k+1 + f3k (k = 1, . . . , N).

Note that we have xn ∈ K ⊂ Hn and pn(T )xn = PKp(Vn)xn, where PK is
the orthogonal projection onto K. Thus ‖pn(Vn)‖ ≥ ‖Pn(Vn)xn‖ > n.

It is easy to see that infk ‖V k
n u‖ > 0 for each nonzero vector u ∈ Hn.

Note also that V ∗
n is unitarily equivalent to Vn (the unitary equivalence is

given by the operator interchanging ej and fj). So Vn is of class C1,1.
It remains to show the power-boundedness of Vn. The argument is similar

to the argument in Example 2.1.
Let E =

∨{ej : j ∈ Z}, E+ =
∨{ej : j ≥ 0}, F =

∨{fj : j ∈ Z} and
F+ =

∨{fj : j ≥ 0}. In the decomposition Hn = E ⊕ F we have

Vn =
(

SE 0
Q SF

)

where SE , SF are weighted bilateral shifts.
Fix m ∈ N. Then

V m
n =

(
Sm

E 0
Q′ Sm

F

)

where the diagonal part

D =
(

Sm
E 0
0 Sm

F

)

is a contraction.
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For j ∈ Z we have

Q′ej =
∑

0≤a<m

Sm−a−1
F QSa

Eej =
∑

1≤k≤N

j≤3k<j+m

Sm−3k+j−1
F QS3k−j

E ej

=
∑

1≤k≤N

j≤3k<j+m

Sm−3k+j−1
F f3k .

Thus Q′ =
∑N

k=1 Wk where Wkej = Sm−3k+j−1
F f3k if j ≤ 3k < j + m and

Wkej = 0 otherwise.
Note that Wkej is a multiple of fs, where s = 2 · 3k −m− j + 1. We have

Wkej =
1

N2
fs (j < 0, s < 0),

Wkej =
1
N

fs (j < 0, s ≥ 0),

Wkej =
1
N

fs (j ≥ 0, s < 0),

Wkej = fs (j ≥ 0, s ≥ 0),

Thus ‖Wk − PF+WkPE+‖ ≤ 1
N and

‖Q′ − PF+Q′PE+‖ =
∥∥∥

N∑

k=1

(Wk − PF+WkPE+)
∥∥∥ ≤ 1.

It remains to estimate ‖PF+Q′PE+‖. However, as in [F] or in the argument
in Example 2.1, one can show that PF+Q′PE+ is a partial isometry, and so
‖PF+Q′PE+‖ ≤ 1.

Thus

‖V m
n ‖ =

∥∥D + PF+Q′PE+ + (Q′ − PF+Q′PE+)
∥∥ ≤ 3.

Consider now the operator V =
⊕∞

n=1 Vn acting in the Hilbert space
H =

⊕∞
n=1 Hn. Clearly ‖V m‖ = supn ‖V m

n ‖ ≤ 3 for every m ∈ N, and so V
is power bounded. Clearly V is of class C1,1 since it is a direct sum of C1,1

operators. Finally, for every n we have ‖pn(V )‖ ≥ ‖pn(Vn)‖ > n, and so V
is not polynomially bounded.

Consequently, V is not similar to a contraction. ¤

Using a similar idea, it was shown in [ER] that there is a power bounded
operator T on a Hilbert space H such that

lim
n→∞ ‖T

nx‖ = lim
n→∞ ‖T

∗nx‖ = 0

for every x ∈ H, and T is not similar to a contraction.
Note finally that there also exists a power bounded operator S on a Hilbert

space K such that

inf
n≥0

‖Snx‖ > 0 and lim
n→∞ ‖S

∗nx‖ = 0
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for every x ∈ K \ {0}, and S is not similar to a contraction. Indeed, let T ∈
B(H) be the operator constructed in Example 2.1. Consider the weighted
forward shift S defined by

S(x0, x1. . . . ) = (0, Tx0, Tx1, . . . )

for all (x0, x1, . . . ) ∈ K := `2(N,H). As T is of class C1,·, the operator S
is of the same class. Moreover, the power boundedness of T implies that
limn→∞ ‖S∗nx‖ = 0. By [Ku, Proposition 8.9], since T is not similar to a
contraction, S is not similar to a contraction, either.

Thus, in general, asymptotic properties of Tn in the strong operator topol-
ogy are too weak to imply similarity of T to a contraction.
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